Comparative Evaluation of Mechanical Properties and Color Stability of Dental Resin Composites for Chairside Provisional Restorations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Aging Procedure
2.4. Optical Analysis
2.5. Macroscale Mechanical Analysis
2.6. Microscale Mechanical Analysis
2.7. Atomic Force Microscopy (AFM) Characterization
2.8. Morphology Observation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optical Performance
3.2. Flexural Strength
3.3. Elastic Modulus and Hardness
3.4. Surface Roughness
3.5. Surface Morphology
3.6. Fracture Morphology Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kiho, C.; Ginu, R.; Paul, F.; Leon, P.; Gangadhara, P. Dental resin composites: A review on materials to product realizations. Compos. B Eng. 2022, 230, 109495. [Google Scholar]
- Aati, S.; Akram, Z.; Ngo, H.; Fawzy, A.S. Development of 3D printed resin reinforced with modified ZrO2 nanoparticles for long-term provisional dental restorations. Dent. Mater. 2021, 37, e360–e374. [Google Scholar] [CrossRef]
- Song, S.; Shin, Y.H.; Lee, J.Y.; Shin, S.W. Color stability of provisional restorative materials with different fabrication methods. J. Adv. Prosthodont. 2020, 12, 259–264. [Google Scholar] [CrossRef]
- Jain, S.; Sayed, M.; Shetty, M.; Alqahtani, S.; Al, W.; Gupta, S.; Othman, A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and mechanical properties of 3D-printed provisional crowns and fixed dental prosthesis resins compared to CAD/CAM milled and conventional provisional resins: A systematic review and meta-analysis. Polymers 2022, 30, 2691. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A. PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 2017, 12, 3801–3812. [Google Scholar] [CrossRef]
- Schwantz, J.K.; Oliveira-Ogliari, A.; Meereis, C.T.; Leal, F.B.; Ogliari, F.A.; Moraes, R.R. Characterization of bis-acryl composite resins for provisional restorations. Braz. Dent. J. 2017, 28, 354–361. [Google Scholar] [CrossRef]
- Akova, T.; Ozkomur, A.; Uysal, H. Effect of food-simulating liquids on the mechanical properties of provisional restorative materials. Dent. Mater. 2006, 22, 1130–1134. [Google Scholar] [CrossRef]
- Digholkar, S.; Madhav, V.N.; Palaskar, J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J. Indian Prosthodont. Soc. 2016, 16, 328–334. [Google Scholar]
- Monteiro, G.Q.; Montes, M.A.; Gomes, A.S.; Mota, C.C.; Campello, S.L.; Freitas, A.Z. Marginal analysis of resin composite restorative systems using optical coherence tomography. Dent. Mater. 2011, 27, e213–e223. [Google Scholar] [CrossRef]
- Juntavee, N.; Juntavee, A.; Srisontisuk, S. Flexural strength of various provisional restorative materials for rehabilitation after aging. J. Prosthodont. 2023, 32, 20–28. [Google Scholar] [CrossRef]
- Peralta, S.L.; Leles, S.B.; Dutra, A.L.; Guimarães, V.; Piva, E.; Lund, R.G. Evaluation of physical-mechanical properties, antibacterial effect, and cytotoxicity of temporary restorative materials. J. Appl. Oral Sci. 2018, 26, e20170562. [Google Scholar] [CrossRef]
- Rahaman, A.; John, J.; Mani, S.A.; El-Seedi, H.R. Effect of thermal cycling on flexural properties of microcrystalline cellulose-reinforced denture base acrylic resins. J. Prosthodont. 2020, 29, 611–616. [Google Scholar] [CrossRef]
- Cakmak, G.; Oosterveen, A.L.; Akay, C.; Schimmel, M.; Yilmaz, B.; Donmez, M.B. Influence of polishing technique and coffee thermal cycling on the surface roughness and color stability of additively and subtractively manufactured resins used for definitive restorations. J. Prosthodont. 2024, 33, 467–474. [Google Scholar] [CrossRef]
- Leyva, R.D.; Johnston, W.M. Optical characteristics of experimental dental composite resin materials. J. Dent. 2022, 118, 103949. [Google Scholar] [CrossRef]
- Balkenhol, M.; Ferger, P.; Mautner, M.C.; Wöstmann, B. Provisional crown and fixed partial denture materials: Mechanical properties and degree of conversion. Dent. Mater. 2007, 23, 1574–1583. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Xu, W.; Gong, X.; Zhang, F. Mapping the mechanical gradient of human dentin-enamel-junction at different intratooth locations. Dent. Mater. 2018, 34, 376–388. [Google Scholar] [CrossRef]
- Wang, K.; Li, B.; Ni, K.; Li, B.; Wang, Z. Optimal photoinitiator concentration for light-cured dental resins. Polym. Test. 2021, 94, 107039. [Google Scholar] [CrossRef]
- Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent advances and developments in composite dental restorative materials. J. Dent. Res. 2011, 90, 402–416. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Perez, M.M. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Chen, Y.C.; Ferracane, J.L.; Prahl, S.A. Quantum yield of conversion of the photoinitiator camphorquinone. Dent. Mater. 2007, 23, 655–664. [Google Scholar] [CrossRef]
- Oivanen, M.; Keulemans, F.; Garoushi, S.; Vallittu, P.K.; Lassila, L. The effect of refractive index of fillers and polymer matrix on translucency and color matching of dental resin composite. Biomater. Investig. Dent. 2021, 8, 48–53. [Google Scholar] [CrossRef]
- Fidalgo, P.R.; Carvalho, O.; Catarino, S.O.; Henriques, B.; Torres, O.; Braem, A.; Souza, J.C.M. Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry. Clin. Oral Investig. 2023, 27, 5679–5693. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of dental materials guidance-resin composites: Part I-mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Haenel, T.; Hausnerová, B.; Steinhaus, J.; Price, R.B.; Sullivan, B.; Moeginger, B. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins. Dent. Mater. 2015, 31, 93–104. [Google Scholar] [CrossRef]
- Rutkunas, V.; Sabaliauskas, V.; Mizutani, H. Effects of different food colorants and polishing techniques on color stability of provisional prosthetic materials. Dent. Mater. J. 2010, 29, 167–176. [Google Scholar] [CrossRef]
- Alshehri, A.; Alhalabi, F.; Mustafa, M.; Awad, M.M.; Alqhtani, M.; Almutairi, M.; Alhijab, F.; Jurado, C.A.; Fischer, N.G.; Nurrohman, H.; et al. Effects of accelerated aging on color stability and surface roughness of a biomimetic composite: An in vitro study. Biomimetics 2022, 7, 158. [Google Scholar] [CrossRef]
- Alrahlah, A.; Khan, R.; Al-Odayni, A.B.; Saeed, W.S.; Bautista, L.S.; Alnofaiy, I.A.; De Vera, M.A.T. Advancing dimethacrylate dental composites by synergy of pre-polymerized TEGDMA co-filler: A physio-mechanical evaluation. Biomimetics 2023, 8, 577. [Google Scholar] [CrossRef]
- Salvador, M.V.; Fronza, B.M.; Pecorari, V.G.A.; Ogliari, F.A.; Braga, R.R.; Oxman, J.D.; Lima, A.F. Physicochemical properties of dental resins formulated with amine-free photoinitiation systems. Dent. Mater. 2021, 37, 1358–1365. [Google Scholar] [CrossRef]
- Aydın, N.; Topçu, F.T.; Karaoğlanoğlu, S.; Oktay, E.A.; Erdemir, U. Effect of finishing and polishing systems on the surface roughness and color change of composite resins. J. Clin. Exp. Dent. 2021, 13, e446–e454. [Google Scholar] [CrossRef]
- Giti, R.; Dabiri, S.; Motamedifar, M.; Derafshi, R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS ONE 2021, 16, e0249551. [Google Scholar] [CrossRef]
- Yong, Q.; Liang, C. Synthesis of an aqueous self-matting acrylic resin with low gloss and high transparency via controlling surface morphology. Polymers 2019, 11, 322. [Google Scholar] [CrossRef]
- Khan, A.A.; Fareed, M.A.; Alshehri, A.H.; Aldegheishem, A.; Alharthi, R.; Saadaldin, S.A.; Zafar, M.S. Mechanical properties of the modified denture base materials and polymerization methods: A systematic review. Int. J. Mol. Sci. 2022, 23, 5737. [Google Scholar] [CrossRef]
- Kuijper, M.; Cune, M.S.; Özcan, M.; Gresnigt, M.M.M. Clinical performance of direct composite resin versus indirect restorations on endodontically treated posterior teeth: A systematic review and meta-analysis. J. Prosthet. Dent. 2023, 130, 295–306. [Google Scholar] [CrossRef]
- Yadav, R.; Lee, H.; Lee, J.H.; Singh, R.K.; Lee, H.H. A comprehensive review: Physical, mechanical, and tribological characterization of dental resin composite materials. Tribol. Int. 2023, 179, 108102. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, Z.H.; Yao, S.; Zhou, C.J.; Wu, J.L. Development and dental applications of spiro expanding monomers as antishrinkage additives. ChemistrySelect 2022, 7, e202201025. [Google Scholar] [CrossRef]
- Guan, X.X.; Zhu, T.E.; Zhang, D.H. Development in polymerization shrinkage control of dental light-cured resin composites: A literature review. J. Adhes. Sci. Technol. 2023, 37, 602–623. [Google Scholar] [CrossRef]
- Mathiesen, D.; Vogtmann, D.; Dupaix, R.B. Characterization and constitutive modeling of stress-relaxation behavior of Poly (methyl methacrylate) (PMMA) across the glass transition temperature. Mech. Mater. 2014, 71, 74–84. [Google Scholar] [CrossRef]
- Bergamo, E.T.P.; Campos, T.M.B.; Piza, M.M.T.; Gutierrez, E. Temporary materials used in prosthodontics: The effect of composition, fabrication mode, and aging on mechanical properties. J. Mech. Behav. Biomed. Mater. 2022, 133, 105333. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.F.; Cavalcante, L.M.; Silikas, N. Shrinkage stresses generated during resin-composite applications: A review. J. Dent. Biomech. 2010, 2010, 131630. [Google Scholar] [CrossRef] [PubMed]
- Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A. Mechanical properties and simulated wear of provisional resin materials. Oper. Dent. 2015, 40, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Savabi, O.; Nejatidanesh, F.; Fathi, M.H.; Navabi, A.A.; Savabi, G. Evaluation of hardness and wear resistance of interim restorative materials. Dent. Res. J. 2013, 10, 184–189. [Google Scholar]
- Mehrpour, H.; Farjood, E.; Giti, R.; Barfi Ghasrdashti, A.; Heidari, H. Evaluation of the flexural strength of interim restorative materials in fixed prosthodontics. J. Dent. 2016, 17, 201–206. [Google Scholar]
Materials | Manufacture | Main Components * | Application Modes |
---|---|---|---|
Revotek LC (RL) | GC Dental Products Co., Tokyo, Japan | Urethane dimethacrylate (UDMA), trimethacrylate, silicon dioxide, amorphous, butylated hydroxytoluene (BHT), iron (III) oxide, and titanium dioxide | Light-cured single-component sculptable composite resin |
Artificial Teeth Resin (GC) | New Century Dental, Shanghai, China | Polymethyl methacrylate (PMMA) mold powder, benzoyl peroxide (BPO), and trace pigments | Mold powder used in combination with denture base resin-type liquid and heat-cured |
Structur 2 SC (ST) | VOCO, GmbH, Hanau, Germany | Methacrylates, amines, terpenes, benzoyl-peroxide, and butylated hydroxytoluene | A fluorescent cold polymerizing paste–paste system that consists of base paste and catalyst paste molded by syringe |
Luxatemp Automix Plus (LT) | DMG, Hamburg, Germany | Barium glass, bisphenol A bismethacrylate, carbamate dimethacrylate, triethylene glycol dimethacrylate, camphor quinone, and pigments | As a self-curing composite resin, the matrix and catalyst are mixed with a syringe and molded directly |
Material | Aging | CIE LAB Color Coordinates | ||
---|---|---|---|---|
L | a | b | ||
GC | Before | 84.37 ± 0.11 | 2.43 ± 0.10 | 31.53 ± 0.15 |
After | 83.60 ± 0.10 | 2.34 ± 0.05 | 31.50 ± 0.08 | |
LT | Before | 80.85 ± 0.08 | 0.82 ± 0.23 | 28.75 ± 0.50 |
After | 80.95 ± 1.42 | 1.58 ± 0.05 | 32.05 ± 0.07 | |
ST | Before | 85.52 ± 0.08 | −0.61 ± 0.03 | 27.50 ± 0.10 |
After | 86.33 ± 0.11 | −0.27 ± 0.04 | 30.33 ± 0.08 | |
RL | Before | 87.57 ± 0.10 | 1.68 ± 0.08 | 36.70 ± 0.08 |
After | 85.81 ± 0.08 | 2.35 ± 0.07 | 52.38 ± 0.08 |
Material | Aging | CIE LAB Color Coordinates | ||
---|---|---|---|---|
L | a | b | ||
GC | Before | 81.29 ± 0.11 | 1.02 ± 0.04 | 28.04 ± 0.20 |
After | 80.87 ± 0.07 | 0.91 ± 0.05 | 28.02 ± 0.09 | |
LT | Before | 72.47 ± 0.13 | −1.81 ± 0.05 | 20.45 ± 0.05 |
After | 73.76 ± 0.04 | −1.01 ± 0.11 | 24.65 ± 0.09 | |
SC | Before | 74.29 ± 0.07 | −3.22 ± 0.06 | 18.38 ± 0.08 |
After | 75.98 ± 0.08 | −3.09 ± 0.09 | 21.20 ± 0.09 | |
RL | Before | 83.35 ± 0.05 | 1.68 ± 0.07 | 31.37 ± 0.10 |
After | 81.33 ± 0.08 | −0.41 ± 0.06 | 42.39 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Yao, J.; Du, Z.; Guo, J.; Lei, W. Comparative Evaluation of Mechanical Properties and Color Stability of Dental Resin Composites for Chairside Provisional Restorations. Polymers 2024, 16, 2089. https://doi.org/10.3390/polym16142089
Yu H, Yao J, Du Z, Guo J, Lei W. Comparative Evaluation of Mechanical Properties and Color Stability of Dental Resin Composites for Chairside Provisional Restorations. Polymers. 2024; 16(14):2089. https://doi.org/10.3390/polym16142089
Chicago/Turabian StyleYu, Haikun, Jiaqi Yao, Zhili Du, Jingmei Guo, and Wenlong Lei. 2024. "Comparative Evaluation of Mechanical Properties and Color Stability of Dental Resin Composites for Chairside Provisional Restorations" Polymers 16, no. 14: 2089. https://doi.org/10.3390/polym16142089
APA StyleYu, H., Yao, J., Du, Z., Guo, J., & Lei, W. (2024). Comparative Evaluation of Mechanical Properties and Color Stability of Dental Resin Composites for Chairside Provisional Restorations. Polymers, 16(14), 2089. https://doi.org/10.3390/polym16142089