Study on the Road Performance and Compaction Characteristics of Fiber-Reinforced High-RAP Plant-Mixed Hot Recycled Asphalt Mixtures
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.1.1. Fiber
2.1.2. Virgin Binder
2.1.3. RAP and Aggregates
2.1.4. Rejuvenator
2.1.5. Gradation Design
2.2. Experiments and Methods
2.2.1. High-Temperature Rutting Test
2.2.2. Dynamic Water Scouring Test
2.2.3. Semi-Circular Bending Test
2.2.4. Indirect Tensile Fatigue Test
2.2.5. Gyratory Compaction Test
3. Discussion of Test Results
3.1. Results of High-Temperature Rutting Test
3.2. Results of Dynamic Water Scouring Test
3.3. Results of Indirect Tensile Fatigue Test
3.4. Results of Semi-Circular Bending Test
3.5. Results of Gyratory Compaction Test
4. Conclusions
- (1)
- As the RAP content increases, the dynamic stability of asphalt mixtures improves. Furthermore, the addition of polyester fiber and basalt fiber creates a spatial network structure within the asphalt mixture, enhancing its shear strength and improving its high-temperature stability. Basalt fiber demonstrates a more significant enhancement effect compared to polyester fiber;
- (2)
- While the inclusion of RAP enhances the indirect tensile strength of asphalt mixtures before dynamic water immersion, the ITSR curve of asphalt mixtures indicates a decrease in water damage resistance with high RAP content. The incorporation of fibers can improve the water damage resistance of asphalt mixtures, with basalt fiber significantly enhancing this property compared to polyester fiber;
- (3)
- An increase in RAP content notably decreases the fatigue performance of asphalt mixtures at a stress ratio of 0.4. The addition of polyester fiber or basalt fiber can effectively enhance the fatigue resistance of asphalt mixtures, with basalt fiber demonstrating a more significant improvement;
- (4)
- At −10 °C, the inclusion of both types of fibers improves the crack resistance of asphalt mixtures. Basalt fiber exhibits a more substantial enhancement in fracture energy and fracture toughness at high RAP contents of 30% and 50%, respectively, compared to polyester fiber;
- (5)
- According to indoor experiments simulating compaction processes, the incorporation of RAP and fibers increases the air void content of asphalt mixtures and decreases the compaction rate, thereby increasing the CEI. However, basalt fiber has a smaller impact on reducing the compaction rate and increasing the air void content and CEI compared to polyester fiber.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, S.; Shen, S.; Zhou, X.; Li, X. Effect of Partial Blending on High Content Reclaimed Asphalt Pavement (RAP) Mix Design and Mixture Properties. Transp. Res. Rec. 2018, 2672, 79–87. [Google Scholar] [CrossRef]
- Suzuki, K.; Vasconcelos, K.; Klinsky, L.M.; Bessa, I. Evaluation of Recycled Asphalt Mixtures with Different RAP Contents and the Effect of Recycling Agent. Road Mater. Pavement Des. 2023, 25, 124–136. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, C.; Xiao, P.; Li, B.; Kang, A. Performance Characterization of Hot Mix Asphalt with High RAP Content and Basalt Fiber. Materials 2020, 13, 3145. [Google Scholar] [CrossRef] [PubMed]
- Obaid, A.; Nazzal, M.D.; Abu Qtaish, L.; Kim, S.S.; Abbas, A.; Arefin, M.; Quasem, T. Effect of RAP Source on Cracking Resistance of Asphalt Mixtures with High RAP Contents. J. Mater. Civ. Eng. 2019, 31, 04019213. [Google Scholar] [CrossRef]
- Zhou, Z.; Gu, X.; Jiang, J.; Ni, F.; Jiang, Y. Fatigue Cracking Performance Evaluation of Laboratory-Produced Polymer Modified Asphalt Mixture Containing Reclaimed Asphalt Pavement Material. Constr. Build. Mater. 2019, 216, 379–389. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B.; Vukosavljevic, D. Laboratory Evaluation of Fatigue Characteristics of Recycled Asphalt Mixture. Constr. Build. Mater. 2008, 22, 1323–1330. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Austerman, A.; Roque, R.; Underwood, S.; Mohammad, L.; Zou, J. Ageing and Rejuvenators: Evaluating Their Impact on High RAP Mixtures Fatigue Cracking Characteristics Using Advanced Mechanistic Models and Testing Methods. Road Mater. Pavement Des. 2015, 16, 1–28. [Google Scholar] [CrossRef]
- Mogawer, W.; Bennert, T.; Daniel, J.S.; Austerman, A.; Booshehrian, A. Performance Characteristics of Plant Produced High RAP Mixtures. Road Mater. Pavement Des. 2012, 13, 183–208. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; Ye, J.; Zhang, X.; Wang, S.; Diab, A. High-Temperature Creep and Low-Temperature Relaxation of Recycled Asphalt Mixtures: Evaluation and Balanced Mix Design. Con str. Build. Mater. 2021, 310, 125222. [Google Scholar] [CrossRef]
- Zeng, G.; Li, C.; Fang, Y.; Huang, H.; Li, H.; Xu, Y. Influence of Hydrodynamic Pore Pressure Damage on the Performance of Hot-Mixed Renewable Asphalt Mixture. J. Renew. Mater. 2023, 11, 2453–2467. [Google Scholar] [CrossRef]
- Liao, H.; Tavassoti, P.; Sharma, A.; Baaj, H. Evaluation of Rutting Resistance and Moisture Susceptibility of High RAP Content Asphalt Mixtures Containing Bio-Based Rejuvenators. Constr. Build. Mater. 2023, 401, 132859. [Google Scholar] [CrossRef]
- Kaseer, F.; Martin, A.E.; Arámbula-Mercado, E. Use of Recycling Agents in Asphalt Mixtures with High Recycled Materials Contents in the United States: A Literature Review. Constr. Build. Mater. 2019, 211, 974–987. [Google Scholar] [CrossRef]
- Dehghan, Z.; Modarres, A. Evaluating the Fatigue Properties of Hot Mix Asphalt Reinforced by Recycled PET Fibers Using 4-Point Bending Test. Constr. Build. Mater. 2017, 139, 384–393. [Google Scholar] [CrossRef]
- Paluri, Y.; Mogili, S.; Mudavath, H.; Pancharathi, R.K. A Study on the Influence of Steel Fibers on the Performance of Fine Reclaimed Asphalt Pavement (FRAP) in Pavement Quality Concrete. Mater. Today Proc. 2020, 32, 657–662. [Google Scholar] [CrossRef]
- Ziari, H.; Aliha, M.R.M.; Moniri, A.; Saghafi, Y. Crack Resistance of Hot Mix Asphalt Containing Different Percentages of Reclaimed Asphalt Pavement and Glass Fiber. Constr. Build. Mater. 2020, 230, 117015. [Google Scholar] [CrossRef]
- Riccardi, C.; Indacoechea, I.; Wang, D.; Lastra-González, P.; Cannone Falchetto, A.; Castro-Fresno, D. Low Temperature Performances of Fiber-Reinforced Asphalt Mixtures for Surface, Binder, and Base Layers. Cold Reg. Sci. Technol. 2023, 206, 103738. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Grenfell, J. Influence of Fibres on Rheological Properties and Toughness of Bituminous Binder. Constr. Build. Mater. 2018, 163, 901–911. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Zhu, Z.; Liu, J. Experimental Evaluation on High Temperature Rheological Properties of Various Fiber Modified Asphalt Binders. J. Cent. South Univ. Technol. 2008, 15, 135–139. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Thom, N.; Grenfell, J. Microstructure and Mechanical Properties of Fibre Reinforced Asphalt Mixtures. Constr. Build. Mater. 2020, 240, 117932. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, D.; Gong, Y.; Zhu, C.; Tao, J.; Wang, W. Laboratory Evaluation on Performance of Eco-Friendly Basalt Fiber and Diatomite Compound Modified Asphalt Mixture. Materials 2018, 11, 2400. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Luo, H.; Tian, W.; Teng, B.; Qian, Y.; Ai, H.; Xiao, B. Investigation on Fatigue Performance of Diatomite/Basalt Fiber Composite Modified Asphalt Mixture. Polymers 2022, 14, 414. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, H.; Gao, Y.; Jiao, Y.; Liu, F.; Dong, Z. Investigation of the Low-Temperature Properties and Cracking Resistance of Fiber-Reinforced Asphalt Concrete Using the DIC Technique. Eng. Fract. Mech. 2020, 229, 106951. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Si, C.; Shi, X.; Qiao, Y.; Li, H. Laboratory Evaluation on Performance of Fiber-Modified Asphalt Mixtures Containing High Percentage of RAP. Adv. Civ. Eng. 2020, 2020, 5713869. [Google Scholar] [CrossRef]
- Yu, B.; Gu, X.; Wu, M.; Ni, F. Application of a High Percentage of Reclaimed Asphalt Pavement in an Asphalt Mixture: Blending Process and Performance Investigation. Road Mater. Pavement Des. 2017, 18, 753–765. [Google Scholar] [CrossRef]
- Yeung, E.; Braham, A. The Influence of Time after Crushing for Cold In-Place Recycling on Compaction and Raveling. Transp. Res. Rec. 2019, 2673, 419–426. [Google Scholar] [CrossRef]
- Ding, X.; Chen, L.; Ma, T.; Ma, H.; Gu, L.; Chen, T.; Ma, Y. Laboratory Investigation of the Recycled Asphalt Concrete with Stable Crumb Rubber Asphalt Binder. Constr. Build. Mater. 2019, 203, 552–557. [Google Scholar] [CrossRef]
- Yeung, E.; Braham, A. Evaluation and Compaction of Laboratory-Produced Recycled Asphalt Pavement in Cold In-Place Recycling. J. Transp. Eng. Part B Pavements 2018, 144, 04018027. [Google Scholar] [CrossRef]
- Hainin, M.R.; Oluwasola, E.A.; Brown, E.R. Density Profile of Hot Mix Asphalt Layer during Compaction with Various Types of Rollers and Lift Thickness. Constr. Build. Mater. 2016, 121, 265–277. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Dong, Q.; Zhao, Y.; Xu, K. Fatigue Damage Model of Stone Matrix Asphalt with Polymer Modified Binder Based on Tensile Strain Evolution and Residual Strength Degradation Using Digital Image Correlation Methods. Measurement 2018, 123, 30–38. [Google Scholar] [CrossRef]
- Ma, X.; Leng, Z.; Wang, L.; Zhou, P. Effect of Reclaimed Asphalt Pavement Heating Temperature on the Compactability of Recycled Hot Mix Asphalt. Materials 2020, 13, 3621. [Google Scholar] [CrossRef]
- Singh, D.; Ashish, P.K.; Chitragar, S.F. Laboratory Performance of Recycled Asphalt Mixes Containing Wax and Chemical Based Warm Mix Additives Using Semi Circular Bending and Tensile Strength Ratio Tests. Constr. Build. Mater. 2018, 158, 1003–1014. [Google Scholar] [CrossRef]
- Giustozzi, F.; Crispino, M.; Toraldo, E.; Mariani, E. Mix Design of Polymer-Modified and Fiber-Reinforced Warm-Mix Asphalts with High Amount of Reclaimed Asphalt Pavement: Achieving Sustainable and High-Performing Pavements. Transp. Res. Rec. 2015, 2523, 3–10. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of People’s Republic of China: Beijing, China, 2011.
- JTG F40-2004; Technical Specifications for Construction of Highway Asphalt Pavements. Ministry of Transport of People’s Republic of China: Beijing, China.
- Eltwati, A.S.; Enieb, M.; Al-Saffar, Z.H.; Mohamed, A. Effect of Glass Fibers and Waste Engine Oil on the Properties of RAP Asphalt Concretes. Int. J. Pavement Eng. 2022, 23, 5227–5238. [Google Scholar] [CrossRef]
- Fu, L.; Jiao, Y.; Chen, X. Reinforcement Evaluation of Different Fibers on Fracture Resistance of Asphalt Mixture Based on Acoustic Emission Technique. Constr. Build. Mater. 2022, 314, 125606. [Google Scholar] [CrossRef]
- Wang, W.; Luo, R.; Yan, G.; Wang, L. Evaluation on Moisture Sensitivity Induced by Dynamic Pore Water Pressure for Asphalt Mixture and Its Components Using the Bending Beam Rheometer Method. Constr. Build. Mater. 2020, 251, 118942. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, W.; Liu, K.; Lv, S.; Peng, X.; Yang, S.; Ding, S. Research on Failure Strength Master Curve and Fatigue Performance of Asphalt Mixture Containing High-Proportion Reclaimed Asphalt Pavement. Constr. Build. Mater. 2023, 370, 130537. [Google Scholar] [CrossRef]
- Bi, Y.; Huang, J.; Pei, J.; Zhang, J.; Guo, F.; Li, R. Compaction Characteristics Assessment of Hot-Mix Asphalt Mixture Using Superpave Gyratory Compaction and Stribeck Curve Method. Constr. Build. Mater. 2021, 285, 122874. [Google Scholar] [CrossRef]
- Leiva, F.; West, R.C. Analysis of Hot-Mix Asphalt Lab Compactability Using Lab Compaction Parameters and Mix Characteristics. Transp. Res. Rec. 2008, 2057, 89–98. [Google Scholar] [CrossRef]
- Colbert, B.; You, Z. The Determination of Mechanical Performance of Laboratory Produced Hot Mix Asphalt Mixtures Using Controlled RAP and Virgin Aggregate Size Fractions. Constr. Build. Mater. 2012, 26, 655–662. [Google Scholar] [CrossRef]
- Qin, X.; Shen, A.; Guo, Y.; Li, Z.; Lv, Z. Characterization of Asphalt Mastics Reinforced with Basalt Fibers. Constr. Build. Mater. 2018, 159, 508–516. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, J.; Hong, R.; Ye, S.; Jin, A. Research on Low-Temperature Performance of Steel Slag/Polyester Fiber Permeable Asphalt Mixture. Constr. Build. Mater. 2022, 334, 127214. [Google Scholar] [CrossRef]
- Tang, Q. Interfacial Characteristics of Fiber Asphalt Mastic and Aggregates: Impact on Mixture Crack Resistance Performance. Constr. Build. Mater. 2024, 414, 134866. [Google Scholar] [CrossRef]
- Wu, B. Influence of Fiber-Asphalt Interface Property on Crack Resistance of Asphalt Mixture. Case Stud. Constr. Mater. 2022, 17, e01703. [Google Scholar] [CrossRef]
- Lou, K.; Xiao, P.; Wu, B.; Kang, A.; Wu, X.; Shen, Q. Effects of Fiber Length and Content on the Performance of Ultra-Thin Wearing Course Modified by Basalt Fibers. Constr. Build. Mater. 2021, 313, 125439. [Google Scholar] [CrossRef]
Test Items | Unit | Test Results | Technical Requirements |
---|---|---|---|
Appearance | % | 98.6 | ≥90 |
Fiber length | mm | 6.03 | 6 ± 10% |
Linear density | tex | 225.1 | 225.8 ± 8% |
Fiber diameter | mm | 17.01 | 17 ± 10% |
Combustible | —— | Non-flammable in open flame | Non-flammable in open flame |
Density | g/cm3 | 2.66 | 2.60–2.80 |
Modulus of elasticity | MPa | 81.5 × 103 | ≥7.5 × 103 |
Elongation at break | % | 2.4 | 2.4–3.1 |
Fracture strength | MPa | 1675 | 1200–2200 |
Moisture content | % | 0.036 | ≤0.2 |
Test Items | Unit | Test Results | Technical Requirements |
---|---|---|---|
Fiber diameter | μm | 21.5 | 10–25 |
Fiber length | mm | 6.0 | 6 ± 1.5 |
Tensile strength | MPa | 518 | ≥500 |
Density | g/cm3 | 1.36 | 1.36 ± 0.04 |
Elongation at break | % | 18.2 | ≥15 |
Heat resistance | —— | 220 °C, no volume change after 2 h | 220 °C, no volume change after 2 h |
Test Items | Unit | Standard | Test Value | Specification Value |
---|---|---|---|---|
Penetration | 0.1 mm (@25 °C, 100 g, 5 s) | T0604 | 58.5 | 30–60 |
Ductility | Cm (@5 °C, 5 cm/min) | T0605 | 31.2 | ≥20 |
Softening point | °C | T0606 | 78.8 | ≥60 |
Viscosity at 135 °C | Pa·s | T0625 | 2.93 | ≤3 |
Test Items | Unit | Standard | Test Value |
---|---|---|---|
Penetration | 0.1 mm (@25 °C, 100 g, 5 s) | T0604 | 31.2 |
Ductility | Cm (@5 °C, 5 cm/min) | T0605 | 1.9 |
Softening point | °C | T0606 | 74.8 |
Viscosity at 135 °C | Pa·s | T0625 | 1.74 |
Sieve Size (mm) | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
---|---|---|---|---|---|---|---|---|---|---|
Gradation Passing Rate of Reclaimed Aggregates (%) | ||||||||||
0–5 | 100 | 100 | 100 | 96.22 | 78.52 | 62.22 | 46.06 | 32.78 | 24.38 | 18.44 |
5–11 | 100 | 100 | 99.13 | 28.68 | 12.34 | 10.49 | 8.60 | 6.90 | 5.61 | 3.50 |
Test Items | Unit | Test Value | Standard | |||
---|---|---|---|---|---|---|
0–3 mm | 3–6 mm | 6–11 mm | 11–16 mm | |||
Apparent relative density | g/cm3 | 2.613 | 2.709 | 2.708 | 2.705 | ≥2.60 |
Bulk relative density | g/cm3 | 2.613 | 2.631 | 2.658 | 2.688 | —— |
Water absorption rate | % | 0.75 | 0.54 | 0.44 | 0.31 | —— |
Test Items | Unit | Test Value | Standard |
---|---|---|---|
Viscosity at 60 °C | cst | 9532 | T0619 |
Flash point | °C | 240.4 | T0633 |
Saturates content | % | 21.5 | T0618 |
Aromatic content | % | 41.5 | T0618 |
Viscosity ratio before thin film oven test | —— | 1.3 | T0619 |
Mass change before and after thin film oven test | % | 0.8 | T0609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Yang, Y.; Zhang, K.; Yu, D. Study on the Road Performance and Compaction Characteristics of Fiber-Reinforced High-RAP Plant-Mixed Hot Recycled Asphalt Mixtures. Polymers 2024, 16, 2016. https://doi.org/10.3390/polym16142016
Zhu C, Yang Y, Zhang K, Yu D. Study on the Road Performance and Compaction Characteristics of Fiber-Reinforced High-RAP Plant-Mixed Hot Recycled Asphalt Mixtures. Polymers. 2024; 16(14):2016. https://doi.org/10.3390/polym16142016
Chicago/Turabian StyleZhu, Chunfeng, Yongyong Yang, Kai Zhang, and Di Yu. 2024. "Study on the Road Performance and Compaction Characteristics of Fiber-Reinforced High-RAP Plant-Mixed Hot Recycled Asphalt Mixtures" Polymers 16, no. 14: 2016. https://doi.org/10.3390/polym16142016
APA StyleZhu, C., Yang, Y., Zhang, K., & Yu, D. (2024). Study on the Road Performance and Compaction Characteristics of Fiber-Reinforced High-RAP Plant-Mixed Hot Recycled Asphalt Mixtures. Polymers, 16(14), 2016. https://doi.org/10.3390/polym16142016