Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Clove CO2 Extract Preparation
2.3. Preparation of API Emulsion
2.4. Oromucosal Spray Preparation
2.5. Research Methods
2.5.1. Film-Forming Ability
2.5.2. Determination of Spray Stability
2.5.3. Determination of pH Value
2.5.4. Viscometric Evaluation
2.5.5. Microscopic Analysis
2.5.6. Particle Size and Distribution Measurements
2.5.7. Textural Analysis
Back Extrusion Test
The Spreadability Test
2.5.8. The Geometry of the Spray Plume Study
2.5.9. Determination of Antimicrobial Activity
Determination of CO2 Extract Antimicrobial Activity
Determination of Spray Antimicrobial Activity
2.5.10. Quantification of APIs by Gas Chromatography with Flame-Ionization Detection Analysis
2.5.11. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Laudenbach, J.M.; Kumar, S.S. Common Dental and Periodontal Diseases. Dermatol. Clin. 2020, 38, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Bui, F.Q.; Almeida-da-Silva, C.L.C.; Huynh, B.; Trinh, A.; Liu, J.; Woodward, J.; Asadi, H.; Ojcius, D.M. Association between periodontal pathogens and systemic disease. Biomed. J. 2019, 42, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 22, 17038. [Google Scholar] [CrossRef]
- Visentin, D.; Gobin, I.; Maglica, Ž. Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms 2023, 11, 1832. [Google Scholar] [CrossRef]
- Chinsembu, K.C. Plants and other natural products used in the management of oral infections and improvement of oral health. Acta Trop. 2016, 154, 6–18. [Google Scholar] [CrossRef]
- Moghadam, E.T.; Yazdanian, M.; Tahmasebi, E.; Tebyanian, H.; Ranjbar, R.; Yazdanian, A.; Seifalian, A.; Tafazoli, A. Current herbal medicine as an alternative treatment in dentistry: In vitro, in vivo and clinical studies. Eur. J. Pharmacol. 2020, 889, 173665. [Google Scholar] [CrossRef]
- Arumugam, B.; Subramaniam, A.; Alagaraj, P. A Review on Impact of Medicinal Plants on the Treatment of Oral and Dental Diseases. Cardiovasc. Hematol. Agents Med. Chem. 2020, 18, 79–93. [Google Scholar] [CrossRef]
- Pulikkotil, S.J.; Nath, S. Potential of clove of Syzygium aromaticum in development of a therapeutic agent for periodontal disease. A review. S. Afr. Dent. J. 2015, 70, 108–115. [Google Scholar]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Askari, V.R.; Najafi, Z.; Rahimi, V.B. Syzygium aromaticum—Role in Oral Health and Dental Care September 2023. In Pharmacological Studies in Natural Oral Care; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 499–518. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Mendi, A.; Yağci, B.G.; Kiziloğlu, M.; Saraç, N.; Yilmaz, D.; Uğur, A.; Uçkan, D. Effects of Syzygium aromaticum, Cinnamomum zeylanicum, and Salvia triloba extracts on proliferation and differentiation of dental pulp stem cells. J. Appl. Oral Sci. 2017, 25, 515–522. [Google Scholar] [CrossRef]
- Shahbazi, Y. Antioxidant, antibacterial, and antifungal properties of nanoemulsion of clove essential oil. Nanomedicine Res. J. 2019, 4, 204–208. [Google Scholar] [CrossRef]
- Danthu, P.; Simanjuntak, R.; Fawbush, F.; Leong, P.T.J.M.; Razafimamonjison, G.; Abdillahi, M.M.; Jahiel, M.; Penot, E. The clove tree and its products (clove bud, clove oil, eugenol): Prosperous today but what of tomorrow’s restrictions? Fruits 2020, 75, 224–242. [Google Scholar] [CrossRef]
- Kaur, K.; Kaushal, S.; Rani, R. Chemical composition, antioxidant and antifungal potential of clove (Syzygium aromaticum) essential oil, its major compound and its derivatives. J. Essent. Oil Bear. Plants 2019, 22, 1195–1217. [Google Scholar] [CrossRef]
- Sueksakit, K.; Thisayakorn, K.; Khueynok, V.; Sriyam, K.; Pahusee, D.; Buddhakala, N. Preliminary study of Syzygium aromaticum L. on analgesic activity in rats. Thai J. Pharm. Sci. 2013, 38, 63–65. [Google Scholar] [CrossRef]
- AL-Mahdi, Z.K.A.; Witwit, L.J.; Ubaid, I.A. Activity of Cloves, Cinnamon and Thyme Essential Oils Against Some Oral Bacteria. Al-Kitab. J. for Pure Sci. 2021, 5, 14–24. [Google Scholar] [CrossRef]
- Pramod, K.; Ansari, S.H.; Ali, J. Eugenol: A natural compound with versatile pharmacological actions. Nat. Prod. Commun. 2010, 5, 1999–2006. [Google Scholar] [CrossRef]
- Frohlich, P.C.; Santos, K.A.; Palú, F.; Cardozo-Filho, L.; da Silva, C.; da Silva, E.A. Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum L.) leaves using supercritical CO2. J. Supercrit. Fluids 2019, 143, 313–320. [Google Scholar] [CrossRef]
- Pandey, V.K.; Srivastava, S.; Ashish; Dash, K.K.; Singh, R.; Dar, A.H.; Singh, T.; Farooqui, A.; Shaikh, A.M.; Kovacs, B. Bioactive properties of clove (Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon 2023, 10, e22437. [Google Scholar] [CrossRef]
- Aboelmaati, M.F.; Mahgoub, S.; Labib, S.; Al-Gaby, A.M.A.; Fawzy Ramadan, M. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 2016, 8, 494–504. [Google Scholar] [CrossRef]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green Extraction Techniques of Bioactive Compounds: A State-of-the-Art Review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef]
- Kajjari, S.; Joshi, R.S.; Hugar, S.M.; Gokhale, N.; Meharwade, P.; Uppin, C. The Effects of Lavender Essential Oil and its Clinical Implications in Dentistry: A Review. Int. J. Clin. Pediatr. Dent. 2022, 15, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Ait Said, L.; Zahlane, K.; Ghalbane, I.; El Messoussi, S.; Romane, A.; Cavaleiro, C.; Salgueiro, L. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Nat. Prod. Res. 2015, 29, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012, 135, 1505–1510. [Google Scholar] [CrossRef]
- Pathan, J.M.; Dadpe, M.V.; Kale, Y.J.; Dahake, P.T.; Kendre, S.B. Evaluation of lavender oil as a topical analgesic agent before dental anaesthesia through pain rating scales—An in vivo study. IOSR J. Dent. Med. Sci. 2020, 19, 6–13. [Google Scholar] [CrossRef]
- Medeleanu, M.L.; Fărcaș, A.C.; Coman, C.; Leopold, L.; Diaconeasa, Z.; Socaci, S.A. Citrus essential oils—Based nano-emulsions: Functional properties and potential applications. Food Chem. X 2023, 20, 100960. [Google Scholar] [CrossRef]
- Radu, C.M.; Radu, C.C.; Bochiș, S.A.; Arbănași, E.M.; Lucan, A.I.; Murvai, V.R.; Zaha, D.C. Revisiting the Therapeutic Effects of Essential Oils on the Oral Microbiome. Pharmacy 2023, 11, 33. [Google Scholar] [CrossRef]
- Potocka, W.; Assy, Z.; Bikker, F.J.; Laine, M.L. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023, 28, 7178. [Google Scholar] [CrossRef] [PubMed]
- Denkova-Kostova, R.; Teneva, D.; Tomova, T.; Goranov, B.; Denkova, Z.; Shopska, V.; Slavchev, A.; Hristova-Ivanova, Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume). Z. Naturforsch. C J. Biosci. 2020, 76, 175–185. [Google Scholar] [CrossRef]
- Okunowo, W.; Oyedeji, O.; Afolabi, L.; Matanmi, E. Essential Oil of Grape Fruit (Citrus paradisi) Peels and Its Antimicrobial Activities. Am. J. Plant Sci. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Churata-Oroya, D.E.; Ramos-Perfecto, D.; Moromi-Nakata, H.; Martínez-Cadillo, E.; Castro-Luna, A.; Garcia-de-la-guarda, R. Efecto antifúngico de Citrus paradisi “toronja” sobre cepas de Candida albicans aisladas de pacientes con estomatitis subprotésica. Rev. Estomatol. Herediana 2016, 26, 78–84. [Google Scholar] [CrossRef]
- Gugulethu, M.; Mongikazi, N.; Opeoluwa, O.; Mavuto, G.; Adebola, O. Chemical Profiling, Toxicity and Anti-Inflammatory Activities of Essential Oils from Three Grapefruit Cultivars from KwaZulu-Natal in South Africa. Molecules 2021, 26, 3387. [Google Scholar] [CrossRef]
- Deng, W.; Liu, K.; Cao, S.; Sun, J.; Zhong, B.; Chun, J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020, 25, 217. [Google Scholar] [CrossRef]
- Nakajima, M.; Tanner, E.E.L.; Nakajima, N.; Ibsen, K.N.; Mitragotri, S. Topical treatment of periodontitis using an iongel. Biomaterials 2021, 276, 121069. [Google Scholar] [CrossRef] [PubMed]
- Nittayananta, W.; Limsuwan, S.; Srichana, T.; Sae-Wong, C.; Amnuaikit, T. Oral spray containing plant-derived compounds is effective against common oral pathogens. Arch. Oral Biol. 2018, 90, 80–85. [Google Scholar] [CrossRef]
- Srisatjaluk, R.L.; Klongnoi, B.; Wongsirichat, N. Antimicrobial effect of topical local anesthetic spray on oral microflora. J. Dent. Anesth. Pain Med. 2016, 16, 17–24. [Google Scholar] [CrossRef]
- Sanguansajapong, V.; Sakdiset, P.; Puttarak, P. Development of Oral Microemulsion Spray Containing Pentacyclic Triterpenes-Rich Centella asiatica (L.) Urb. Extract for Healing Mouth Ulcers. Pharmaceutics 2022, 14, 2531. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, S.; Malviya, R.; Prajapati Bhupendra, G.; Puri, D.; Limmatvapirat, S.; Sriamornsak, P. Recent advances in biopolymer-based mucoadhesive drug delivery systems for oral application. J. Drug Deliv. Technol. 2024, 91, 105227. [Google Scholar] [CrossRef]
- Paderini, C.; Compilato, D.; Giannola, L.I.; Campisi, G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; De Freitas, O. Oral bioadhesive drug delivery systems. Drug Dev. Ind. Pharm. 2005, 31, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Selmin, F.; Baldassari, S.; Gennari, C.G.M.; Caviglioli, G.; Cilurzo, F.; Minghetti, P.; Parodi, B. A focus on mucoadhesive polymers and their application in buccal dosage forms. Int. J. Biol. Macromol. 2017, 101, 852–861. [Google Scholar] [CrossRef]
- Golshani, S.; Vatanara, A.; Amin, M. Recent Advances in Oral Mucoadhesive Drug Delivery. J. Pharm. Pharm. Sci. 2022, 25, 201–217. [Google Scholar] [CrossRef]
- Mansuri, S.; Kesharwani, P.; Jain, K.; Tekade, R.K.; Jain, N.K. Mucoadhesion: A promising approach in drug delivery system. React. Funct. Polym. 2016, 100, 151–172. [Google Scholar] [CrossRef]
- Kapoor, D.; Patel, M.; Vyas, R.B.; Lad, C.; Lal, B. Site Specific drug delivery through nasal route using bioadhesive polymers. J. Drug Deliv. Ther. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Dubashynskaya, N.V.; Petrova, V.A.; Skorik, Y.A. Biopolymer Drug Delivery Systems for Oromucosal Application: Recent Trends in Pharmaceutical R&D. Int. J. Mol. Sci. 2024, 25, 5359. [Google Scholar] [CrossRef]
- Akca, G.; Ozdemir, A.; Oner, Z.G.; Senel, S. Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity. Res. Chem. Intermediat. 2018, 44, 4811–4825. [Google Scholar] [CrossRef]
- Casale, M.; Moffa, A.; Vella, P.; Sabatino, L.; Capuano, F.; Salvinelli, B.; Lopez, A.M.; Carinci, F.; Salvinelli, F. Hyaluronic acid: Perspectives in dentistry. A systematic review. Int. J. Immunopathol. Pharmacol. 2016, 29, 572–582. [Google Scholar] [CrossRef]
- Jadav, M.; Pooja, D.; Adams, D.J.; Kulhari, H. Advances in Xanthan Gum-Based Systems for the Delivery of Therapeutic Agents. Pharmaceutics 2023, 15, 402. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, S.; Shaabani, A. Carboxymethyl cellulose-based oral delivery systems. Int. J. Biol. Macromol. 2019, 133, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Majumder, T.; Biswas, G.R.; Majee, S.B. Hydroxy Propyl Methyl Cellulose: Different Aspects in Drug Delivery. J. Pharm. Pharmacol. 2016, 4, 381–385. [Google Scholar] [CrossRef]
- Brannigan, R.P.; Khutoryanskiy, V.V. Progress and current trends in the synthesis of novel polymers with enhanced mucoadhesive properties. Macromol. Biosci. 2019, 19, 1900194. [Google Scholar] [CrossRef] [PubMed]
- Alawdi, S.; Solanki, A.B. Mucoadhesive Drug Delivery Systems: A Review of Recent Developments. J. Sci. Res. Med. Biol. Sci. 2021, 2, 50–64. [Google Scholar] [CrossRef]
- Puri, V.; Sharma, A.; Maman, P.; Rathore, N.; Singh, I. Overview of mucoadhesive biopolymers for buccal drug delivery systems. Int. J. App. Pharm. 2019, 11, 18–29. [Google Scholar] [CrossRef]
- Jabeen, N.; Atif, M. Polysaccharides based biopolymers for biomedical applications: A review. Polym. Adv. Technol. 2024, 35, e6203. [Google Scholar] [CrossRef]
- Raghav, N.; Vashisth, C.; Mor, N.; Arya, P.; Sharma, M.R.; Kaur, R.; Bhatti, S.P.; Kennedy, J.F. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int. J. Biol. Macromol. 2023, 244, 125357. [Google Scholar] [CrossRef]
- Madrazo-Jiménez, M.; Rodríguez-Caballero, Á.; Serrera-Figallo, M.; Garrido-Serrano, R.; Gutiérrez-Corrales, A.; Gutiérrez-Pérez, J.L.; Torres-Lagares, D. The effects of a topical gel containing chitosan, 0.2% chlorhexidine, allantoin and despanthenol on the wound healing process subsequent to impacted lower third molar extraction. Med. Oral Patol. Oral Cir. Bucal. 2016, 21, e696–e702. [Google Scholar] [CrossRef]
- Szekalska, M.; Wróblewska, M.; Trofimiuk, M.; Basa, A.; Winnicka, K. Alginate oligosaccharides affect mechanical properties and antifungal activity of alginate buccal films with posaconazole. Mar. Drugs 2019, 17, 692. [Google Scholar] [CrossRef]
- Pamlényi, K.; Kristó, K.; Jójárt-Laczkovich, O.; Regdon, G., Jr. Formulation and optimization of sodium alginate polymer film as a buccal mucoadhesive drug delivery system containing cetirizine dihydrochloride. Pharmaceutics 2021, 13, 619. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, S.A.; Ebada, H.M.; Abdallah, O.Y.; Essawy, M.M.; Abdelhamid, H.M.; Barakat, H.S. Novel tetrahydrocurcumin integrated mucoadhesive nanocomposite κ-carrageenan/xanthan gum sponges: A strategy for effective local treatment of oral cancerous and precancerous lesions. Drug Deliv. 2023, 30, 2254530. [Google Scholar] [CrossRef] [PubMed]
- Tonglairoum, P.; Ngawhirunpat, T.; Rojanarata, T.; Panomsuk, S.; Kaomongkolgit, R.; Opanasopit, P. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis. Carbohydr. Polym. 2015, 132, 173–179. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiūtė, N.; Dambrauskienė, E.; Viškelis, P.; Valiuškaitė, A. Efficacy of plant extracts and essential oils for biocontrol of strawberry pathogen Botrytis cinerea. Zemdirb. Agric. 2020, 107, 147–152. [Google Scholar] [CrossRef]
- Köse, Y.B.; Karahisar, E.; İşcan, G.; Kürkçüoğlu, M.; Tugay, O. Chemical Composition and Anticandidal Activity of Essential Oils Obtained From Different Part of Prangos heyniae H. Duman & M. F. Watson. Rec. Nat. Prod. 2021, 16, 74–83. [Google Scholar] [CrossRef]
- Alfikri, F.N.; Pujiarti, R.; Wibisono, M.G.; Hardiyanto, E.B. Yield, Quality, and Antioxidant Activity of Clove (Syzygium aromaticum L.) Bud Oil at the Different Phenological Stages in Young and Mature Trees. Scientifica 2020, 2020, 9701701. [Google Scholar] [CrossRef]
- European Pharmacopeia 9.0, 9th ed.; Council of Europe: Strasbourg, France, 2016.
- Sruthi, B.Y.K.; Gurupadayya, B.M.; Venkata Sairam, K.; Narendra Kumar, T. Development and validation of GC method for the estimation of eugenol in clove extract. Int. J. Pharm. Pharm. Sci. 2014, 6, 473–476. [Google Scholar]
- Mok, Z.H. The effect of particle size on drug bioavailability in various parts of the body. Adv. Pharm. J. 2023, 2, 100031. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, B.H.; Hatton, A.T.; Doyle, P.S. Controlling and predicting droplet size of nanoemulsions: Scaling relations with experimental validation. Soft Matter. 2015, 12, 1452–1458. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Guo, Y.; Lara Ochoa, S.; Fathordoobady, F.; Singh, A. Optimal ultrasonication process time remains constant for a specific nanoemulsion size reduction system. Sci. Rep. 2021, 11, 9241. [Google Scholar] [CrossRef]
- Franco, F.; Pérez-Maqueda, L.A.; Pérez-Rodríguez, J.L. The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J. Colloid. Interface Sci. 2004, 274, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Siva, S.P.; Ho, Y.; Kow, K.-W.; Chan, C.-H.; Tang, S. Prediction of droplet sizes for oil-in-water emulsion systems assisted by ultrasound cavitation: Transient scaling law based on dynamic breakup potential. Ultrason. Sonochem. 2018, 55, 348–358. [Google Scholar] [CrossRef]
- Ali, H.S.M.; Ahmed, S.A.; Alqurshi, A.A.; Alalawi, A.M.; Shehata, A.M.; Alahmadi, Y.M. Boosting Tadalafil Bioavailability via Sono-Assisted Nano-Emulsion-Based Oral Jellies: Box–Behnken Optimization and Assessment. Pharmaceutics 2022, 14, 2592. [Google Scholar] [CrossRef]
- Sinsuebpol, C.; Changsan, N. Effects of ultrasonic operating parameters and emulsifier system on sacha inchi oil nanoemulsion characteristics. J. Oleo Sci. 2020, 69, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Leong, T.S.; Wooster, T.J.; Kentish, S.E.; Ashokkumar, M. Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 2009, 16, 721–727. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Marium, F.; Muhammad, A.S.; Sofia, A.; Sadia, H.K.; Iqbal, A. Emulsion Separation, Classification and Stability Assessment. RADS J. Pharm. Allied Health Sci. 2014, 2, 56–62. [Google Scholar]
- Matulyte, I.; Kasparaviciene, G.; Bernatoniene, J. Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate. Pharmaceutics 2020, 12, 628. [Google Scholar] [CrossRef]
- Martin, M.J.; Trujillo, L.A.; Garcia, M.C.; Alfaro, M.C.; Muñoz, J. Effect of emulsifier HLB and stabilizer addition on the physical stability of thyme essential oil emulsions. J. Dispers. Sci. Technol. 2018, 39, 1627–1634. [Google Scholar] [CrossRef]
- Riquelme, N.; Sepúlveda, C.; Arancibia, C. Influence of Ternary Emulsifier Mixtures on Oxidative Stability of Nanoemulsions Based on Avocado Oil. Foods 2020, 9, 42. [Google Scholar] [CrossRef]
- Castañeda Ruiz, A.J.; Shetab Boushehri, M.A.; Phan, T.; Carle, S.; Garidel, P.; Buske, J.; Lamprecht, A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022, 14, 2575. [Google Scholar] [CrossRef] [PubMed]
- Coupland, J.N.; Hayes, J.E. Physical approaches to masking bitter taste: Lessons from food and pharmaceuticals. Pharm. Res. 2014, 31, 2921–2939. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho-Guimarães, F.B.; Correa, K.L.; de Souza, T.P.; Rodríguez, A.J.R.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals 2022, 15, 1413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, B.; Liu, W.; Li, S. Influence of hydroxypropyl methylcellulose, methylcellulose, gelatin, poloxamer 407 and poloxamer 188 on the formation and stability of soybean oil-in-water emulsions. Asian J. Pharm. Sci. 2017, 12, 521–531. [Google Scholar] [CrossRef]
- Smoleński, M.; Karolewicz, B.; Gołkowska, A.M.; Nartowski, K.P.; Małolepsza-Jarmołowska, K. Emulsion-Based Multicompartment Vaginal Drug Carriers: From Nanoemulsions to Nanoemulgels. Int. J. Mol. Sci. 2021, 22, 6455. [Google Scholar] [CrossRef]
- Kumar, R.; Islam, T.; Nurunnabi, M. Mucoadhesive carriers for oral drug delivery. J. Control Release 2022, 351, 504–559. [Google Scholar] [CrossRef] [PubMed]
- Shahadha, R.W.; Maraie, N.K. Mucoadhesive Film Forming Spray for Buccal Drug Delivery: A Review. Al Mustansiriyah J. Pharm. Sci. 2023, 23, 105–116. [Google Scholar] [CrossRef]
- Whistler, R.L. Industrial Gums: Polysaccharides and Their Derivatives; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Dickinson, E. Properties of emulsions stabilized with milk proteins: Overview of some recent developments. J. Dairy Sci. 1997, 80, 2607–2619. [Google Scholar] [CrossRef]
- Bakhrushina, E.; Anurova, M.; Demina, N.; Kashperko, A.; Rastopchina, O.; Bardakov, A.; Krasnyuk, I. Comparative Study of the Mucoadhesive Properties of Polymers for Pharmaceutical Use. Open Access Maced. J. Med. Sci. 2020, 8, 639–645. [Google Scholar] [CrossRef]
- Umar, A.K.; Butarbutar, M.; Sriwidodo, S.; Wathoni, N. Film-Forming Sprays for Topical Drug Delivery. Drug Des. Dev. Ther. 2020, 14, 2909–2925. [Google Scholar] [CrossRef]
- Boddupalli, B.M.; Mohammed, Z.N.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Gain, S.; Verma, S.; Singh, B.; Vyas, M.; Mehta, M.; Haque, A. Polymers in designing the mucoadhesive films: A comprehensive review. Int. J. Green Pharm. 2018, 12, S330–S344. [Google Scholar]
- Baliga, S.; Muglikar, S.; Kale, R. Salivary pH: A diagnostic biomarker. J. Indian Soc. Periodontol. 2013, 17, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Maslii, Y.; Ruban, O.; Kasparaviciene, G.; Kalveniene, Z.; Materiienko, A.; Ivanauskas, L.; Mazurkeviciute, A.; Kopustinskiene, D.M.; Bernatoniene, J. The Influence of pH Values on the Rheological, Textural and Release Properties of Carbomer Polacril® 40P-Based Dental Gel Formulation with Plant-Derived and Synthetic Active Components. Molecules 2020, 25, 5018. [Google Scholar] [CrossRef]
- Smart, J.D. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005, 57, 1556–1568. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- ICH. Q1A(R2): Stability testing of new drug substances and products. In ICH Harmonised Tripartite Guideline Stability; ICH: Geneva, Switzerland, 2003; pp. 1–18. [Google Scholar]
Ingredient | Manufacturer | Function |
---|---|---|
Clove CO2 extract | UAB “Eno extractum”, Kaunas, Lithuania | API |
Lavender essential oil | Sigma-Aldrich, Sofia, Bulgaria | API |
Grapefruit essential oil | SAFC Supply Solutions, St Saint Louis, MI, USA | API |
Ethanol 96% | AB “Vilniaus degtinė”, Vilnius, Lithuania | Co-solvent, preservative |
Sucralose | ThermoFisher, Kandel, Germany | Sweetener |
Sodium benzoate | Sigma-Aldrich, Amsterdam, The Netherlands | Preservative |
Potassium sorbate | Sigma-Aldrich, St Saint Louis, MI, USA | Preservative |
Grapefruit powder flavour | Xi’an Taima Biological Engineering Co. Ltd, Xian, China | Flavouring |
| Sigma-Aldrich, St Saint Louis, Missouri, USA Alfa Aesar GmbH & Co, Karlsruhe, Germany Sigma-Aldrich, Helsinki, Finland Carl Roth GmbH + Co, Karlsruhe, Germany Sigma-Aldrich, St Saint Louis, MI, USA Sigma-Aldrich, St Saint Louis, MI, USA Sigma-Aldrich, St Saint Louis, MI, USA | Mucoadhesive agent, viscosifier, film former, stabilizer |
Purified water | Ph. Eur. 01/2008:0008, LSMU laboratory, Kaunas, Lithuania | Solvent |
Duration of US Emulsification | D10 (µm) | D50 (µm) | D90 (µm) |
---|---|---|---|
10 min | 0.265 ± 0.015 | 0.389 ± 0.019 | 0.704 ± 0.026 |
20 min | 0.106 ± 0.013 | 0.165 ± 0.015 | 0.321 ± 0.023 |
30 min | 0.091 ± 0.010 | 0.143 ± 0.012 | 0.302 ± 0.015 |
40 min | 0.090 ± 0.009 | 0.139 ± 0.010 | 0.298 ± 0.020 |
50 min | 0.119 ± 0.020 | 0.183 ± 0.017 | 0.353 ± 0.025 |
60 min | 0.156 ± 0.022 | 0.237 ± 0.021 | 0.436 ± 0.028 |
Ingredient | Sample No./Amount, % | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Clove CO2 extract | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Lavender essential oil | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Grapefruit essential oil | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Ethanol 96% | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Sucralose | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Sodium benzoate | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Potassium sorbate | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Grapefruit powder flavour | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
HEC | 2.0 | ||||||
HPC | 1.5 | ||||||
Na-CMC | 1.5 | ||||||
Sodium alginate | 1.5 | ||||||
Xanthan | 0.4 | ||||||
PVA | 3.0 | ||||||
PVP | 3.0 | ||||||
Purified water | Up to 100.00 | Up to 100.00 | Up to 100.00 | Up to 100.00 | Up to 100.00 | Up to 100.00 | Up to 100.00 |
Sample No. (Type of Mucoadhesive Polymer) | pH | Structural Viscosity, mPa·s | Stability (After Centrifugation) |
---|---|---|---|
No. 1 (HEC) | 5.824 ± 0.021 | 124.4 ± 5.5 | + |
No. 2 (HPC) | 5.985 ± 0.003 | 105.8 ± 2.9 | + |
No. 3 (Na-CMC) | 6.632 ± 0.006 | 190.3 ± 9.0 | + |
No. 4 (Sodium alginate) | 6.373 ± 0.045 | 342.2 ± 9.2 | – |
No. 6 (PVA) | 6.093 ± 0.015 | 29.1 ± 3.6 | – |
Storage Period | Sample No. (Type of Mucoadhesive Polymer) | ||||||||
---|---|---|---|---|---|---|---|---|---|
No. 1 (HEC) | No. 2 (HPC) | No. 3 (Na-CMC) | |||||||
D10 (µm) | D50 (µm) | D90 (µm) | D10 (µm) | D50 (µm) | D90 (µm) | D10 (µm) | D50 (µm) | D90 (µm) | |
0 week | 0.372 ± 0.005 | 0.501 ± 0.006 | 1.300 ± 0.001 | 0.287 ± 0.002 | 0.392 ± 0.004 | 0.670 ± 0.005 | 0.388 ± 0.004 | 0.559 ± 0.006 | 1.500 ± 0.002 |
1 week | 0.393 ± 0.004 | 0.564 ± 0.005 | 1.380 ± 0.003 | 0.303 ± 0.003 | 0.434 ± 0.005 | 0.702 ± 0.004 | 0.416 ± 0.002 | 0.587 ± 0.005 | 1.610 ± 0.002 |
2 weeks | 0.411 ± 0.006 | 0.592 ± 0.004 | 1.490 ± 0.002 | 0.334 ± 0.004 | 0.486 ± 0.005 | 0.743 ± 0.006 | 0.448 ± 0.005 | 0.628 ± 0.006 | 1.680 ± 0.004 |
3 weeks | 0.456 ± 0.005 | 0.649 ± 0.005 | 1.830 ± 0.003 | 0.465 ± 0.006 | 0.594 ± 0.003 | 1.040 ± 0.003 | 0.454 ± 0.003 | 0.658 ± 0.005 | 1.860 ± 0.005 |
4 weeks | 0.504 ± 0.006 | 0.706 ± 0.006 | 1.910 ± 0.002 | 0.484 ± 0.005 | 0.630 ± 0.006 | 1.160 ± 0.004 | 0.517 ± 0.005 | 0.772 ± 0.006 | 2.320 ± 0.006 |
Sample No. (Type of Mucoadhesive Polymer) | Maximum Compressing Force, g | Cohesiveness, g·sec | Maximum Retracting Force, g | Adhesiveness, g·sec |
---|---|---|---|---|
No. 1 (HEC) | 13.77 ± 0.40 | 54.76 ± 0.58 | 11.31 ± 0.14 | 1.97 ± 0.13 |
No. 2 (HPC) | 11.09 ± 0.38 | 53.03 ± 0.18 | 7.83 ± 0.26 | 0.89 ± 0.06 |
No. 3 (Na-CMC) | 14.07 ± 0.31 | 58.20 ± 0.53 | 12.25 ± 0.14 | 3.44 ± 0.14 |
Sample No. (Type of Mucoadhesive Polymer) | Firmness, g | Spreadability, g·sec | Adhesive Force, g | Adhesiveness, g·sec |
---|---|---|---|---|
No. 1 (HEC) | 7.957 ± 0.639 | 3.797 ± 0.223 | 5.216 ± 1.015 | 1.237 ± 0.768 |
No. 2 (HPC) | 7.133 ± 1.422 | 3.138 ± 1.280 | 3.945 ± 0.981 | 1.231 ± 0.287 |
No. 3 (Na-CMC) | 8.410 ± 1.066 | 3.816 ± 0.242 | 6.510 ± 1.150 | 2.224 ± 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslii, Y.; Herbina, N.; Dene, L.; Ivanauskas, L.; Bernatoniene, J. Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers 2024, 16, 2649. https://doi.org/10.3390/polym16182649
Maslii Y, Herbina N, Dene L, Ivanauskas L, Bernatoniene J. Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers. 2024; 16(18):2649. https://doi.org/10.3390/polym16182649
Chicago/Turabian StyleMaslii, Yuliia, Nataliia Herbina, Lina Dene, Liudas Ivanauskas, and Jurga Bernatoniene. 2024. "Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity" Polymers 16, no. 18: 2649. https://doi.org/10.3390/polym16182649
APA StyleMaslii, Y., Herbina, N., Dene, L., Ivanauskas, L., & Bernatoniene, J. (2024). Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers, 16(18), 2649. https://doi.org/10.3390/polym16182649