A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks
Abstract
:1. Introduction
2. Starch-Based Hydrogels
2.1. General Overview
2.2. Historical Background
2.3. Classification
2.4. Source
2.5. Physical Appearance
2.6. Physical Stability
2.7. Composition
2.8. Digestibility
2.9. Applications
- (a)
- Biomedical applications
- (b)
- Cosmetic applications
- (c)
- Agriculture applications
- (d)
- Food applications
2.10. Methods of Preparation
2.11. Traditional
2.12. Innovative
3. Starch-Based HPP Hydrogels
3.1. High-Pressure Processing (HPP)
3.2. Impact of High Pressure on Starch
4. Challenges, Future Perspectives, and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohammadinejad, R.; Maleki, H.; Larrañeta, E.; Fajardo, A.R.; Nik, A.B.; Shavandi, A.; Sheikhi, A.; Ghorbanpour, M.; Farokhi, M.; Govindh, P.; et al. Status and Future Scope of Plant-Based Green Hydrogels in Biomedical Engineering. Appl. Mater. Today 2019, 16, 213–246. [Google Scholar] [CrossRef]
- Wang, S. Starch Structure, Functionality and Application in Foods; Springer: Singapore, 2020; ISBN 9789811506222. [Google Scholar]
- Balakrishna, A.K.; Abdul Wazed, M.; Farid, M. A Review on the Effect of High Pressure Processing (HPP) on Gelatinization and Infusion of Nutrients. Molecules 2020, 25, 2369. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Jia, Y.; Sun, Q.; Yu, M.; Ji, N.; Dai, L.; Wang, Y.; Qin, Y.; Xiong, L.; Sun, Q. Recent Advances in the Preparation, Characterization, and Food Application of Starch-Based Hydrogels. Carbohydr. Polym. 2022, 291, 119624. [Google Scholar] [CrossRef]
- Yahia, L. Naziha Chirani History and Applications of Hydrogels. J. Biomed. Sci. 2015, 4, 1–23. [Google Scholar] [CrossRef]
- Knorr, D.; Heinz, V.; Buckow, R. High Pressure Application for Food Biopolymers. Biochim. Biophys. Acta Proteins Proteom. 2006, 1764, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Larrea-Wachtendorff, D.; Sousa, I.; Ferrari, G. Starch-Based Hydrogels Produced by High-Pressure Processing (HPP): Effect of the Starch Source and Processing Time. Food Eng. Rev. 2021, 13, 622–633. [Google Scholar] [CrossRef]
- Larrea-Wachtendorff, D.; Tabilo-Munizaga, G.; Ferrari, G. Potato Starch Hydrogels Produced by High Hydrostatic Pressure (HHP): A First Approach. Polymers 2019, 11, 1673. [Google Scholar] [CrossRef] [PubMed]
- Buckow, R.; Jankowiak, L.; Knorr, D.; Versteeg, C. Pressure-Temperature Phase Diagrams of Maize Starches with Different Amylose Contents. J. Agric. Food Chem. 2009, 57, 11510–11516. [Google Scholar] [CrossRef] [PubMed]
- Katopo, H.; Song, Y.; Jane, J.L. Effect and Mechanism of Ultrahigh Hydrostatic Pressure on the Structure and Properties of Starches. Carbohydr. Polym. 2002, 47, 233–244. [Google Scholar] [CrossRef]
- Błaszczak, W.; Buciński, A.; Górecki, A.R. In Vitro Release of Theophylline from Starch-Based Matrices Prepared via High Hydrostatic Pressure Treatment and Autoclaving. Carbohydr. Polym. 2015, 117, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bai, Y.; Mousaa, S.A.S.; Zhang, Q.; Shen, Q. Effect of High Hydrostatic Pressure on Physicochemical and Structural Properties of Rice Starch. Food Bioprocess Technol. 2012, 5, 2233–2241. [Google Scholar] [CrossRef]
- Błaszczak, W.; Fornal, J.; Kiseleva, V.I.; Yuryev, V.P.; Sergeev, A.I.; Sadowska, J. Effect of High Pressure on Thermal, Structural and Osmotic Properties of Waxy Maize and Hylon VII Starch Blends. Carbohydr. Polym. 2007, 68, 387–396. [Google Scholar] [CrossRef]
- Liu, P.-L.; Hu, X.-S.; Shen, Q. Effect of High Hydrostatic Pressure on Starches: A Review. Starch/Staerke 2010, 62, 615–628. [Google Scholar] [CrossRef]
- Ismail, H.; Irani, M.; Ahmad, Z. Starch-Based Hydrogels: Present Status and Applications. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 411–420. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Ahmed, F.; Mondal, M.I.H. An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects; Springer: New York, NY, USA, 2022; Volume 30, ISBN 0123456789. [Google Scholar]
- Okur, I.; Sezer, P.; Oztop, M.H.; Alpas, H. Recent Advances in Gelatinisation and Retrogradation of Starch by High Hydrostatic Pressure. Int. J. Food Sci. Technol. 2021, 56, 4367–4375. [Google Scholar] [CrossRef]
- El-Zawawy, W.K.; Ibrahim, M.M. Preparation and Characterization of Novel Polymer Hydrogel from Industrial Waste and Copolymerization of Poly (Vinyl Alcohol) and Polyacrylamide. J. Appl. Polym. Sci. 2011, 118, 1534–1540. [Google Scholar] [CrossRef]
- Gao, Y.; Ozel, M.Z.; Dugmore, T.; Sulaeman, A.; Matharu, A.S. A Biorefinery Strategy for Spent Industrial Ginger Waste. J. Hazard. Mater. 2021, 401, 123400. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Velasquillo-Martínez, C.; García-Carvajal, Z.Y. Composite Hydrogels Based on Gelatin, Chitosan and Polyvinyl Alcohol to Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1–20. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. J. Agric. Food Chem. 2018, 66, 6940–6967. [Google Scholar] [CrossRef]
- Biduski, B.; da Silva, W.M.F.; Colussi, R.; Halal, S.L.D.M.E.; Lim, L.-T.; Dias, Á.R.G.; Zavareze, E.D.R. Sarch Hydrogels: The Influence of the Amylose Content and Gelatinization Metthod. Int. J. Biol. Macromol. 2018, 113, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, M.R.; Oliveira, R.S.; Mauricio, M.R.; Cellet, T.S.P.; Pereira, G.M.; Kunita, M.H.; Muniz, E.C.; Rubira, A.F. Albumin Release from a Brain-Resembling Superabsorbent Magnetic Hydrogel Based on Starch. Soft Matter 2012, 8, 6629–6637. [Google Scholar] [CrossRef]
- Chang, C.; Duan, B.; Zhang, L. Fabrication and Characterization of Novel Macroporous Cellulose—Alginate Hydrogels. Polymer 2009, 50, 5467–5473. [Google Scholar] [CrossRef]
- Kumar, V.; Kumari, M. Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef]
- Maleki, L.; Edlund, U.; Albertsson, A. Synthesis of Full Interpenetrating Hemicellulose Hydrogel Networks. Carbohydr. Polym. 2017, 170, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.V.; Hamid, S.B.A.; Zain, S.K. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. Sci. World J. 2014, 2014, 1–20. [Google Scholar]
- Pen, E. Effect of the Presence of Lignin or Peat in IPN Hydrogels on the Sorption of Heavy Metals. Polym. Bull. 2010, 65, 495–508. [Google Scholar] [CrossRef]
- Naseem, A.; Tabasum, S.; Mahmood, K.; Zuber, M.; Ali, M.; Noreen, A. International Journal of Biological Macromolecules Lignin-Derivatives Based Polymers, Blends and Composites: A Review. Int. J. Biol. Macromol. 2016, 93, 296–313. [Google Scholar] [CrossRef] [PubMed]
- Fariña, M.; Torres, M.D.; Moreira, R. Starch Hydrogels from Discarded Chestnuts Produced under Different Temperature-Time Gelatinisation Conditions. Int. J. Food Sci. Technol. 2019, 54, 1179–1186. [Google Scholar] [CrossRef]
- Tanan, W.; Panichpakdee, J.; Saengsuwan, S. Novel Biodegradable Hydrogel Based on Natural Polymers: Synthesis, Characterization, Swelling/Reswelling and Biodegradability. Eur. Polym. J. 2019, 112, 678–687. [Google Scholar] [CrossRef]
- Ali, A.E.; Alarifi, A. Characterization and in Vitro Evaluation of Starch Based Hydrogels as Carriers for Colon Specific Drug Delivery Systems. Carbohydr. Polym. 2009, 78, 725–730. [Google Scholar] [CrossRef]
- Ngoenkam, J.; Faikrua, A.; Yasothornsrikul, S.; Viyoch, J. Potential of an Injectable Chitosan/Starch/β-Glycerol Phosphate Hydrogel for Sustaining Normal Chondrocyte Function. Int. J. Pharm. 2010, 391, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Sila, D.N.; Van Buggenhout, S.; Duvetter, T.; Fraeye, I.; De Roeck, A.; Van Loey, A.; Hendrickx, M. Pectins in Processed Fruits and Vegetables: Part II—Structure—Function Relationships. Rev. Food Sci. Food Saf. 2009, 8, 86–104. [Google Scholar] [CrossRef]
- Mehrali, M.; Thakur, A.; Kadumudi, F.B.; Pierchala, M.K.; Alvin, J.; Cordova, V.; Shahbazi, M.; Mehrali, M.; Pennisi, C.P.; Orive, G.; et al. Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS Appl. Mater. Interfaces 2019, 11, 12283–12297. [Google Scholar] [CrossRef] [PubMed]
- Seslija, S.; Veljovic, D.; Krusic, K.; Stevanovic, J. Cross-Linking of Highly Methoxylated Pectin with Copper: The Specific Anion Influence. New J. Chem. 2016, 40, 1618–1625. [Google Scholar] [CrossRef]
- Rakhshaee, R.; Panahandeh, M. Stabilization of a Magnetic Nano-Adsorbent by Extracted Pectin to Remove Methylene Blue from Aqueous Solution: A Comparative Studying between Two Kinds of Cross-Likened Pectin. J. Hazard. Mater. 2011, 189, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Palm, M.; Zacchi, G. Separation of Hemicellulosic Oligomers from Steam-Treated Spruce Wood Using Gel Filtration. Sep. Purif. Technol. 2004, 36, 191–201. [Google Scholar] [CrossRef]
- Liu, S.; Guo, R.; Li, C.; Lu, C.; Yang, G.; Wang, F.; Nie, J.; Ma, C.; Gao, M. POSS Hybrid Hydrogels: A Brief Review of Synthesis, Properties and Applications. Eur. Polym. J. 2021, 143, 110180. [Google Scholar] [CrossRef]
- Cao, M.; Liu, C.; Li, M.; Zhang, X.; Peng, L.; Liu, L.; Liao, J.; Yang, J. Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels 2022, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Mala, T.; Anal, A.K. Protection and Controlled Gastrointestinal Release of Bromelain by Encapsulating in Pectin–Resistant Starch Based Hydrogel Beads. Front. Bioeng. Biotechnol. 2021, 9, 757176. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial Hydrogels for Biomedical Applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef] [PubMed]
- Uliniuc, A.; Hamaide, T.; Popa, M.; Bǎcǎit̃ǎ, S. Modified Starch-Based Hydrogels Cross-Linked with Citric Acid and Their Use as Drug Delivery Systems for Levofloxacin. Soft Mater. 2013, 11, 483–493. [Google Scholar] [CrossRef]
- Sethi, S.; Saruchi; Kaith, B.S.; Kaur, M.; Sharma, N.; Kumar, V. Cross-Linked Xanthan Gum–Starch Hydrogels as Promising Materials for Controlled Drug Delivery. Cellulose 2020, 27, 4565–4589. [Google Scholar] [CrossRef]
- Pedroso-Santana, S.; Rivas, B.; Fleitas-Salazar, N.; Maura, R.; Gomez-Gaete, C.; Debut, A.; Parra, N.; Vizuete, K.; Ramos, T.I.; Toledo, J.; et al. Starch-Based Hydrogels Show Relevant Properties for Tissue Engineering and Loading of Nanoparticulate Systems. CC-BY Posted Authorea 2020, 11, 1–18. [Google Scholar]
- Cui, R.; Chen, F.; Zhao, Y.; Huang, W.; Liu, C. A Novel Injectable Starch-Based Tissue Adhesive for Hemostasis. J. Mater. Chem. B 2020, 8, 8282–8293. [Google Scholar] [CrossRef]
- Pagano, C.; Ceccarini, M.R.; Faieta, M.; di Michele, A.; Blasi, F.; Cossignani, L.; Beccari, T.; Oliva, E.; Pittia, P.; Sergi, M.; et al. Starch-Based Sustainable Hydrogel Loaded with Crocus Sativus Petals Extract: A New Product for Wound Care. Int. J. Pharm. 2022, 625, 122067. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Miao, Y.; Zhao, J.; Xiao, H.; Zhang, M.; Liu, K.; Zhang, X.; Huang, L.; Chen, L.; Wu, H. Mussel-Inspired Biocompatible Polydopamine/Carboxymethyl Cellulose/Polyacrylic Acid Adhesive Hydrogels with UV-Shielding Capacity. Cellulose 2021, 28, 1527–1540. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, A.; Koshenaj, K.; Ferrari, G. A Preliminary Study on the Release of Bioactive Compounds from Rice Starch Hydrogels Produced by High-Pressure Processing (HPP). Gels 2023, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Van Bemmelen, J.M. Das Hydrogel und das Krystallinische Hydrat Des Kupferoxyds. Z. Anorg. Chem. 1894, 5, 466–483. [Google Scholar] [CrossRef]
- Islands and Survey, 1960 Nature 117. 1960. Available online: https://www.nature.com/articles/185116b0.pdf (accessed on 1 July 2024).
- Buwalda, S.J.; Boere, K.W.M.; Dijkstra, P.J.; Feijen, J.; Vermonden, T.; Hennink, W.E. Hydrogels in a Historical Perspective: From Simple Networks to Smart Materials. J. Control. Release 2014, 190, 254–273. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.; Whistler, R. Starch: Chemistry and Technology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Heller, J.; Pangburn, S.H.; Roskos, K.V. Development of Enzymatically Degradable Protective Coatings for Use in Triggered Drug Delivery Systems: Derivatized Starch Hydrogels. Biomaterials 1990, 11, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Cunha, A.M.; Reis, R.L.; Vázquez, B.; San Román, J. New Starch-Based Thermoplastic Hydrogels for Use as Bone Cements or Drug-Delivery Carriers. J. Mater. Sci. Mater. Med. 1998, 9, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Abdel-Halim, E.S.; Sokker, H.H. Bi-Functional Starch Composites Prepared by γ-Irradiation for Removal of Anionic and Cationic Dyes from Aqueous Solutions. Polym. Plast. Technol. Eng. 2007, 46, 71–77. [Google Scholar] [CrossRef]
- Dragan, E.S.; Apopei, D.F. Synthesis and Swelling Behavior of PH-Sensitive Semi-Interpenetrating Polymer Network Composite Hydrogels Based on Native and Modified Potatoes Starch as Potential Sorbent for Cationic Dyes. Chem. Eng. J. 2011, 178, 252–263. [Google Scholar] [CrossRef]
- Zheng, Y.; Hua, S.; Wang, A. Adsorption Behavior of Cu2+ from Aqueous Solutions onto Starch-g-Poly (Acrylic Acid)/Sodium Humate Hydrogels. Desalination 2010, 263, 170–175. [Google Scholar] [CrossRef]
- Chauhan, G.S.; Jaswal, S.C.; Verma, M. Post Functionalization of Carboxymethylated Starch and Acrylonitrile Based Networks through Amidoximation for Use as Ion Sorbents. Carbohydr. Polym. 2006, 66, 435–443. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, D.K.; Gupta, A. In Vitro Release Dynamics of Thiram Fungicide from Starch and Poly(Methacrylic Acid)-Based Hydrogels. J. Hazard. Mater. 2008, 154, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Mahkam, M. Starch-Based Polymeric Carriers for Oral-Insulin Delivery. J. Biomed. Mater. Res. A 2010, 92, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Li, J.; Cui, M.; Wang, J.; Zhou, Y.; Luo, L.; Wei, Y.; Ye, L.; Sun, H.; Yao, F. In Situ “Clickable” Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. ACS Appl. Mater. Interfaces 2016, 8, 4442–4455. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zheng, B.; Xu, J.; Chen, J.; Chen, L. 3D-Printing of Oxidized Starch-Based Hydrogels with Superior Hydration Properties. Carbohydr. Polym. 2022, 292, 119686. [Google Scholar] [CrossRef]
- Sankarganesh, P.; Parthasarathy, V.; Kumar, A.G.; Ragu, S.; Saraniya, M.; Udayakumari, N. Preparation of PVA/Starch Hydrogel and Its In-Vitro Drug Release Potential against Pus-Inducing Pathogenic Strain and Breast Cancer Cell Line. J. Solgel Sci. Technol. 2022, 101, 571–578. [Google Scholar] [CrossRef]
- Santana, Á.L.; Angela, A.; Meireles, M. New Starches Are the Trend for Industry Applications: A Review. Food Public Health 2014, 4, 229–241. [Google Scholar] [CrossRef]
- Zhu, F. Underutilized and Unconventional Starches: Why Should We Care? Trends Food Sci. Technol. 2020, 100, 363–373. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Tian, J.; Chu, Z. Effect of a New Shell Material—Jackfruit Seed Starch on Novel Flavor Microcapsules Containing Vanilla Oil. Ind. Crop Prod. 2018, 112, 47–52. [Google Scholar] [CrossRef]
- Makroo, H.A.; Naqash, S.; Saxena, J.; Sharma, S.; Majid, D.; Dar, B.N. Recovery and Characteristics of Starches from Unconventional Sources and Their Potential Applications: A Review. Appl. Food Res. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Adi Sulianto, A.; Adiyaksa, I.P.; Wibisono, Y.; Khan, E.; Ivanov, A.; Drannikov, A.; Ozaltin, K.; Di Martino, A. From Fruit Waste to Hydrogels for Agricultural Applications. Clean Technol. 2024, 6, 1–17. [Google Scholar] [CrossRef]
- dos Santos, J.S.; Biduski, B.; Colussi, R.; Pinto, V.Z.; dos Santos, L.R. Hydrogel Properties of Non-Conventional Starches from Guabiju, Pinhão, and Uvaia Seeds. Food Res. Int. 2023, 173, 113243. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Gulrez, S.K.H.; Al-Assaf, S.; Phillips, G.O. Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications; InTech Open: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Amini, M.; Chang, S.I.; Rao, P. A Cybermanufacturing and AI Framework for Laser Powder Bed Fusion (LPBF) Additive Manufacturing Process. Manuf. Lett. 2019, 21, 41–44. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Biomacromolecules 2017, 18, 316–330. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Han, S.S. PVA-Based Hydrogels for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159–182. [Google Scholar] [CrossRef]
- Kim, C.H.; Cho, K.Y.; Park, J.K. Reactive Blends of Gelatinized Starch and Polycaprolactone-g-Glycidyl Methacrylate. J. Appl. Polym. Sci. 2001, 81, 1507–1516. [Google Scholar] [CrossRef]
- Bodirlau, R.; Teaca, C.A.; Spiridon, I. Influence of Natural Fillers on the Properties of Starch-Based Biocomposite Films. Compos. B Eng. 2013, 44, 575–583. [Google Scholar] [CrossRef]
- Piola, B.; Sabbatini, M.; Gino, S.; Invernizzi, M.; Renò, F. 3D Bioprinting of Gelatin–Xanthan Gum Composite Hydrogels for Growth of Human Skin Cells. Int. J. Mol. Sci. 2022, 23, 539. [Google Scholar] [CrossRef] [PubMed]
- Arora, B.; Bhatia, R.; Attri, P. Bionanocomposites: Green Materials for a Sustainable Future. In New Polymer Nanocomposites for Environmental Remediation; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 699–712. ISBN 9780128110348. [Google Scholar]
- Mallick, B.N.; Rana, P.K.; Sahoo, P.K. Preparation of Starch-Based Bionanocomposite Hydrogel with Mica for Fire Retardancy. Adv. Polym. Technol. 2015, 34, 4. [Google Scholar] [CrossRef]
- Eid, M. Gamma Radiation Synthesis and Characterization of Starch Based Polyelectrolyte Hydrogels Loaded Silver Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2011, 21, 297–305. [Google Scholar] [CrossRef]
- Brownlee, I.A.; Gill, S.; Wilcox, M.D.; Pearson, J.P.; Chater, P.I. Starch Digestion in the Upper Gastrointestinal Tract of Humans. Starch/Staerke 2018, 70, 1–9. [Google Scholar] [CrossRef]
- Campos, F.A. Nutritional Value of Legumes and Greens; Springer: New York, NY, USA, 1950; Volume 7, ISBN 9781493927975. [Google Scholar]
- Balakrishna, A.K.; Wazed, M.A.; Farid, M. A Review on the Effect of High Pressure Processing. Molecules 2020, 25, 2369. [Google Scholar] [CrossRef] [PubMed]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, Fine Structure and Architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Benmoussa, M.; Suhendra, B.; Aboubacar, A.; Hamaker, B.R. Distinctive Sorghum Starch Granule Morphologies Appear to Improve Raw Starch Digestibility. Starch/Staerke 2006, 58, 92–99. [Google Scholar] [CrossRef]
- Gallant, D.J.; Bouchet, B.; Baldwin, P.M. Microscopy of Starch: Evidence of a New Level of Granule Organization. Carbohydr. Polym. 1997, 32, 177–191. [Google Scholar] [CrossRef]
- de Stéfano, J.C.Q.; Abundis-Correa, V.; Herrera-Flores, S.D.; Alvarez, A.J. PH-Sensitive Starch-Based Hydrogels: Synthesis and Effect of Molecular Components on Drug Release Behavior. Polymers 2020, 12, 1974. [Google Scholar] [CrossRef]
- Koev, T.T.; Harris, H.C.; Kiamehr, S.; Khimyak, Y.Z.; Warren, F.J. Starch Hydrogels as Targeted Colonic Drug Delivery Vehicles. Carbohydr. Polym. 2022, 289, 119413. [Google Scholar] [CrossRef] [PubMed]
- Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for Hydrogels in Cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.M.; Yang, C.; Yan, L. Perspectives on: Strategies to Fabricate Starch-Based Hydrogels with Potential Biomedical Applications. J. Bioact. Compat. Polym. 2005, 20, 297–314. [Google Scholar] [CrossRef]
- Shang, M.; Jiang, H.; Li, J.; Ji, N.; Li, M.; Dai, L.; He, J.; Qin, Y. A dual physical crosslinking starch-based hydrogel exhibiting high strength, fatigue resistance, excellent biocompatibility, and biodegradability. Food Chem. X 2023, 18, 100728. [Google Scholar] [CrossRef] [PubMed]
- Motwani, M.S.; Rafiei, Y.; Tzifa, A.; Seifalian, A.M. In Situ Endothelialization of Intravascular Stents from Progenitor Stem Cells Coated with Nanocomposite and Functionalized Biomolecules. Biotechnol. Appl. Biochem. 2011, 58, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.H.; Muhammad, N.; Abdullah, M.M.A.B. Potential of Starch Nanocomposites for Biomedical Applications. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 12087. [Google Scholar] [CrossRef]
- Famá, L.; Rojo, P.G.; Bernal, C.; Goyanes, S. Biodegradable Starch Based Nanocomposites with Low Water Vapor Permeability and High Storage Modulus. Carbohydr. Polym. 2012, 87, 1989–1993. [Google Scholar] [CrossRef]
- Gallarate, M.; Carlotti, M.E.; Trotta, M.; Bovo, S. On the Stability of Ascorbic Acid in Emulsified Systems for Topical and Cosmetic Use. Int. J. Pharm. 1999, 188, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Li, Q.; Liu, H.; Zhao, Q.; Niu, Y.; Zhao, D. Adhesion Mechanism and Application Progress of Hydrogels. Eur. Polym. J. 2022, 173, 111277. [Google Scholar] [CrossRef]
- Gwak, M.A.; Hong, B.M.; Park, W.H. Hyaluronic Acid/Tannic Acid Hydrogel Sunscreen with Excellent Anti-UV, Antioxidant, and Cooling Effects. Int. J. Biol. Macromol. 2021, 191, 918–924. [Google Scholar] [CrossRef]
- Parente, M.E.; Andrade, A.O.; Ares, G.; Russo, F. Bioadhesive Hydrogels for Cosmetic Applications. Int. J. Cosmet. Sci. 2015, 37, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Kalhapure, A.; Kumar, R.; Singh, V.P.; Pandey, D.S. Hydrogels: A Boon for Increasing Agricultural Productivity in Water-Stressed Environment. Curr. Sci. 2016, 111, 1773–1779. [Google Scholar]
- Elbarbary, A.M.; El-Rehim, H.A.A.; El-Sawy, N.M.; Hegazy, E.S.A.; Soliman, E.S.A. Radiation Induced Crosslinking of Polyacrylamide Incorporated Low Molecular Weights Natural Polymers for Possible Use in the Agricultural Applications. Carbohydr. Polym. 2017, 176, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Olad, A.; Zebhi, H.; Salari, D.; Mirmohseni, A.; Reyhani Tabar, A. Slow-Release NPK Fertilizer Encapsulated by Carboxymethyl Cellulose-Based Nanocomposite with the Function of Water Retention in Soil. Mater. Sci. Eng. C 2018, 90, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Ghobashy, M.M. The Application of Natural Polymer-Based Hydrogels for Agriculture; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128164211. [Google Scholar]
- Qureshi, M.A.; Nishat, N.; Jadoun, S.; Ansari, M.Z. Polysaccharide Based Superabsorbent Hydrogels and Their Methods of Synthesis: A Review. Carbohydr. Polym. Technol. Appl. 2020, 1, 100014. [Google Scholar] [CrossRef]
- Bora, A.; Karak, N. Starch and Itaconic Acid-Based Superabsorbent Hydrogels for Agricultural Application. Eur. Polym. J. 2022, 176, 111430. [Google Scholar] [CrossRef]
- Zhu, X.; Lu, P.; Chen, W.; Dong, J. Studies of UV Crosslinked Poly(N-Vinylpyrrolidone) Hydrogels by FTIR, Raman and Solid-State NMR Spectroscopies. Polymer 2010, 51, 3054–3063. [Google Scholar] [CrossRef]
- Saleh, A.S.; Ibrahim, A.G.; Elsharma, E.M.; Metwally, E.; Siyam, T. Radiation Grafting of Acrylamide and Maleic Acid on Chitosan and Effective Application for Removal of Co(II) from Aqueous Solutions. Radiat. Phys. Chem. 2018, 144, 116–124. [Google Scholar] [CrossRef]
- He, G.; Ke, W.; Chen, X.; Kong, Y.; Zheng, H.; Yin, Y.; Cai, W. Preparation and Properties of Quaternary Ammonium Chitosan-g-Poly(Acrylic Acid-Co-Acrylamide) Superabsorbent Hydrogels. React. Funct. Polym. 2017, 111, 14–21. [Google Scholar] [CrossRef]
- Czarnecka, E.; Nowaczyk, J. Semi-Natural Superabsorbents Based on Starch-g-Poly(Acrylic Acid): Modification, Synthesis and Application. Polymers 2020, 12, 1794. [Google Scholar] [CrossRef] [PubMed]
- Tomadoni, B.; Casalongué, C.; Alvarez, V.A. Polymers for Agri-Food Applications. Polym. Agri. Food Appl. 2019, 45–66. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, W.; Luo, W.; Fang, Y. Synthesis of Superabsorbent Polymers by Irradiation and Their Applications in Agriculture. J. Appl. Polym. Sci. 2004, 93, 1748–1755. [Google Scholar] [CrossRef]
- Nnadi, F.; Brave, C. Environmentally Friendly Superabsorbent Polymers for Water Conservation in Agricultural Lands. J. Soil. Environ. Manag. 2011, 2, 206–211. [Google Scholar]
- Öter, M.; Karaagac, B.; Deniz, V. Substitution of Aromatic Processing Oils in Rubber Compounds. KGK Rubberpoint 2011, 64, 48–51. [Google Scholar]
- Parvathy, P.C.; Jyothi, A.N.; John, K.S.; Sreekumar, J. Cassava Starch Based Superabsorbent Polymer as Soil Conditioner: Impact on Soil Physico-Chemical and Biological Properties and Plant Growth. Clean 2014, 42, 1610–1617. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, D.K.; Negi, S.; Dhiman, A. Synthesis and Characterization of Agar-Starch Based Hydrogels for Slow Herbicide Delivery Applications. Int. J. Plast. Technol. 2015, 19, 263–274. [Google Scholar] [CrossRef]
- Perez, J.J.; Francois, N.J. Chitosan-Starch Beads Prepared by Ionotropic Gelation as Potential Matrices for Controlled Release of Fertilizers. Carbohydr. Polym. 2016, 148, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Zain, G.; Nada, A.A.; El-Sheikh, M.A.; Attaby, F.A.; Waly, A.I. Superabsorbent Hydrogel Based on Sulfonated-Starch for Improving Water and Saline Absorbency. Int. J. Biol. Macromol. 2018, 115, 61–68. [Google Scholar] [CrossRef]
- Supare, K.; Mahanwar, P. Starch-Chitosan Hydrogels for the Controlled-Release of Herbicide in Agricultural Applications: A Study on the Effect of the Concentration of Raw Materials and Crosslinkers. J. Polym. Environ. 2022, 30, 2448–2461. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.W. Synthesis of Starch-Based Smart Hydrogel Derived from Rice-Cooked Wastewater for Agricultural Use. Int. J. Biol. Macromol. 2023, 226, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Torley, P.; Halley, P.J. Emerging Biodegradable Materials: Starch- and Protein-Based Bio-Nanocomposites. J. Mater. Sci. 2008, 43, 3058–3071. [Google Scholar] [CrossRef]
- Grommers, H.E.; van der Krogt, D.A. Potato Starch: Production, Modifications and Uses, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; ISBN 9780127462752. [Google Scholar]
- Zia-ud-Din; Xiong, H.; Fei, P. Physical and Chemical Modification of Starches: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar] [CrossRef] [PubMed]
- Punia, S. Barley Starch Modifications: Physical, Chemical and Enzymatic—A Review. Int. J. Biol. Macromol. 2020, 144, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.; Bilal Khan Niazi, M.; Samin, G.; Jahan, Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J. Food Process. Eng. 2017, 40, e12447. [Google Scholar] [CrossRef]
- Ordoñez, R.; Atarés, L.; Chiralt, A. Physicochemical and Antimicrobial Properties of Cassava Starch Films with Ferulic or Cinnamic Acid. LWT 2021, 144, 111242. [Google Scholar] [CrossRef]
- Sabetzadeh, M.; Bagheri, R.; Masoomi, M. Study on Ternary Low Density Polyethylene/Linear Low Density Polyethylene/Thermoplastic Starch Blend Films. Carbohydr. Polym. 2015, 119, 126–133. [Google Scholar] [CrossRef]
- Pang, M.M.; Pun, M.Y.; Ishak, Z.A.M. Degradation Studies during Water Absorption, Aerobic Biodegradation, and Soil Burial of Biobased Thermoplastic Starch from Agricultural Waste/Polypropylene Blends. J. Appl. Polym. Sci. 2013, 129, 3656–3664. [Google Scholar] [CrossRef]
- Pushpadass, H.A.; Weber, R.W.; Dumais, J.J.; Hanna, M.A. Biodegradation Characteristics of Starch-Polystyrene Loose-Fill Foams in a Composting Medium. Bioresour. Technol. 2010, 101, 7258–7264. [Google Scholar] [CrossRef]
- Imre, B.; Pukánszky, B. Compatibilization in Bio-Based and Biodegradable Polymer Blends. Eur. Polym. J. 2013, 49, 1215–1233. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, M.N.; Shan, C.S.; Chen, Z.G. Evaluation of Cooking Performance, Structural Properties, Storage Stability and Shelf Life Prediction of High-Moisture Wet Starch Noodles. Food Chem. 2021, 357, 129744. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Encapsulation and Delivery of Food Ingredients Using Starch Based Systems. Food Chem. 2017, 229, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Simões, B.M.; Cagnin, C.; Yamashita, F.; Olivato, J.B.; Garcia, P.S.; de Oliveira, S.M.; Eiras Grossmann, M.V. Citric Acid as Crosslinking Agent in Starch/Xanthan Gum Hydrogels Produced by Extrusion and Thermopressing. LWT 2020, 125, 108950. [Google Scholar] [CrossRef]
- Funami, T.; Hiroe, M.; Noda, S.; Asai, I.; Ikeda, S.; Nishinari, K. Influence of Molecular Structure Imaged with Atomic Force Microscopy on the Rheological Behavior of Carrageenan Aqueous Systems in the Presence or Absence of Cations. Food Hydrocoll. 2007, 21, 617–629. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Guan, Y.; Qi, X.M.; Zhang, B.; Chen, G.G.; Peng, F.; Sun, R.C. Physically Crosslinked Composite Hydrogels of Hemicelluloses with Poly(Vinyl Alcohol Phosphate) and Chitin Nanowhiskers. Bioresources 2015, 10, 1378–1393. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Zheng, J. Influence of Ultrasonic Treatment on the Physiochemical Properties and Feature Structure of Pea Starch in Acid and Salt Systems. Starch Staerke 2019, 71, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Zhu, S.; Yu, M. Green and Facile Fabrication of Nano-ZnO Coated Cellulose/Starch/Activated Carbon Hydrogel for Enhanced Dyes Adsorption and Antibacterial Activity. Mater. Today Commun. 2022, 33, 104355. [Google Scholar] [CrossRef]
- Cohen, F.S.; Akabas, M.H.; Zimmerberg, J.; Finkelstein, A. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J. Cell Biol. 1984, 98, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R. Hydrogen Bridges in Crystal Engineering: Interactions without Borders. Acc. Chem. Res. 2002, 35, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Takigami, M.; Amada, H.; Nagasawa, N.; Yagi, T.; Kasahara, T.; Takigami, S.; Tamada, M. Preparation and Properties of CMC Gel. Trans. Mater. Res. Soc. Jpn. 2007, 32, 713–716. [Google Scholar] [CrossRef]
- Trombino, S.; Servidio, C.; Curcio, F.; Cassano, R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics 2019, 11, 407. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click Hydrogels, Microgels and Nanogels: Emerging Platforms for Drug Delivery and Tissue Engineering. Biomaterials 2014, 35, 4969–4985. [Google Scholar] [CrossRef]
- Yu, F.; Cao, X.; Li, Y.; Chen, X. Diels-Alder Click-Based Hydrogels for Direct Spatiotemporal Postpatterning via Photoclick Chemistry. ACS Macro Lett. 2015, 4, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Dong, H.; Deng, X.; Zhuo, R.; Zhong, Z. Injectable Hyaluronic Acid/Poly(Ethylene Glycol) Hydrogels Crosslinked via Strain-Promoted Azide-Alkyne Cycloaddition Click Reaction. Carbohydr. Polym. 2017, 169, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, W.M.; Kim, I.L.; Burdick, J.A. Synthesis and Orthogonal Photopatterning of Hyaluronic Acid Hydrogels with Thiol-Norbornene Chemistry. Biomaterials 2013, 34, 9803–9811. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, G.; Ptaszek, P.; Kuterasiński, Ł. Swelling of Hydrogels Based on Carboxymethylated Starch and Poly(Acrylic Acid): Nonlinear Rheological Approach. Polymers 2020, 12, 2564. [Google Scholar] [CrossRef]
- Musa, H.; Musa, Y.; Suleiman, M. Synthesis and Characterization of Starch-Graft-Acrylamide Hydrogel for Oral Drug Delivery. Niger. J. Basic. Appl. Sci. 2020, 27, 16–21. [Google Scholar] [CrossRef]
- Castanha, N.; Lima, D.C.; Matta Junior, M.D.; Campanella, O.H.; Augusto, P.E.D. Combining Ozone and Ultrasound Technologies to Modify Maize Starch. Int. J. Biol. Macromol. 2019, 139, 63–74. [Google Scholar] [CrossRef]
- Lima, D.C.; Maniglia, B.C.; Matta Junior, M.D.; Le-Bail, P.; Le-Bail, A.; Augusto, P.E.D. Dual-Process of Starch Modification: Combining Ozone and Dry Heating Treatments to Modify Cassava Starch Structure and Functionality. Int. J. Biol. Macromol. 2021, 167, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.Q.; Zhang, H.; Xu, D.; Wu, F.F.; Jin, Y.M.; Yang, N.; Yu, K.J.; Xu, X.M. Insights into Starch-Based Gels: Selection, Fabrication, and Application. Int. J. Biol. Macromol. 2024, 258, 128864. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Sunooj, K.V.; Navaf, M.; Phimolsiripol, Y.; Whiteside, W.S. Recent Advancements in Cross-Linked Starches for Food Applications—A Review. Int. J. Food Prop. 2024, 27, 411–430. [Google Scholar] [CrossRef]
- Lin, X.; Mao, Y.; Li, P.; Bai, Y.; Chen, T.; Wu, K.; Chen, D.; Yang, H.; Yang, L. Ultra-Conformable Ionic Skin with Multi-Modal Sensing, Broad-Spectrum Antimicrobial and Regenerative Capabilities for Smart and Expedited Wound Care. Adv. Sci. 2021, 8, 2004627. [Google Scholar] [CrossRef] [PubMed]
- Segura, T.; Anderson, B.C.; Chung, P.H.; Webber, R.E.; Shull, K.R.; Shea, L.D. Crosslinked Hyaluronic Acid Hydrogels: A Strategy to Functionalize and Pattern. Biomaterials 2005, 26, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, I.; Hernández, D.; Cruz, C.; Lopes, J.; Barra, A.; Nunes, C.; da Silva, J.A.L.; Ferreira, P.; Coimbra, M.A. Relevance of Genipin Networking on Rheological, Physical, and Mechanical Properties of Starch-Based Formulations. Carbohydr. Polym. 2021, 254, 117236. [Google Scholar] [CrossRef]
- Ibrahim, S.; Kang, Q.K.; Ramamurthi, A. The Impact of Hyaluronic Acid Oligomer Content on Physical, Mechanical, and Biologic Properties of Divinyl Sulfone-Crosslinked Hyaluronic Acid Hydrogels. J. Biomed. Mater. Res. Part A 2010, 94, 355–370. [Google Scholar] [CrossRef]
- Song, W.; Ko, J.; Choi, Y.H.; Hwang, N.S. Recent Advancements in Enzyme-Mediated Crosslinkable Hydrogels: In Vivo-Mimicking Strategies. APL Bioeng. 2021, 5, 021502. [Google Scholar] [CrossRef]
- Santha Kumar, A.R.S.; Padmakumar, A.; Kalita, U.; Samanta, S.; Baral, A.; Singha, N.K.; Ashokkumar, M.; Qiao, G.G. Ultrasonics in Polymer Science: Applications and Challenges. Prog. Mater. Sci. 2023, 136, 101113. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Wang, J. Photo-Crosslinkable Hydrogel and Its Biological Applications. Chin. Chem. Lett. 2021, 32, 1603–1614. [Google Scholar] [CrossRef]
- Larrea-Wachtendorff, D. Evaluation of the Physical Stability of Starch-Based Hydrogels Produced by High-Pressure Processing (HPP). Gels 2022, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Buckow, R.; Heinz, V.; Knorr, D. Effect of High Hydrostatic Pressure-Temperature Combinations on the Activity of β-Glucanase from Barley Malt. J. Inst. Brew. 2005, 111, 282–289. [Google Scholar] [CrossRef]
- Barba, F.J.; Terefe, N.S.; Buckow, R.; Knorr, D.; Orlien, V. New Opportunities and Perspectives of High Pressure Treatment to Improve Health and Safety Attributes of Foods. A Review. Food Res. Int. 2015, 77, 725–742. [Google Scholar] [CrossRef]
- Yamamoto, K.; Buckow, R. Pressure Gelatinization of Starch. In High Pressure Processing of Food: Principles, Technology and Applications; Springer: New York, NY, USA, 2016; pp. 433–459. [Google Scholar]
- Chen, Z.; Yang, Q.; Yang, Y.; Zhong, H. The Effects of High-Pressure Treatment on the Structure, Physicochemical Properties and Digestive Property of Starch—A Review. Int. J. Biol. Macromol. 2023, 244, 125376. [Google Scholar] [CrossRef] [PubMed]
- Sarko, A.; Wu, H.-C.H. The Crystal Structures of A-, B- and C-Polymorphs of Amylose and Starch. Starch-Stärke 1978, 30, 73–78. [Google Scholar] [CrossRef]
- Wang, S.; Guo, P. Botanical Sources of Starch; Springer: Singapore, 2020; ISBN 9789811506215. [Google Scholar]
- Castro, L.M.G.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Impact of High Pressure on Starch Properties: A Review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Huber, K.C. Starch. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Douzals, J.P.; Marechal, P.A.; Coquille, J.C.; Gervais, P. Microscopic Study of Starch Gelatinization under High Hydrostatic Pressure. J. Agric. Food Chem. 1996, 44, 1403–1408. [Google Scholar] [CrossRef]
- Buckow, R.; Heinz, V.; Knorr, D. High Pressure Phase Transition Kinetics of Maize Starch. J. Food Eng. 2007, 81, 469–475. [Google Scholar] [CrossRef]
- Vallons, K.J.R.; Arendt, E.K. Effects of High Pressure and Temperature on the Structural and Rheological Properties of Sorghum Starch. Innov. Food Sci. Emerg. Technol. 2009, 10, 449–456. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Effect of High Pressure on Rheological and Thermal Properties of Quinoa and Maize Starches. Food Chem. 2018, 241, 380–386. [Google Scholar] [CrossRef]
- Guo, Z.; Zeng, S.; Zhang, Y.; Lu, X.; Tian, Y.; Zheng, B. The Effects of Ultra-High Pressure on the Structural, Rheological and Retrogradation Properties of Lotus Seed Starch. Food Hydrocoll. 2015, 44, 285–291. [Google Scholar] [CrossRef]
- Hibi, Y.; Matsumoto, T.; Hagiwara, S. Effect of High Pressure on the Crystalline Structure of Various Starch Granules. Cereal Chem. 1993, 70, 671–676. [Google Scholar]
- Stute, R.; Klingler, R.W.; Boguslawski, S.; Eshtiaghi, M.N.; Knorr, D. Effects of High Pressures Treatment on Starches. Starch/Staerke 1996, 48, 399–408. [Google Scholar] [CrossRef]
- Bauer, B.A.; Knorr, D. The Impact of Pressure, Temperature and Treatment Time on Starches: Pressure-Induced Starch Gelatinisation as Pressure Time Temperature Indicator for High Hydrostatic Pressure Processing. J. Food Eng. 2005, 68, 329–334. [Google Scholar] [CrossRef]
- Kawai, K.; Fukami, K.; Yamamoto, K. Effects of Treatment Pressure, Holding Time, and Starch Content on Gelatinization and Retrogradation Properties of Potato Starch-Water Mixtures Treated with High Hydrostatic Pressure. Carbohydr. Polym. 2007, 69, 590–596. [Google Scholar] [CrossRef]
- Jiang, B.; Li, W.; Shen, Q.; Hu, X.; Wu, J.; Jiang, B.; Li, W.; Shen, Q.; Hu, X.; Wu, J. Effects of High Hydrostatic Pressure on Rheological Properties of Rice Starch Effects of High Hydrostatic Pressure on Rheological Properties of Rice Starch. Int. J. Food Prop. 2015, 18, 1334–1344. [Google Scholar] [CrossRef]
- Li, W.; Tian, X.; Liu, L.; Wang, P.; Wu, G.; Zheng, J.; Ouyang, S.; Luo, Q.; Zhang, G. High Pressure Induced Gelatinization of Red Adzuki Bean Starch and Its Effects on Starch Physicochemical and Structural Properties. Food Hydrocoll. 2015, 45, 132–139. [Google Scholar] [CrossRef]
- Leite, T.S.; de Jesus, A.L.T.; Schmiele, M.; Tribst, A.A.L.; Cristianini, M. High Pressure Processing (HPP) of Pea Starch: Effect on the Gelatinization Properties. LWT Food Sci. Technol. 2017, 76, 361–369. [Google Scholar] [CrossRef]
- Cui, R.; Zhu, F. Physicochemical Properties and Bioactive Compounds of Different Varieties of Sweetpotato Flour Treated with High Hydrostatic Pressure. Food Chem. 2019, 299, 125129. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F.; Mo, G.; Hemar, Y. Supramolecular Structure of High Hydrostatic Pressure Treated Quinoa and Maize Starches. Food Hydrocoll. 2019, 92, 276–284. [Google Scholar] [CrossRef]
- Colussi, R.; Kringel, D.; Kaur, L.; da Rosa Zavareze, E.; Dias, A.R.G.; Singh, J. Dual Modification of Potato Starch: Effects of Heat-Moisture and High Pressure Treatments on Starch Structure and Functionalities. Food Chem. 2020, 318, 126475. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.E.; Pinder, D.N.; Hemar, Y.; Anema, S.G.; Wong, M. Effect of High-Pressure Treatment on Various Starch-in-Water Suspensions. Food Hydrocoll. 2008, 22, 150–155. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, L. Morphological, Thermal, Rheological and Retrogradation Properties of Potato Starch Fractions Varying in Granule Size. J. Sci. Food Agric. 2004, 84, 1241–1252. [Google Scholar] [CrossRef]
- Sparvoli, F.; Bollini, R.; Cominelli, E. Nutritional value (of legumes). In Grain Legumes; Springer International Publishing: New York, NY, USA, 2015; Available online: https://www.researchgate.net/publication/292577655 (accessed on 1 July 2024).
- Pulgarín, O.; Larrea-Wachtendorff, D.; Ferrari, G. Effects of the Amylose/Amylopectin Content and Storage Conditions on Corn Starch Hydrogels Produced by High-Pressure Processing (HPP). Gels 2023, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Carpentieri, S.; Larrea-Wachtendorff, D.; Barbosa-Cánovas, G.V.; Ferrari, G. In Vitro Digestibility of Rice and Tapioca Starch-Based Hydrogels Produced by High-Pressure Processing (HPP). Innov. Food Sci. Emerg. Technol. 2024, 93, 103646. [Google Scholar] [CrossRef]
- Liu, H.; Fan, H.; Cao, R.; Blanchard, C.; Wang, M. Physicochemical Properties and In Vitro Digestibility of Sorghum Starch Altered by High Hydrostatic Pressure. Int. J. Biol. Macromol. 2016, 92, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Szepes, A.; Makai, Z.; Blümer, C.; Mäder, K.; Kása, P.; Szabó-Révész, P. Characterization and Drug Delivery Behaviour of Starch-Based Hydrogels Prepared via Isostatic Ultrahigh Pressure. Carbohydr. Polym. 2008, 72, 571–578. [Google Scholar] [CrossRef]
- Vittadini, E.; Carini, E.; Chiavaro, E.; Rovere, P.; Barbanti, D. High Pressure-Induced Tapioca Starch Gels: Physico-Chemical Characterization and Stability. Eur. Food Res. Technol. 2008, 226, 889–896. [Google Scholar] [CrossRef]
- Rivero-Ramos, P.; Valdez, M.I.; Sanz, T.; Garzón, R.; Rosell, C.M.; Benlloch-Tinoco, M.; Rodrigo, D. Rice Starch-Alginate Systems Gelatinised by High Hydrostatic Pressure (HHP) as Dysphagia-Oriented Matrices. Food Hydrocoll. 2024, 151, 109793. [Google Scholar] [CrossRef]
Patent Number | Year of Publication | Application |
---|---|---|
US 6,958,157 B1 | 2005 | Disinfectant cleaners |
US 7459,501 B2 | 2008 | Agriculture applications |
US 2010/0331232 A1 | 2010 | Biomedical applications |
EP 2 548 448 A1 | 2012 | Cosmetic applications |
US 2012/014 1551A1 | 2012 | Drug delivery device |
US 2014/0100111A1 | 2014 | Seed coating hydrogels |
US 2015/0250733 A1 | 2015 | Oral drug delivery formulations |
US 2020/0138680 A1 | 2020 | Gel-type cosmetic formulations |
US2020/0040144 A1 | 2020 | Smart hydrogels from nanometer starch particles |
US 10,625,108 B2 | 2020 | Water-retaining agent particles |
US 2021/0361570 A1 | 2021 | Innovative applications |
CN 114213716 B | 2022 | Hemostatic dressing |
CN 111154039 B | 2022 | Water-retaining agent particles |
Synthesis Method | Gelatinization Conditions | Main Findings | References |
---|---|---|---|
Grafting copolymerization | 85 °C for 30 min | Hydrogel positively affected seed germination and plant growth. | [112] |
Cross-linked starch and cellulose polymer complexes | 80 °C for 45 min | Hydrogels showed promise as soil amendments; potato starch hydrogel outperformed the others. | [113] |
Biopolymer hydrogel with microwave assistance | 70 °C | Stable hydrogels were synthesized and generally degraded in soil. | [114] |
Carbendazim-loaded hydrogels | 85 °C for 30 min | The hydrogel demonstrated a high-water absorption capacity for soil. | [12] |
Cassava starch-graft-poly(acrylamide) copolymers | 45 °C for 120 min | Hydrogel improved soil porosity, water retention, nutrient levels, and biological properties, fostering enhanced plant growth. | [115] |
Polymerization of AAm and starch | 65 °C for 3 h | The synthesis hydrogels showed high water retention, slow atrazine release, and improved soil health post-degradation. | [116] |
Ionotropic cross-linking of Cs | 76 °C | The synthesis hydrogels were suggested as excellent candidates to be used for the controlled release of fertilizer. | [117] |
Graft polymerization with acrylonitrile | 78 °C for 10 min | The obtained hydrogel improved water and saline absorbencies compared to native starch-based hydrogel. | [118] |
Starch-chitosan hydrogel with atrazine | 80 °C for 30 min | The hydrogels loaded with atrazine increased the hydrogel’s thermal stability. | [119] |
Superabsorbent hydrogels produced by grafting acrylic acid and itaconic acid. | 85 ± 5 °C | Synthetic hydrogels had good biodegradability and great potential for use in agriculture. | [14] |
Starch-based smart hydrogel from rice-cooked wastewater | 80 °C | Significant water absorption capability, effective for seed germination and growth. | [120] |
Cross-Linking Agents | Reference |
---|---|
Citric acid | [133] |
Glutaraldehyde | [142] |
Hydroxypropylate | [151] |
Sodium trimetaphosphate | [152] |
N,N′-methylene- bisacrylamide | [153] |
Aldehyde | [142] |
Epichlorohydrin | [135] |
Bis-epoxide | [154] |
Genipin | [155] |
Divinyl Sulfone | [156] |
Starch Source | X-ray Pattern | Sensitivity under Pressure |
---|---|---|
Potato, waxy corn, and water yam | B | High |
Peanut, amaranth | A | Medium |
Arrowroot | C | |
Corn, wheat, rice waxy rice, oat, and barley | A | Low |
Tapioca, smooth pea lentil, mung bean, faba bean, lotus root, and chestnut | C |
Source | Main Findings | Reference |
---|---|---|
Corn, rice, and potato starch |
| [174] |
Corn, waxy corn, waxy rice, potato canna, lotus root, tapioca, taro, chestnut, and pea starch |
| [175] |
Normal maize, waxy maize, high amylose maize, tapioca, and rice starches |
| [10] |
Potato starch, wheat starch, and tapioca starch |
| [176] |
Potato starch |
| [177] |
Corn starch |
| [170] |
Rice and waxy rice starch |
| [11] |
Rice starch |
| [178] |
Red azuki bean starch |
| [179] |
Pea starch |
| [180] |
Corn and quinoa |
| [172] |
Sweet potato flour |
| [181] |
Quinoa flour |
| [182] |
Potato starch |
| [8] |
Corn, rice, tapioca, and wheat starch |
| [7] |
Source | Process Conditions | Major Findings | Reference |
---|---|---|---|
Potato and corn starch suspensions | 300 and 700 MPa, 5 and 25 min at 25 °C | The utilization of HPP allowed selective starch modification beneficial for drug formulation and development. | [190] |
Tapioca | 600 MPa 10, 20, and 30 min at 30, 50, and 80 °C | Obtained tapioca starch HPP hydrogels showed good mechanical and structural properties. | [191] |
Corn, waxy corn, amaranth, and sorghum starch | 650 MPa for 9 min at 30 °C. Autoclaving | The differences in the matrix morphology, porosity, and the characteristics of the gels were governed by source origin. | [11] |
Pea starch | 500/600 MPa for 15 min | High-pressure processing at 600 MPa significantly altered the physical properties of starch granules, leading to gelatinization. | [186] |
Potato starch | 600 MPa for 15 min | Small granule size (<25 μm) and moderate heating at a low temperature (50° C) enhanced gel formation and structural properties. | [8] |
Corn, rice, tapioca, and wheat starch | 600 MPa for 5 and 15 min | A longer processing time (15 min) at 600 MPa improved hydrogel mechanical properties but affected color negatively. | [7] |
Rice starch | 600 MPa for 15 min | The encapsulation of green tea extract in rice starch hydrogels led to structured hydrogels and the controlled release of bioactive compounds. | [50] |
Rice starch | 500 MPa for 20 min | HHP-induced gelatinization of starch resulted in soft gels that have desirable properties in food products intended for patients with dysphagia. | [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshenaj, K.; Ferrari, G. A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers 2024, 16, 1991. https://doi.org/10.3390/polym16141991
Koshenaj K, Ferrari G. A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers. 2024; 16(14):1991. https://doi.org/10.3390/polym16141991
Chicago/Turabian StyleKoshenaj, Katerina, and Giovanna Ferrari. 2024. "A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks" Polymers 16, no. 14: 1991. https://doi.org/10.3390/polym16141991
APA StyleKoshenaj, K., & Ferrari, G. (2024). A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers, 16(14), 1991. https://doi.org/10.3390/polym16141991