Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Experimental Results
3.2. Anova Results
3.3. RSM Results
3.3.1. Flexural Strength Results
3.3.2. Flexural Modulus Results
3.3.3. Flexural Toughness for Ultimate Flexural Strength Results
3.3.4. Flexural Toughness for 5% Strain Results
3.3.5. Strain at Ultimate Flexural Strength Results
3.4. RSM Prediction vs. Experimental Results
3.5. Optimization and Validation of Responses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hodži, D.; Pandži, A. Influence of Printhead Nozzle Diameter on Mechanical Properties of Fdm Printed Pla Material and Printing Time. Ann. DAAAM Proc. Int. DAAAM Symp. 2022, 33, 231–237. [Google Scholar] [CrossRef]
- Kamer, M.S.; Doğan, O.; Temiz, Ş.; Yaykaşlı, H. Investigation of the Mechanical Properties of Flexural Test Samples Produced Using Different Printing Parameters with a 3D Printer. Çukurova Univ. J. Fac. Eng. 2021, 36, 835–846. [Google Scholar] [CrossRef]
- Tüfekci, K.; Çakan, B.G.; Küçükakarsu, V.M. Stress Relaxation of 3D Printed PLA of Various Infill Orientations under Tensile and Bending Loadings. J. Appl. Polym. Sci. 2023, 140, e54463. [Google Scholar] [CrossRef]
- Aslan, B.; Yıldız, A.R. Optimum Design of Automobile Components Using Lattice Structures for Additive Manufacturing. Mater. Test. 2020, 62, 633–639. [Google Scholar] [CrossRef]
- Kumar, K.R.; Mohanavel, V.; Kiran, K. Mechanical Properties and Characterization of Polylactic Acid/Carbon Fiber Composite Fabricated by Fused Deposition Modeling. J. Mater. Eng. Perform. 2022, 31, 4877–4886. [Google Scholar] [CrossRef]
- Sudin, M.N.; Daud, N.M.; Ramli, F.R.; Yusuff, M.A. The Effect of Nozzle Size on the Tensile and Flexural Properties of PLA Parts Fabricated Via FDM. Sci. Eng. Technol. 2023, 3, 33–43. [Google Scholar] [CrossRef]
- Khan, I.; Tariq, M.; Abas, M.; Shakeel, M.; Hira, F.; Al Rashid, A.; Koç, M. Parametric Investigation and Optimisation of Mechanical Properties of Thick Tri-Material Based Composite of PLA-PETG-ABS 3D-Printed Using Fused Filament Fabrication. Compos. Part C Open Access 2023, 12, 100392. [Google Scholar] [CrossRef]
- Holcomb, G.; Caldona, E.B.; Cheng, X.; Advincula, R.C. On the Optimized 3D Printing and Post-Processing of PETG Materials. MRS Commun. 2022, 12, 381–387. [Google Scholar] [CrossRef]
- Kumaresan, R.; Samykano, M.; Kadirgama, K.; Pandey, A.K.; Rahman, M.M. Effects of Printing Parameters on the Mechanical Characteristics and Mathematical Modeling of FDM-Printed PETG. Int. J. Adv. Manuf. Technol. 2023, 128, 3471–3489. [Google Scholar] [CrossRef]
- Das, A.; Bryant, J.S.; Williams, C.B.; Bortner, M.J. Melt-Based Additive Manufacturing of Polyolefins Using Material Extrusion and Powder Bed Fusion. Polym. Rev. 2023, 63, 895–960. [Google Scholar] [CrossRef]
- Verma, N.; Awasthi, P.; Gupta, A.; Banerjee, S.S. Fused Deposition Modeling of Polyolefins: Challenges and Opportunities. Macromol. Mater. Eng. 2023, 308, 2200421. [Google Scholar] [CrossRef]
- Algarni, M.; Ghazali, S. Comparative Study of the Sensitivity of PLA, ABS, PEEK, and PETG’s Mechanical Properties to FDM Printing Process Parameters. Crystals 2021, 11, 995. [Google Scholar] [CrossRef]
- Gao, G.; Xu, F.; Xu, J. Parametric Optimization of FDM Process for Improving Mechanical Strengths Using Taguchi Method and Response Surface Method: A Comparative Investigation. Machines 2022, 10, 750. [Google Scholar] [CrossRef]
- Kumar, M.A.; Khan, M.S.; Mishra, S.B. Effect of Machine Parameters on Strength and Hardness of FDM Printed Carbon Fiber Reinforced PETG Thermoplastics. Mater. Today Proc. 2020, 27, 975–983. [Google Scholar] [CrossRef]
- Valvez, S.; Silva, A.P.; Reis, P.N.B. Optimization of Printing Parameters to Maximize the Mechanical Properties of 3D-Printed PETG-Based Parts. Polymers 2022, 14, 459. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Soundararajan, R.; Shanthosh, G.; Saravanakumar, P.; Ratteesh, M. Augmenting Effect of Infill Density and Annealing on Mechanical Properties of PETG and CFPETG Composites Fabricated by FDM. Mater. Today Proc. 2021, 45, 2186–2191. [Google Scholar] [CrossRef]
- Ferreira, I.; Vale, D.; Machado, M.; Lino, J. Additive Manufacturing of Polyethylene Terephthalate Glycol/Carbon Fiber Composites: An Experimental Study from Filament to Printed Parts. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 1866–1878. [Google Scholar] [CrossRef]
- Srinidhi, M.S.; Soundararajan, R.; Satishkumar, K.S.; Suresh, S. Enhancing the FDM Infill Pattern Outcomes of Mechanical Behavior for As-Built and Annealed PETG and CFPETG Composites Parts. Mater. Today Proc. 2020, 45, 7208–7212. [Google Scholar] [CrossRef]
- Panneerselvam, T.; Raghuraman, S.; Vamsi Krishnan, N. Investigating Mechanical Properties of 3D-Printed Polyethylene Terephthalate Glycol Material Under Fused Deposition Modeling. J. Inst. Eng. Ser. C 2021, 102, 375–387. [Google Scholar] [CrossRef]
- Fountas, N.A.; Papantoniou, I.; Kechagias, J.D.; Manolakos, D.E.; Vaxevanidis, N.M. Experimental Investigation on Flexural Properties of FDM-Processed PET-G Specimen Using Response Surface Methodology. MATEC Web Conf. 2021, 349, 01008. [Google Scholar] [CrossRef]
- Durgashyam, K.; Indra Reddy, M.; Balakrishna, A.; Satyanarayana, K. Experimental Investigation on Mechanical Properties of PETG Material Processed by Fused Deposition Modeling Method. Mater. Today Proc. 2019, 18, 2052–2059. [Google Scholar] [CrossRef]
- Guessasma, S.; Belhabib, S.; Nouri, H. Printability and Tensile Performance of 3D Printed Polyethylene Terephthalate Glycol Using Fused Deposition Modelling. Polymers 2019, 11, 1220. [Google Scholar] [CrossRef]
- Hanon, M.M.; Marczis, R.; Zsidai, L. Anisotropy Evaluation of Different Raster Directions, Spatial Orientations, and Fill Percentage of 3d Printed Petg Tensile Test Specimens. Key Eng. Mater. 2019, 821 KEM, 167–173. [Google Scholar] [CrossRef]
- Deswal, S.; Narang, R.; Chhabra, D. Modeling and Parametric Optimization of FDM 3D Printing Process Using Hybrid Techniques for Enhancing Dimensional Preciseness. Int. J. Interact. Des. Manuf. 2019, 13, 1197–1214. [Google Scholar] [CrossRef]
- Srinivasan, R.; Pridhar, T.; Ramprasath, L.S.; Sree Charan, N.; Ruban, W. Prediction of Tensile Strength in FDM Printed ABS Parts Using Response Surface Methodology (RSM). Mater. Today Proc. 2020, 27, 1827–1832. [Google Scholar] [CrossRef]
- Selvam, A.; Mayilswamy, S.; Whenish, R. Strength Improvement of Additive Manufacturing Components by Reinforcing Carbon Fiber and by Employing Bioinspired Interlock Sutures. J. Vinyl Addit. Technol. 2020, 26, 511–523. [Google Scholar] [CrossRef]
- Saad, M.S.; Nor, A.M.; Baharudin, M.E.; Zakaria, M.Z.; Aiman, A.F. Optimization of Surface Roughness in FDM 3D Printer Using Response Surface Methodology, Particle Swarm Optimization, and Symbiotic Organism Search Algorithms. Int. J. Adv. Manuf. Technol. 2019, 105, 5121–5137. [Google Scholar] [CrossRef]
- Naveed, N.; Anwar, M.N. Optimising 3D Printing Parameters through Experimental Techniques and ANOVA-Based Statistical Analysis. SPE Polym. 2024, 5, 228–240. [Google Scholar] [CrossRef]
- Das, A.; Etemadi, M.; Davis, B.A.; McKnight, S.H.; Williams, C.B.; Case, S.W.; Bortner, M.J. Rheological Investigation of Nylon-Carbon Fiber Composites Fabricated Using Material Extrusion-Based Additive Manufacturing. Polym. Compos. 2021, 42, 6010–6024. [Google Scholar] [CrossRef]
- Moradi, M.; Aminzadeh, A.; Rahmatabadi, D.; Rasouli, S.A. Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization. J. Mater. Eng. Perform. 2021, 30, 5441–5454. [Google Scholar] [CrossRef]
- Tunçel, O.; Tüfekci, K.; Kahya, Ç. Multi-Objective Optimization of 3D Printing Process Parameters Using Gray-Based Taguchi for Composite PLA Parts. Polym. Compos. 2024, 1–15. [Google Scholar] [CrossRef]
- Abouelmajd, M.; Bahlaoui, A.; Arroub, I.; Lagache, M.; Belhouideg, S. Mechanical Characterization of PLA Used in Manufacturing of 3D Printed Medical Equipment for COVID-19 Pandemic. In Proceedings of the 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2–3 December 2020. [Google Scholar] [CrossRef]
- Liaw, C.Y.; Tolbert, J.W.; Chow, L.W.; Guvendiren, M. Interlayer Bonding Strength of 3D Printed PEEK Specimens. Soft Matter 2021, 17, 4775–4789. [Google Scholar] [CrossRef]
- Equbal, A.; Sood, A.K.; Equbal, M.I.; Badruddin, I.A.; Khan, Z.A. RSM Based Investigation of Compressive Properties of FDM Fabricated Part. CIRP J. Manuf. Sci. Technol. 2021, 35, 701–714. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Li, S.; Si, L.; Peng, J.; Hu, Y. Mechanical Property Parametric Appraisal of Fused Deposition Modeling Parts Based on the Gray Taguchi Method. Int. J. Adv. Manuf. Technol. 2017, 89, 2387–2397. [Google Scholar] [CrossRef]
- Krzikalla, D.; Měsíček, J.; Halama, R.; Hajnyš, J.; Pagáč, M.; Čegan, T.; Petrů, J. On Flexural Properties of Additive Manufactured Composites: Experimental, and Numerical Study. Compos. Sci. Technol. 2022, 218, 109182. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Pahlavani, M.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Shape Memory Performance Assessment of FDM 3D Printed PLA-TPU Composites by Box-Behnken Response Surface Methodology. Int. J. Adv. Manuf. Technol. 2023, 127, 935–950. [Google Scholar] [CrossRef]
- Durga Prasada Rao, V.; Rajiv, P.; Navya Geethika, V. Effect of Fused Deposition Modelling (FDM) Process Parameters on Tensile Strength of Carbon Fibre PLA. Mater. Today Proc. 2019, 18, 2012–2018. [Google Scholar] [CrossRef]
- Pérez, M.; Medina-Sánchez, G.; García-Collado, A.; Gupta, M.; Carou, D. Surface Quality Enhancement of Fused Deposition Modeling (FDM) Printed Samples Based on the Selection of Critical Printing Parameters. Materials 2018, 11, 1382. [Google Scholar] [CrossRef] [PubMed]
- Tunçel, O. Optimization of Charpy Impact Strength of Tough PLA Samples Produced by 3D Printing Using the Taguchi Method. Polymers 2024, 16, 459. [Google Scholar] [CrossRef]
- Yaman, H.; Yeşilyurt, M.K.; Uslu, S. Determination of Optimum Methanol Ratio to Be Used with the Aim of Obtaining High Performance and Low Emissions in a Spark Ignition Engine by Response Surface Methodology. Gazi J. Eng. Sci. 2021, 7, 346–358. [Google Scholar] [CrossRef]
- Calhan, R.; Kaskun Ergani, S.; Uslu, S. Synthesis of Fea-Nia-TiO2/Activated Carbon Nanoparticles and Evaluation of Catalytic Activity in a Palm Oil/Diesel Fuel Blended Diesel Engine and Optimization with RSM. Sci. Technol. Energy Transit. 2023, 78, 16. [Google Scholar] [CrossRef]
Units | Values | |
---|---|---|
Nozzle diameter | mm | 0.4 |
Table temperature | °C | 70 |
Infill density | % | 50 |
Infill pattern | - | Lines |
Infill line directions | ° | 0/90 |
Build orientation | - | Flat |
Wall thickness | mm | 0.4 |
Top/Bottom thickness | mm | 0.2 |
Fan speed | % | 100 |
No | Process Parameters | Units | Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
1 | Layer height | mm | 0.15 | 0.20 | 0.25 |
2 | Print speed | mm/s | 20 | 50 | 80 |
3 | Nozzle temperature | °C | 230 | 240 | 250 |
No | Layer Height (mm) | Print Speed (mm/s) | Nozzle Temperature (°C) | Flexural Strength (MPa) | Flexural Modulus (MPa) | Flexural Toughness for Ultimate Flexural Strength (J/mm3) | Flexural Toughness for 5% Strain (J/mm3) | Strain at Ultimate Flexural Strength (%) |
---|---|---|---|---|---|---|---|---|
1 | 0.15 | 20 | 240 | 38.10 | 1426.33 | 181.30 | 363.16 | 3.02 |
2 | 0.25 | 50 | 230 | 37.60 | 1305.33 | 193.64 | 358.04 | 3.25 |
3 | 0.25 | 50 | 250 | 38.91 | 1330.79 | 220.74 | 368.23 | 3.51 |
4 | 0.20 | 20 | 230 | 37.41 | 1327.91 | 195.21 | 363.22 | 3.30 |
5 | 0.25 | 80 | 240 | 38.23 | 1333.49 | 199.85 | 364.20 | 3.29 |
6 | 0.25 | 20 | 240 | 37.43 | 1283.81 | 227.11 | 358.87 | 3.66 |
7 | 0.15 | 50 | 230 | 37.92 | 1442.79 | 166.26 | 364.71 | 2.87 |
8 | 0.15 | 80 | 240 | 37.93 | 1468.18 | 168.63 | 360.69 | 2.86 |
9 | 0.15 | 50 | 250 | 38.73 | 1452.24 | 173.31 | 363.85 | 2.90 |
10 | 0.20 | 50 | 240 | 37.81 | 1341.34 | 191.58 | 362.08 | 3.20 |
11 | 0.20 | 80 | 230 | 36.96 | 1340.89 | 174.85 | 358.82 | 3.10 |
12 | 0.20 | 80 | 250 | 38.63 | 1374.79 | 185.92 | 368.45 | 3.12 |
13 | 0.20 | 50 | 240 | 37.73 | 1349.71 | 193.67 | 362.05 | 3.21 |
14 | 0.20 | 20 | 250 | 37.83 | 1329.43 | 204.17 | 362.88 | 3.38 |
15 | 0.20 | 50 | 240 | 37.67 | 1336.13 | 191.36 | 361.77 | 3.23 |
Flexural Strength | Flexural Modulus | |||||
---|---|---|---|---|---|---|
F-Value | p-Value | Contribution | F-Value | p-Value | Contribution | |
Model | 81.78 | 0.000 | 99.33% | 91.41 | 0.000 | 99.40% |
Linear | 149.55 | 0.000 | 60.54% | 239.88 | 0.000 | 86.95% |
LH-Layer height (mm) | 6.16 | 0.056 | 0.83% | 657.00 | 0.000 | 79.38% |
PS-Print speed (mm/s) | 22.74 | 0.005 | 3.07% | 51.34 | 0.001 | 6.20% |
NT-Nozzle temperature (°C) | 419.74 | 0.000 | 56.64% | 11.31 | 0.020 | 1.37% |
Square | 52.32 | 0.000 | 21.18% | 32.27 | 0.001 | 11.69% |
LH*LH | 103.24 | 0.000 | 14.24% | 95.18 | 0.000 | 11.59% |
PS*PS | 27.52 | 0.003 | 4.24% | 0.27 | 0.628 | 0.04% |
NT*NT | 20.02 | 0.007 | 2.70% | 0.55 | 0.493 | 0.07% |
Two-way interaction | 43.47 | 0.001 | 17.60% | 2.08 | 0.221 | 0.075% |
LH*PS | 44.56 | 0.001 | 6.01% | 0.28 | 0.619 | 0.03% |
LH*NT | 11.84 | 0.018 | 1.60% | 1.17 | 0.329 | 0.14% |
PS*NT | 74.01 | 0.000 | 9.99% | 4.79 | 0.080 | 0.58% |
Error | 0.67% | 0.60% | ||||
Total | 100% | 100% |
Flexural Toughness for Ultimate Flexural Strength | Flexural Toughness for 5% Strain | |||||
---|---|---|---|---|---|---|
F-Value | p-Value | Contribution | F-Value | p-Value | Contribution | |
Model | 81.38 | 0.000 | 99.32% | 101.65 | 0.000 | 99.46% |
Linear | 230.98 | 0.000 | 93.96% | 110.72 | 0.000 | 36.11% |
LH-Layer height (mm) | 496.77 | 0.000 | 67.36% | 8.41 | 0.034 | 0.91% |
PS-Print speed (mm/s) | 132.91 | 0.000 | 18.02% | 14.49 | 0.013 | 1.57% |
NT-Nozzle temperature (°C) | 63.25 | 0.001 | 8.58% | 309.25 | 0.000 | 33.62% |
Square | 4.27 | 0.076 | 1.74% | 26.33 | 0.002 | 8.59% |
LH*LH | 0.04 | 0.859 | 0.01% | 0.11 | 0.755 | 0.00% |
PS*PS | 2.03 | 0.214 | 0.38% | 2.38 | 0.183 | 0.53% |
NT*NT | 9.93 | 0.025 | 1.35% | 74.07 | 0.000 | 8.05% |
Two-way interaction | 8.90 | 0.019 | 3.62% | 167.90 | 0.000 | 54.76% |
LH*PS | 9.17 | 0.029 | 1.24% | 108.54 | 0.000 | 11.80% |
LH*NT | 17.32 | 0.009 | 2.35% | 217.82 | 0.000 | 23.68% |
PS*NT | 0.19 | 0.680 | 0.03% | 177.33 | 0.000 | 19.28% |
Error | 0.68% | 0.54% | ||||
Total | 100% | 100% |
Strain at Ultimate Flexural Strength | |||
---|---|---|---|
F-Value | p-Value | Contribution | |
Model | 62.40 | 0.000 | 99.12% |
Linear | 175.22 | 0.000 | 92.77% |
LH-Layer height (mm) | 414.95 | 0.000 | 73.23% |
PS-Print speed (mm/s) | 95.84 | 0.000 | 16.91% |
NT-Nozzle temperature (°C) | 14.87 | 0.012 | 2.62% |
Square | 5.43 | 0.050 | 2.87% |
LH*LH | 6.98 | 0.046 | 1.29% |
PS*PS | 5.42 | 0.067 | 1.07% |
NT*NT | 2.90 | 0.150 | 0.51% |
Two-way interaction | 6.56 | 0.035 | 3.47% |
LH*PS | 8.62 | 0.032 | 1.52% |
LH*NT | 10.35 | 0.024 | 1.83% |
PS*NT | 0.70 | 0.440 | 0.12% |
Error | 0.88% | ||
Total | 100% |
Regression Equations | |
---|---|
Flexural strength | 154.3–130.8 LH–0.2562 PS–0.861 NT + 153.7 LH*LH–0.000220 PS*PS + 0.001692 NT*NT + 0.1617 LH*PS + 0.2500 LH*NT + 0.001042 PS*NT |
Flexural modulus | 4325–9333 LH–5.89 PS–15.7 NT + 15,018 LH*LH −0.00221 PS*PS + 0.0285 NT*NT +1.30 LH*PS + 8.00 LH*NT + 0.0270 PS*NT |
Flexural toughness for ultimate flexural strength | −1819–1942 LH–0.461 PS + 17.55 NT + 94 LH*LH + 0.00198 PS*PS–0.0395 NT*NT–2.432 LH*PS + 10.02 LH*NT + 0.00176 PS*NT |
Flexural toughness for 5% strain | 1651- 1408.9 LH–2.204 PS–9.336 NT + 25.7 LH*LH–0.000334 PS*PS + 0.01677 NT*NT + 1.300 LH*PS + 5.525 LH*NT + 0.008308 PS*NT |
Strain at ultimate flexural strength | −13.1–12.83 LH + 0.0101 PS + 0.1364 NT − 19.67 LH*LH + 0.000048 PS*PS −0.000317 NT*NT- 0.0350 LH*PS + 0.1150 LH*NT- 0.000050 PS*NT |
R2 (%) | Adjusted R2 (%) | Predicted R2 (%) | |
---|---|---|---|
Flexural strength | 99.33 | 98.11 | 92.67 |
Flexural modulus | 99.40 | 98.31 | 93.19 |
Flexural toughness for ultimate flexural strength | 99.32 | 98.10 | 90.20 |
Flexural toughness for 5% strain | 99.46 | 98.48 | 91.93 |
Strain at ultimate flexural strength | 99.12 | 97.53 | 86.77 |
Test No | Ultimate Flexural Strength (MPa) | Flexural Modulus (MPa) | Flexural Toughness for Ultimate FS (J/mm3) | ||||||
---|---|---|---|---|---|---|---|---|---|
Test | RSM | Error (%) | Test | RSM | Error (%) | Test | RSM | Error (%) | |
1 | 38.10 | 38.23 | 0.35 | 1426.33 | 1439.37 | 0.91 | 181.30 | 182.06 | 0.42 |
2 | 37.60 | 37.70 | 0.27 | 1305.33 | 1313.75 | 0.65 | 193.64 | 196.22 | 1.33 |
3 | 38.91 | 39.02 | 0.28 | 1330.79 | 1340.35 | 0.72 | 220.74 | 219.88 | 0.39 |
4 | 37.41 | 37.49 | 0.22 | 1327.91 | 1334.49 | 0.50 | 195.21 | 194.17 | 0.53 |
5 | 38.23 | 38.36 | 0.34 | 1333.49 | 1343.03 | 0.72 | 199.85 | 200.32 | 0.23 |
6 | 37.43 | 37.62 | 0.52 | 1283.81 | 1301.39 | 1.37 | 227.11 | 227.24 | 0.06 |
7 | 37.92 | 38.08 | 0.41 | 1442.79 | 1455.83 | 0.90 | 166.26 | 168.36 | 1.26 |
8 | 37.93 | 38.00 | 0.19 | 1468.18 | 1473.21 | 0.34 | 168.63 | 169.73 | 0.66 |
9 | 38.73 | 38.89 | 0.42 | 1452.24 | 1466.43 | 0.98 | 173.31 | 171.97 | 0.77 |
10 | 37.81 | 37.87 | 0.15 | 1341.34 | 1353.70 | 0.92 | 191.58 | 192.82 | 0.65 |
11 | 36.96 | 37.12 | 0.44 | 1340.89 | 1356.03 | 1.13 | 174.85 | 173.49 | 0.78 |
12 | 38.63 | 38.81 | 0.47 | 1374.79 | 1390.83 | 1.17 | 185.92 | 188.19 | 1.22 |
13 | 37.73 | 37.87 | 0.37 | 1349.71 | 1353.70 | 0.30 | 193.67 | 192.82 | 0.44 |
14 | 37.83 | 37.93 | 0.27 | 1329.43 | 1336.89 | 0.56 | 204.17 | 206.75 | 1.27 |
15 | 37.67 | 37.87 | 0.53 | 1336.13 | 1353.70 | 1.31 | 191.36 | 192.82 | 0.76 |
Mean error (%) | 0.35 | 0.83 | 0.72 |
Test No | Flexural Toughness for 5% Strain (J/mm3) | Strain for Ultimate FS (%) | ||||
---|---|---|---|---|---|---|
Test | RSM | Error (%) | Test | RSM | Error (%) | |
1 | 363.16 | 364.02 | 0.24 | 3.02 | 3.03 | 0.20 |
2 | 358.04 | 358.68 | 0.18 | 3.25 | 3.29 | 1.26 |
3 | 368.23 | 368.88 | 0.18 | 3.51 | 3.50 | 0.27 |
4 | 363.22 | 363.45 | 0.06 | 3.30 | 3.29 | 0.27 |
5 | 364.20 | 364.25 | 0.01 | 3.29 | 3.30 | 0.16 |
6 | 358.87 | 359.36 | 0.14 | 3.66 | 3.65 | 0.38 |
7 | 364.71 | 364.97 | 0.07 | 2.87 | 2.89 | 0.72 |
8 | 360.69 | 361.11 | 0.12 | 2.86 | 2.88 | 0.87 |
9 | 363.85 | 364.12 | 0.07 | 2.90 | 2.87 | 1.02 |
10 | 362.08 | 362.42 | 0.09 | 3.20 | 3.22 | 0.59 |
11 | 358.82 | 359.46 | 0.18 | 3.10 | 3.08 | 0.80 |
12 | 368.45 | 369.13 | 0.18 | 3.12 | 3.14 | 0.64 |
13 | 362.05 | 362.42 | 0.10 | 3.21 | 3.22 | 0.28 |
14 | 362.88 | 363.15 | 0.07 | 3.38 | 3.42 | 1.06 |
15 | 361.77 | 362.42 | 0.18 | 3.23 | 3.22 | 0.34 |
Mean error (%) | 0.13 | 0.59 |
Response | Goal | Lower | Target | Upper | Weight | Importance |
---|---|---|---|---|---|---|
Strain | Maximize | 2.86 | 3.66 | 3.66 | 1 | 1 |
Toughness for %5 strain | Maximize | 358.04 | 368.45 | 368.45 | 1 | 1 |
Toughness for ultimate FS | Maximize | 166.26 | 227.11 | 227.11 | 1 | 1 |
Flexural modulus | Maximize | 1283.81 | 1468.18 | 1468.18 | 1 | 1 |
Flexural strength | Maximize | 36.96 | 38.91 | 38.91 | 1 | 1 |
Layer Height (mm) | Print Speed (mm/s) | Nozzle Temperature (°C) | FS (MPa) | FM (MPa) | T Ultimate (J/mm3) | T 5% (J/mm3) | Strain (%) | Desirability | |
---|---|---|---|---|---|---|---|---|---|
0.25 | 58.18 | 250 | Optimum | 39.05 | 1336.27 | 215.86 | 369.74 | 3.45 | 0.7018 |
Actual | 39.55 | 1344.60 | 218.22 | 381.47 | 3.50 | ||||
%Error | 1.28 | 0.62 | 1.09 | 3.17 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunçel, O.; Kahya, Ç.; Tüfekci, K. Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method. Polymers 2024, 16, 2020. https://doi.org/10.3390/polym16142020
Tunçel O, Kahya Ç, Tüfekci K. Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method. Polymers. 2024; 16(14):2020. https://doi.org/10.3390/polym16142020
Chicago/Turabian StyleTunçel, Oğuz, Çağlar Kahya, and Kenan Tüfekci. 2024. "Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method" Polymers 16, no. 14: 2020. https://doi.org/10.3390/polym16142020
APA StyleTunçel, O., Kahya, Ç., & Tüfekci, K. (2024). Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method. Polymers, 16(14), 2020. https://doi.org/10.3390/polym16142020