Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monomer Synthesis
2.2. Elastomer Mould Fabrication
2.3. Liquid Crystal Elastomer Synthesis (Planar Alignment)
2.4. Material Characterisation
3. Results
3.1. Liquid Crystal Elastomer Production
3.2. Thermal Analysis of LCEs
3.3. Mechanical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagerwall, J. Liquid Crystal Elastomer Actuators and Sensors: Glimpses of the Past, the Present and Perhaps the Future. Program. Mater. 2023, 1, e9. [Google Scholar] [CrossRef]
- Ohm, C.; Brehmer, M.; Zentel, R. Liquid Crystalline Elastomers as Actuators and Sensors. Adv. Mater. 2010, 22, 3366–3387. [Google Scholar] [CrossRef]
- Zeng, H.; Wani, O.M.; Wasylczyk, P.; Priimagi, A. Light-Driven, Caterpillar-Inspired Miniature Inching Robot. Macromol. Rapid Commun. 2018, 39, 1700224. [Google Scholar] [CrossRef] [PubMed]
- Boothby, J.M.; Kim, H.; Ware, T.H. Shape Changes in Chemoresponsive Liquid Crystal Elastomers. Sens. Actuators B Chem. 2017, 240, 511–518. [Google Scholar] [CrossRef]
- Hebner, T.S.; Korner, K.; Bowman, C.N.; Bhattacharya, K.; White, T.J. Leaping Liquid Crystal Elastomers. Sci. Adv. 2023, 9, eade1320. [Google Scholar] [CrossRef] [PubMed]
- Traugutt, N.A.; Mistry, D.; Luo, C.; Yu, K.; Ge, Q.; Yakacki, C.M. Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing. Adv. Mater. 2020, 32, 2000797. [Google Scholar] [CrossRef]
- Mistry, D.; Nikkhou, M.; Raistrick, T.; Hussain, M.; Jull, E.I.L.; Baker, D.L.; Gleeson, H.F. Isotropic Liquid Crystal Elastomers as Exceptional Photoelastic Strain Sensors. Macromolecules 2020, 53, 3709–3718. [Google Scholar] [CrossRef]
- Mistry, D.; Connell, S.D.; Mickthwaite, S.L.; Morgan, P.B.; Clamp, J.H.; Gleeson, H.F. Coincident Molecular Auxeticity and Negative Order Parameter in a Liquid Crystal Elastomer. Nat. Commun. 2018, 9, 5095. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Jull, E.I.L.; Mandle, R.J.; Raistrick, T.; Hine, P.J.; Gleeson, H.F. Liquid Crystal Elastomers for Biological Applications. Nanomaterials 2021, 11, 813. [Google Scholar] [CrossRef]
- Evans, K.E. Auxetic Polymers: A New Range of Materials. Endeavour 1991, 19, 170–174. [Google Scholar] [CrossRef]
- Raistrick, T.; Zhang, Z.; Mistry, D.; Mattsson, J.; Gleeson, H.F. Understanding the Physics of the Auxetic Response in a Liquid Crystal Elastomer. Phys. Rev. Res. 2021, 3, 023191. [Google Scholar] [CrossRef]
- He, C.; Liu, P.; Griffin, A.C. Toward Negative Poisson Ratio Polymers through Molecular Design. Macromolecules 1998, 31, 3145–3147. [Google Scholar] [CrossRef]
- Ren, W.; McMullan, P.J.; Griffin, A.C. Stress-Strain Behavior in Main Chain Liquid Crystalline Elastomers: Effect of Crosslinking Density and Transverse Rod Incorporation on “Poisson’s Ratio”. Phys. Status Solidi B Basic Res. 2009, 246, 2124–2130. [Google Scholar] [CrossRef]
- Wang, Z.; Raistrick, T.; Street, A.; Reynolds, M.; Liu, Y.; Gleeson, H.F. Direct Observation of Biaxial Nematic Order in Auxetic Liquid Crystal Elastomers. Materials 2023, 16, 393. [Google Scholar] [CrossRef] [PubMed]
- Kundler, I.; Finkelmann, H. Strain-induced Director Reorientation in Nematic Liquid Single Crystal Elastomers. Macromol. Rapid Commun. 1995, 16, 679–686. [Google Scholar] [CrossRef]
- Biggins, J.S.; Terentjev, E.M.; Warner, M. Semisoft Elastic Response of Nematic Elastomers to Complex Deformations. Phys. Rev. E 2008, 78, 041704. [Google Scholar] [CrossRef] [PubMed]
- Mistry, D.; Morgan, P.B.; Clamp, J.H.; Gleeson, H.F. New Insights into the Nature of Semi-Soft Elasticity and “‘mechanical-Fré Edericksz Transitions’” in Liquid Crystal Elastomers. Soft Matter 2018, 14, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Berrow, S.R.; Mandle, R.J.; Raistrick, T.; Reynolds, M.; Gleeson, H.F. Toward Monodomain Nematic Liquid Crystal Elastomers of Arbitrary Thickness through PET-RAFT Polymerization. Macromolecules 2024, 57, 5218–5229. [Google Scholar] [CrossRef] [PubMed]
- Mistry, D.; Gleeson, H.F. Mechanical Deformations of a Liquid Crystal Elastomer at Director Angles between 0° and 90°: Deducing an Empirical Model Encompassing Anisotropic Nonlinearity. J. Polym. Sci. B Polym. Phys. 2019, 57, 1367–1377. [Google Scholar] [CrossRef]
- Guo, H.; Saed, M.O.; Terentjev, E.M. Thiol-Acrylate Side-Chain Liquid Crystal Elastomers. Soft Matter 2022, 18, 4803–4809. [Google Scholar] [CrossRef]
- Imrie, C.T.; Karasz, F.E.; Attard, G.S. Side-Chain Liquid-Crystalline Copolymers Containing Spacers of Differing Lengths. Macromolecules 1992, 25, 1278–1283. [Google Scholar] [CrossRef]
- Mulligan, D.R.; Imrie, C.T.; Larcey, P. Characterization: Of Side-Chain Liquid Crystal Polymers Using Dynamic Mechanical Thermal Analysis and Dielectric Thermal Analysis. J. Mater. Sci. 1996, 31, 1985–1989. [Google Scholar] [CrossRef]
- Lee, K.M.; Han, C.D. Effect of Flexible Spacer Length on the Rheology of Side-Chain Liquid-Crystalline Polymers. Macromolecules 2003, 36, 8796–8810. [Google Scholar] [CrossRef]
- Nieuwhof, R.P.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Wursche, R.; Rieger, B. Side-Chain Liquid-Crystalline Poly(Ketone)s: Effect of Spacer Length, Mesogen Type and Mesogen Density on Mesomorphic Behavior. Macromol. Chem. Phys. 2000, 201, 2484–2492. [Google Scholar] [CrossRef]
- Chen, X.F.; Shen, Z.; Wan, X.H.; Fan, X.H.; Chen, E.Q.; Ma, Y.; Zhou, Q.F. Mesogen-Jacketed Liquid Crystalline Polymers. Chem. Soc. Rev. 2010, 39, 3072–3101. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.A.; Imrie, C.T. Effect of Spacer Length on the Thermal Properties of Side-Chain Liquid Crystal Polymethacrylates. 2. Synthesis and Characterization of the Poly[ω-(4′-Cyanobiphenyl-4-Yloxy) Alkyl Methacrylate]s. Macromolecules 1995, 28, 3617–3624. [Google Scholar] [CrossRef]
- Hu, T.; Yi, J.; Xiao, J.; Zhang, H. Effect of Flexible Spacer Length on the Mesophase Structures of Main-Chain/Side-Chain Liquid Crystalline Polymers Based on Ethyl Cellulose. Polym. J. 2010, 42, 752–758. [Google Scholar] [CrossRef]
- Mitchell, G.R.; Coulter, M.; Davis, F.J.; Guo, W. The Effect of the Spacer Length on the Nature of Coupling in Side Chain Liquid Crystals Polymers and Elastomers. J. Phys. II 1992, 2, 1121–1132. [Google Scholar] [CrossRef]
- Ngai, K.L.; Etienne, S.; Zhong, Z.Z.; Schuele, D.E. Effect of Alkyl Chain Spacer Length on the Dynamics of Glass Transition in Side-Chain Liquid-Crystalline Polymers. Macromolecules 1995, 28, 6423–6431. [Google Scholar] [CrossRef]
- Wei, R.; Zhou, L.; He, Y.; Wang, X.; Keller, P. Effect of Molecular Parameters on Thermomechanical Behavior of Side-on Nematic Liquid Crystal Elastomers. Polymer 2013, 54, 5321–5329. [Google Scholar] [CrossRef]
- Resetic, A.; Milavec, J.; Bubnov, A.; Pociecha, D.; Hamplova, V.; Gorecka, E.; Zalar, B.; Domenici, V. New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties. Crystals 2023, 13, 96. [Google Scholar] [CrossRef]
- Prawoto, Y. Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio. Comput. Mater. Sci. 2012, 58, 140–153. [Google Scholar] [CrossRef]
- Guo, H.; Saed, M.O.; Terentjev, E.M. Main-Chain Nematic Side-Chain Smectic Composite Liquid Crystalline Elastomers. Adv. Funct. Mater. 2023, 33, 2214918. [Google Scholar] [CrossRef]
- Stannarius, R.; Köhler, R.; Rössle, M.; Zentel, R. Study of Smectic Elastomer Films under Uniaxial Stress. Liq. Cryst. 2004, 31, 895–906. [Google Scholar] [CrossRef]
- Osborne, M.J.; Terentjev, E.M. Elasticity of Rubber with Smectic Microstructure. Phys. Rev. E 2000, 62, 5101–5114. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, E.; Finkelmann, H. Smectic-a Liquid Single Crystal Elastomers—Strain Induced Break-down of Smectic Layers. Macromol. Chem. Phys. 1999, 200, 312–322. [Google Scholar] [CrossRef]
- Aßfalg, N.; Finkelmann, H. A Smectic a Liquid Single Crystal Elastomer (LSCE): Phase Behavior and Mechanical Anisotropy. Macromol. Chem. Phys. 2001, 202, 794–800. [Google Scholar] [CrossRef]
- Nishikawa, E.; Finkelmann, H.; Brand, H.R. Smectic A Liquid Single Crystal Elastomers Showing Macroscopic In-Plane Fluidity. Macromol. Rapid Commun. 1997, 18, 65–71. [Google Scholar] [CrossRef]
- Kramer, D.; Finkelmann, H. Mechanics of Homeotropically Ordered Smectic-A Elastomers with Global Oblate Chain Conformation. Macromol. Rapid Commun. 2011, 32, 1539–1545. [Google Scholar] [CrossRef]
- Kundler, I.; Nishikawa, E.; Finkelmann, H. Nematic and Smectic Liquid Single Crystal Elastomers: Influence of External Stress Parallel and Perpendicular to the Director. Macromol. Symp. 1997, 117, 11–19. [Google Scholar] [CrossRef]
- Nishikawa, E.; Finkelmann, H. Orientation Behavior of Smectic Polymer Networks by Uniaxial Mechanical Fields. Macromol. Chem. Phys. 1997, 198, 2531–2549. [Google Scholar] [CrossRef]
- Komp, A.; Finkelmann, H. A New Type of Macroscopically Oriented Smectic-a Liquid Crystal Elastomer. Macromol. Rapid Commun. 2007, 28, 55–62. [Google Scholar] [CrossRef]
- Weilepp, J.; Stein, P.; Assfalg, N.; Finkelmann, H.; Martinoty, P.; Brand, H.R. Rheological Properties of Mono- and Polydomainliquid Crystalline Elastomers Exhibiting a Broadsmectic A Phase. Europhys. Lett. 1999, 47, 508–514. [Google Scholar] [CrossRef]
- Kramer, D.; Finkelmann, H. Breakdown of Layering in Frustrated Smectic-A Elastomers. Macromol. Rapid Commun. 2007, 28, 2318–2324. [Google Scholar] [CrossRef]
- Beyer, P.; Terentjev, E.M.; Zentel, R. Monodomain Liquid Crystal Main Chain Elastomers by Photocrosslinking. Macromol. Rapid Commun. 2007, 28, 1485–1490. [Google Scholar] [CrossRef]
- Stenull, O.; Lubensky, T.C. Phase Transitions and Soft Elasticity of Smectic Elastomers. Phys. Rev. Lett. 2005, 94, 018304. [Google Scholar] [CrossRef] [PubMed]
- Dunning, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
LCE Name | Cyanobiphenyl Monomer | Spacer Length (Methylene Units) |
---|---|---|
AN03 | A3OCB | 3 |
AN04 | A4OCB | 4 |
AN05 | A5OCB | 5 |
AN06 | A6OCB | 6 |
AN07 | A7OCB | 7 |
AN08 | A8OCB | 8 |
AN09 | A9OCB | 9 |
LCE | Spacer Length (Methylene Units) | Auxetic Threshold Strain (@ 22 °C) | Tg (°C) | Texperiment (°C) | Auxetic Threshold Strain (@ Reduced Temperature) |
---|---|---|---|---|---|
AN03 | 3 | - | 21 | 38 | 0.60 (±0.05) |
AN04 | 4 | 0.81 (±0.05) | 12 | 28 | 0.52 (±0.05) |
AN05 | 5 | 0.65 (±0.05) | 9 | 25 | 0.59 (±0.05) |
AN06 | 6 | 0.56 (±0.05) | 6 | 22 | 0.56 (±0.05) |
AN07 | 7 | - | 2 | 18 | - |
AN08 | 8 | - | −1 | 15 | - |
AN09 | 9 | - | −2 | 14 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berrow, S.R.; Raistrick, T.; Mandle, R.J.; Gleeson, H.F. Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length. Polymers 2024, 16, 1957. https://doi.org/10.3390/polym16141957
Berrow SR, Raistrick T, Mandle RJ, Gleeson HF. Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length. Polymers. 2024; 16(14):1957. https://doi.org/10.3390/polym16141957
Chicago/Turabian StyleBerrow, Stuart R., Thomas Raistrick, Richard J. Mandle, and Helen F. Gleeson. 2024. "Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length" Polymers 16, no. 14: 1957. https://doi.org/10.3390/polym16141957
APA StyleBerrow, S. R., Raistrick, T., Mandle, R. J., & Gleeson, H. F. (2024). Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length. Polymers, 16(14), 1957. https://doi.org/10.3390/polym16141957