Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of Graphene-Polyaniline Ink
2.3. Electrodes Fabrication
2.4. Immobilization of Antibody onto the Working Electrode Surface
2.5. Electrochemical Measurement
3. Result and Discussion
3.1. Characterization of Prepared LIG/G-PANI
3.2. Alpha-Fetoprotein Detection
3.3. Estrogen Detection
3.4. Detection of Alpha-Fetoprotein and 17β-Estradiol in Human Serum
3.5. Evaluation of Reproducibility, Repeatability, and Stability of the Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Butler, D.; Guilbault, G.G. Disposable amperometric immunosensor for the detection of 17-β estradiol using screen-printed electrodes. Sens. Actuators B Chem. 2006, 113, 692–699. [Google Scholar] [CrossRef]
- Ghosh, D.; Rahman, M.S.; Ashraf, A.; Islam, N. Graphene Nanoparticle Modified Laser Engraved Kapton Sensor for Environmental Estrogen Detection. In Volume 12: Micro- and Nano-Systems Engineering and Packaging; American Society of Mechanical Engineers: New Orleans, LA, USA, 2023; p. V012T13A011. [Google Scholar] [CrossRef]
- Johnson, A.C.; Belfroid, A.; Di Corcia, A. Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci. Total Environ. 2000, 256, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Long, F.; Gao, C.; He, M.; Shi, H.-C.; Gu, A.Z. Aptamer-Based Optical Biosensor For Rapid and Sensitive Detection of 17β-Estradiol In Water Samples. Environ. Sci. Technol. 2012, 46, 3288–3294. [Google Scholar] [CrossRef]
- Yen, Y.-K.; Huang, G.-W.; Shanmugam, R. Laser-scribing graphene-based electrochemical biosensing devices for simultaneous detection of multiple cancer biomarkers. Talanta 2024, 266, 125096. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Heiat, M.; Negahdary, M. Sensitive diagnosis of alpha-fetoprotein by a label free nanoaptasensor designed by modified Au electrode with spindle-shaped gold nanostructure. Microchem. J. 2019, 148, 456–466. [Google Scholar] [CrossRef]
- Upan, J.; Youngvises, N.; Tuantranont, A.; Karuwan, C.; Banet, P.; Aubert, P.-H.; Jakmunee, J. A simple label-free electrochemical sensor for sensitive detection of alpha-fetoprotein based on specific aptamer immobilized platinum nanoparticles/carboxylated-graphene oxide. Sci. Rep. 2021, 11, 13969. [Google Scholar] [CrossRef]
- Li, G.; Li, S.; Wang, Z.; Xue, Y.; Dong, C.; Zeng, J.; Huang, Y.; Liang, J.; Zhou, Z. Label-free electrochemical aptasensor for detection of alpha-fetoprotein based on AFP-aptamer and thionin/reduced graphene oxide/gold nanoparticles. Anal. Biochem. 2018, 547, 37–44. [Google Scholar] [CrossRef]
- Olorundare, F.O.G.; Sipuka, D.S.; Sebokolodi, T.I.; Kodama, T.; Arotiba, O.A.; Nkosi, D. An electrochemical immunosensor for an alpha-fetoprotein cancer biomarker on a carbon black/palladium hybrid nanoparticles platform. Anal. Methods 2023, 15, 3577–3585. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, G.; Yang, X. Electrochemical immunosensor based on Fe3O4/MWCNTs-COOH/AuNPs nanocomposites for trace liver cancer marker alpha-fetoprotein detection. Talanta 2023, 259, 124492. [Google Scholar] [CrossRef]
- Mohammadinejad, A.; Kazemi Oskuee, R.; Eivazzadeh-Keihan, R.; Rezayi, M.; Baradaran, B.; Maleki, A.; Hashemzaei, M.; Mokhtarzadeh, A.; De La Guardia, M. Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma. TrAC Trends Anal. Chem. 2020, 130, 115961. [Google Scholar] [CrossRef]
- Kal-Koshvandi, A.T. Recent advances in optical biosensors for the detection of cancer biomarker α-fetoprotein (AFP). TrAC Trends Anal. Chem. 2020, 128, 115920. [Google Scholar] [CrossRef]
- Lu, C.; Wei, D.; Li, G. A fluorescence turn-on biosensor based on gold nanoclusters and aptamer for alpha fetoprotein detection. IOP Conf. Ser. Earth Environ. Sci. 2019, 218, 012106. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Qi, H.; Gao, Q.; Zhang, C. Proximity Hybridization-Regulated Immunoassay for Cell Surface Protein and Protein-Overexpressing Cancer Cells via Electrochemiluminescence. Anal. Chem. 2018, 90, 3013–3018. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Yu, R.; Wang, X.; Zhou, H.; Liu, J.; Zhang, S. Novel graphene/Au-CdS:Eu composite-based electrochemiluminescence immunosensor for cancer biomarker detection by coupling resonance energy transfer and enzyme catalytic reaction. J. Electroanal. Chem. 2016, 781, 410–417. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Kwak, C.H.; Heo, N.S.; Oh, S.Y.; Lee, H.; Lee, G.-W.; Vilian, A.T.E.; Han, Y.-K.; Kim, W.-S.; et al. Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip. J. Cryst. Growth 2017, 469, 131–135. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, J.; Li, J.-J.; Zhao, J.-W. A promising direct visualization of an Au@Ag nanorod-based colorimetric sensor for trace detection of alpha-fetoprotein. J. Mater. Chem. C 2015, 3, 6035–6045. [Google Scholar] [CrossRef]
- Chen, H.; Guan, Y.; Wang, S.; Ji, Y.; Gong, M.; Wang, L. Turn-On Detection of a Cancer Marker Based on Near-Infrared Luminescence Energy Transfer from NaYF 4: Yb, Tm/NaGdF 4 Core–Shell Upconverting Nanoparticles to Gold Nanorods. Langmuir 2014, 30, 13085–13091. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Feng, Y.; Zhou, L.; Petti, L.; Wang, Z.; Zhou, J.; Xie, S.; Chen, J.; Qing, Y. Ultrasensitive SERS-Based Immunoassay of Tumor Marker in Serum Using Au–Ag Alloy Nanoparticles and Ag/AgBr Hybrid Nanostructure. Nano 2018, 13, 1850001. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, D.; Jiang, Y.; Chen, X.; Shao, L.; Li, J.; Sheng, K.; Zhang, X.; Song, H. Near-infrared-light-triggered photoelectrochemical biosensor for detection of alpha-fetoprotein based on upconversion nanophosphors. Sens. Actuators B Chem. 2019, 286, 468–475. [Google Scholar] [CrossRef]
- Supchocksoonthorn, P.; Alvior Sinoy, M.C.; De Luna, M.D.G.; Paoprasert, P. Facile fabrication of 17 β -estradiol electrochemical sensor using polyaniline/carbon dot-coated glassy carbon electrode with synergistically enhanced electrochemical stability. Talanta 2021, 235, 122782. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.; Kiely, J.; Luxton, R.; Honeychurch, K. An Electrochemical Screen-Printed Sensor Based on Gold-Nanoparticle-Decorated Reduced Graphene Oxide–Carbon Nanotubes Composites for the Determination of 17-β Estradiol. Biosensors 2023, 13, 491. [Google Scholar] [CrossRef] [PubMed]
- Tong, P.; Kasuga, Y.; Khoo, C.S. Liquid chromatographic-mass spectrometric method for detection of estrogen in commercial oils and in fruit seed oils. J. Food Compos. Anal. 2006, 19, 150–156. [Google Scholar] [CrossRef]
- Zhong, Q.; Hu, Y.; Hu, Y.; Li, G. Dynamic liquid–liquid–solid microextraction based on molecularly imprinted polymer filaments on-line coupling to high performance liquid chromatography for direct analysis of estrogens in complex samples. J. Chromatogr. A 2012, 1241, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Regan, F.; Moran, A.; Fogarty, B.; Dempsey, E. Novel modes of capillary electrophoresis for the determination of endocrine disrupting chemicals. J. Chromatogr. A 2003, 1014, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Kadioglu, Y. Determination of 17 β-estradiol in pharmaceutical preparation by UV spectrophotometry and high performance liquid chromatography methods. Arab. J. Chem. 2017, 10, S1422–S1428. [Google Scholar] [CrossRef]
- Alam, F.; Jalal, A.H.; Pala, N. Selective Detection of Alcohol Through Ethyl-Glucuronide Immunosensor Based on 2D Zinc Oxide Nanostructures. IEEE Sens. J. 2019, 19, 3984–3992. [Google Scholar] [CrossRef]
- Alam, F.; Jalal, A.H.; Sinha, R.; Umasankar, Y.; Bhansali, S.; Pala, N. Sonochemically Synthesized ZnO Nanostructure-Based L-Lactate Enzymatic Sensors on Flexible Substrates. MRS Adv. 2018, 3, 277–282. [Google Scholar] [CrossRef]
- Shinohara, H.; Tiwari, A. Graphene: An Introduction to the Fundamentals and Industrial Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1-118-84265-0. [Google Scholar]
- Prattis, I.; Hui, E.; Gubeljak, P.; Kaminski Schierle, G.S.; Lombardo, A.; Occhipinti, L.G. Graphene for Biosensing Applications in Point-of-Care Testing. Trends Biotechnol. 2021, 39, 1065–1077. [Google Scholar] [CrossRef]
- Abbas, Q.; Shinde, P.A.; Abdelkareem, M.A.; Alami, A.H.; Mirzaeian, M.; Yadav, A.; Olabi, A.G. Graphene Synthesis Techniques and Environmental Applications. Materials 2022, 15, 7804. [Google Scholar] [CrossRef]
- Whitener, K.E.; Sheehan, P.E. Graphene synthesis. Diam. Relat. Mater. 2014, 46, 25–34. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Du, Y.; Zhang, J.; Wang, Y.; Xue, Y.; Zhao, J.; Ge, L.; Yang, L.; Li, F. Laser-induced graphene (LIG)-based electrochemical microfluidic chip for simultaneous analysis of multiplex microRNAs. Chem. Eng. J. 2024, 486, 150233. [Google Scholar] [CrossRef]
- Feng, Z.; Geng, Z.; Pan, S.; Yin, Y.; Sun, X.; Liu, X.; Ge, L.; Li, F. In situ patterning of nickel/sulfur-codoped laser-induced graphene electrode for selective electrocatalytic valorization of glycerol. Appl. Catal. B Environ. Energy 2024, 353, 124101. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, H.; Zhao, Y.; Wang, Y.; Li, F. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosens. Bioelectron. 2022, 199, 113906. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Tabassum, R.; Sarkar, P.P.; Rahman, M.A.; Jalal, A.H.; Islam, N.; Ashraf, A. Graphene Nanocomposite Ink Coated Laser Transformed Flexible Electrodes for Selective Dopamine Detection and Immunosensing. ACS Appl. Bio Mater. 2024, 7, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-Z.; Chen, C.-J.; Settu, K.; Lin, Y.-F.; Chen, C.-L.; Liu, J.-T. Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosens. Bioelectron. 2016, 77, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Li, Q.; Zhou, D.; Cui, H.; An, H.; Zhai, J. Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite: Application to electro-reduction of bromate. J. Electroanal. Chem. 2012, 668, 44–50. [Google Scholar] [CrossRef]
- Zhu, J.; Song, W.; Peng, J.; Yin, Y.; Xu, B.; Wang, C. Microwave thermally expanded graphene/polyaniline conductive paste for elaborate conductive pattern and conductive polyester fabric fabrication via screen printing. J. Coat. Technol. Res. 2022, 19, 477–485. [Google Scholar] [CrossRef]
- Campos, M.; Miziara, T.A.; Cristovan, F.H.; Pereira, E.C. Investigations of the electrical conduction mechanisms of polyaniline-DBSA/poly (acrylonitrile-butadiene styrene) blends. J. Appl. Polym. Sci. 2014, 131, 17. [Google Scholar] [CrossRef]
- Navarchian, A.H.; Joulazadeh, M.; Karimi, F. Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Prog. Org. Coat. 2014, 77, 347–353. [Google Scholar] [CrossRef]
- Nayak, R.; Shetty, P.; Selvakumar, M.; Rao, A.; Rao, K.M. Formulation of new screen printable PANI and PANI/Graphite based inks: Printing and characterization of flexible thermoelectric generators. Energy 2022, 238, 121680. [Google Scholar] [CrossRef]
- Das, J.; Debnath, A.; Deb, K.; Saha, B. Pressure Sensors Painted on Flexible Cellulose Substrates from Polyaniline-Based Conductive Ink. ACS Appl. Electron. Mater. 2023, 5, 2988–2998. [Google Scholar] [CrossRef]
- Lee, C.-W.; Tsai, H.-I.; Lee, W.-C.; Huang, S.-W.; Lin, C.-Y.; Hsieh, Y.-C.; Kuo, T.; Chen, C.-W.; Yu, M.-C. Normal alpha-fetoprotein hepatocellular carcinoma: Are they really normal? J. Clin. Med. 2019, 8, 1736. [Google Scholar] [CrossRef]
- Rahman, M.A.; Pal, R.K.; Islam, N.; Freeman, R.; Berthiaume, F.; Mazzeo, A.; Ashraf, A. A Facile Graphene Conductive Polymer Paper Based Biosensor for Dopamine, TNF-α, and IL-6 Detection. Sensors 2023, 23, 8115. [Google Scholar] [CrossRef]
- Liu, C.; Liu, T. A graphene-assisted electrochemical sensor for detection of alpha-fetoprotein in serum. Int. J. Electrochem. Sci. 2023, 18, 100081. [Google Scholar] [CrossRef]
- Giannetto, M.; Mori, L.; Mori, G.; Careri, M.; Mangia, A. New amperometric immunosensor with response enhanced by PAMAM-dendrimers linked via self assembled monolayers for determination of alpha-fetoprotein in human serum. Sens. Actuators B Chem. 2011, 159, 185–192. [Google Scholar] [CrossRef]
- Giannetto, M.; Elviri, L.; Careri, M.; Mangia, A.; Mori, G. A voltammetric immunosensor based on nanobiocomposite materials for the determination of alpha-fetoprotein in serum. Biosens. Bioelectron. 2011, 26, 2232–2236. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Bian, C.; Chen, S.; Xia, S. A microelectronic technology based amperometric immunosensor for α-fetoprotein using mixed self-assembled monolayers and gold nanoparticles. Anal. Chim. Acta 2006, 561, 48–54. [Google Scholar] [CrossRef]
- Jothi, L.; Jaganathan, S.K.; Nageswaran, G. An electrodeposited Au nanoparticle/porous graphene nanoribbon composite for electrochemical detection of alpha-fetoprotein. Mater. Chem. Phys. 2020, 242, 122514. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Zhang, Y.; Wei, Q.; Ma, H.; Wu, D.; Li, Y.; Zhang, Y.; Du, B. Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein. Biosens. Bioelectron. 2014, 53, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Tranter, G.E.; Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry; Academic Press: Cambridge, MA, USA, 2016; ISBN 0-12-803225-1. [Google Scholar]
- Li, J.; Liu, S.; Yu, J.; Lian, W.; Cui, M.; Xu, W.; Huang, J. Electrochemical immunosensor based on graphene–polyaniline composites and carboxylated graphene oxide for estradiol detection. Sens. Actuators B Chem. 2013, 188, 99–105. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Liu, J.; Li, X.; Kong, Z.; Jin, H.; Cai, X. Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. Biosens. Bioelectron. 2018, 107, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Wang, Z.; Ma, H.; Wu, D.; Cheng, Q.; Wei, Q. Label-free electrochemical immunosensor based on enhanced signal amplification between Au@ Pd and CoFe2O4/graphene nanohybrid. Sci. Rep. 2016, 6, 23391. [Google Scholar] [CrossRef] [PubMed]
- Lahcen, A.A.; Baleg, A.A.; Baker, P.; Iwuoha, E.; Amine, A. Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17-β-Estradiol determination. Sens. Actuators B Chem. 2017, 241, 698–705. [Google Scholar] [CrossRef]
- Liu, M.; Ke, H.; Sun, C.; Wang, G.; Wang, Y.; Zhao, G. A simple and highly selective electrochemical label-free aptasensor of 17β-estradiol based on signal amplification of bi-functional graphene. Talanta 2019, 194, 266–272. [Google Scholar] [CrossRef]
- Ming, T.; Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xing, Y. Folding paper-based aptasensor platform coated with novel nanoassemblies for instant and highly sensitive detection of 17β-estradiol. ACS Sens. 2019, 4, 3186–3194. [Google Scholar] [CrossRef]
- Jaradat, H.; Al-Hamry, A.; Nasraoui, S.; Barhoumi, L.; Ibbini, M.; Kanoun, O. Immunosensor based on MWNT and Au Nanoparticles for detection of 17ß-estradiol in pg/mL. In Proceedings of the 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), Sfax, Tunisia, 20–23 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1150–1154. [Google Scholar]
Electrode | Technique | Linear Range (ng/mL) | LOD | Reference |
MIP/PDA/GS-Au/PTh/GCE | DPV | 0.001–1000 | 3.7 pg/mL | [48] |
Fe3O4/MWCNTs-COOH/AuNPs | DPV | 0.001–10,000 | 1.09 pg/mL | [11] |
Fe3O4@Au@chitosan | Amperometry | 10–8000 | 1.78 ng/mL | [10] |
Au/AET/PAMAM | CV | 5–500 | 3 ng/mL | [49] |
Au/PA | CV | 5–80 | 3.7 ng/mL | [50] |
Self–assembled monolayers AuNPs/HRP | - | 15–350 | 5 ng/mL | [51] |
AuNPs/PGNR | DPV | 5–60 | 1 ng/mL | [52] |
Pd nanoplates | SWV | 0.01–75.0 | 4 pg/mL | [53] |
G-PANI/LIG | DPV | 4–400 | 1.15 ng/mL | This work |
Electrode | Technique | Linear Range | LOD | Reference |
---|---|---|---|---|
Ag/PAMAM–Au/GR–PANI/GCE | DPV | 0.04–7.00 ng/mL | 0.02 ng/mL | [55] |
NH2-SWCNT/NMB/AuNP | DPV | 0.01–500 ng/mL | 5 pg/mL | [60] |
MWCNTs/THI/AuNPs nanocomposites | DPV | 0.01–100 ng/mL | 10 pg/mL | [56] |
CoFe2O4/rGO | Amperometry | 0.01–18.0 ng/mL | 3.3 pg/mL | [57] |
Fe3O4-MIP | DPV | 13.6–2720 ng/mL | 5440 pg/mL | [58] |
MCH/Au | DPV | 0.019–2.7 ng/L | 0.014 ng/L | [59] |
MWCNTs/AuNP | SWV | 0.001–1 ng/mL | 1 pg/mL | [61] |
G-PANI/LIG | DPV | 0.02–0.4 ng/mL | 0.96 pg/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassum, R.; Sarkar, P.P.; Jalal, A.H.; Ashraf, A.; Islam, N. Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol. Polymers 2024, 16, 2069. https://doi.org/10.3390/polym16142069
Tabassum R, Sarkar PP, Jalal AH, Ashraf A, Islam N. Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol. Polymers. 2024; 16(14):2069. https://doi.org/10.3390/polym16142069
Chicago/Turabian StyleTabassum, Ridma, Pritu Parna Sarkar, Ahmed Hasnain Jalal, Ali Ashraf, and Nazmul Islam. 2024. "Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol" Polymers 16, no. 14: 2069. https://doi.org/10.3390/polym16142069
APA StyleTabassum, R., Sarkar, P. P., Jalal, A. H., Ashraf, A., & Islam, N. (2024). Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol. Polymers, 16(14), 2069. https://doi.org/10.3390/polym16142069