Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies
Abstract
:1. Introduction
2. Current State of 3D Printing Techniques
2.1. Overview of 3D Printing Technologies
2.1.1. Material Extrusion
2.1.2. Vat Polymerization
2.1.3. Powder Bed Fusion
2.1.4. Material Jetting
2.1.5. Bioprinting and Direct Ink Writing (DIW)
2.2. Fused Deposition Modeling as a Cornerstone in 3D Printing
2.2.1. Material Innovation
2.2.2. Printing Parameter Optimization and Mechanical Properties
2.2.3. Applications
2.3. Implications of 3D Printing for Polymer Science
3. The Emerging Realm of 4D Printing
3.1. Materials and Processes in 4D Printing
Shape-Memory Polymers (SMPs)
3.2. Hydrogels and Composite Materials
3.3. Material–Process–Property Correlations and Applications in 4D Printing
3.3.1. Shape-Memory Polymers (SMPs)
3.3.2. Hydrogels, Smart Inks, and Biodegradable Scaffolds
3.3.3. Thermoresponsive Materials and Nano–Micro Assemblies
3.3.4. Modeling, Simulation, and Optimization
3.3.5. Applications in Other Engineering Fields
3.4. Prospects and Challenges in 4D Printing
4. Summary and Discussion
5. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truby, R.L.; Lewis, J.A. Printing soft matter in three dimensions. Nature 2016, 540, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Nadgorny, M.; Ameli, A. Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices. ACS Appl. Mater. Interfaces 2018, 10, 17489–17507. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Ge, Q.; Sakhaei, A.H.; Lee, H.; Dunn, C.K.; Fang, N.X.; Dunn, M.L. Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Sci. Rep. 2016, 6, 31110. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, M.; Damanpack, A.R.; Liao, W.H. Self-expanding/shrinking structures by 4D printing. Smart Mater. Struct. 2016, 25, 105034. [Google Scholar] [CrossRef]
- Momeni, F.; Hassani, N.S.M.M.; Liu, X.; Ni, J. A review of 4D printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Tibbits, S. 4D Printing: Multi-Material Shape Change. Archit. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Liu, Y.; Genzer, J.; Dickey, M.D. “2D or not 2D”: Shape-programming polymer sheets. Prog. Polym. Sci. 2016, 52, 79–106. [Google Scholar] [CrossRef]
- Rastogi, P.; Kandasubramanian, B. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem. Eng. J. 2019, 366, 264–304. [Google Scholar] [CrossRef]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Shie, M.-Y.; Shen, Y.-F.; Astuti, S.D.; Lee, A.K.-X.; Lin, S.-H.; Dwijaksara, N.L.B.; Chen, Y.-W. Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers 2019, 11, 1864. [Google Scholar] [CrossRef] [PubMed]
- Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv. Mater. 2016, 28, 4449–4454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yan, D.; Zhang, K.; Hu, G. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique. Sci. Rep. 2015, 5, 8936. [Google Scholar] [CrossRef] [PubMed]
- Sydney Gladman, A.; Matsumoto, E.A.; Nuzzo, R.G.; Mahadevan, L.; Lewis, J.A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413–418. [Google Scholar] [CrossRef]
- Pei, E.; Loh, G.H.; Harrison, D.; Almeida, H.d.A.; Monzón Verona, M.D.; Paz, R. A study of 4D printing and functionally graded additive manufacturing. Assem. Autom. 2017, 37, 147–153. [Google Scholar] [CrossRef]
- Khoo, Z.X.; Teoh, J.E.M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp. 2015, 10, 103–122. [Google Scholar] [CrossRef]
- Miao, S.; Zhu, W.; Castro, N.J.; Nowicki, M.; Zhou, X.; Cui, H.; Fisher, J.P.; Zhang, L.G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 2016, 6, 27226. [Google Scholar] [CrossRef]
- Gao, B.; Yang, Q.; Zhao, X.; Jin, G.; Ma, Y.; Xu, F. 4D Bioprinting for Biomedical Applications. Trends Biotechnol. 2016, 34, 746–756. [Google Scholar] [CrossRef]
- Lee, A.Y.; An, J.; Chua, C.K. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering 2017, 3, 663–674. [Google Scholar] [CrossRef]
- Abbas, A.; Park, E.J.; Guo, J.; Teo, Y.C.; Teo, P. Performance of bioresorbable peptide incorporated polymers produced for fused deposition modelling (FDM). Next Mater. 2024, 5, 100223. [Google Scholar] [CrossRef]
- Milovanović, A.; Galațanu, S.-V.; Sedmak, A.; Marșavina, L.; Trajković, I.; Popa, C.-F.; Milošević, M. Layer thickness influence on impact properties of FDM printed PLA material. Procedia Struct. Integr. 2024, 56, 190–197. [Google Scholar] [CrossRef]
- Sandhu, G.S.; Sandhu, K.S.; Boparai, K.S. Effect of extrudate geometry on surface finish of FDM printed ABS parts. Mater. Today Proc. 2024; in press. [Google Scholar] [CrossRef]
- Cardoso, P.H.N.; Araújo, E.S. An Approach to 3D Printing Techniques, Polymer Materials, and Their Applications in the Production of Drug Delivery Systems. Compounds 2024, 4, 71–105. [Google Scholar] [CrossRef]
- Kantaros, A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int. J. Mol. Sci. 2022, 23, 14621. [Google Scholar] [CrossRef]
- Brachet, A.; Bełżek, A.; Furtak, D.; Geworgjan, Z.; Tulej, D.; Kulczycka, K.; Karpiński, R.; Maciejewski, M.; Baj, J. Application of 3D Printing in Bone Grafts. Cells 2023, 12, 859. [Google Scholar] [CrossRef]
- Tabriz, A.G.; Mithu, M.S.; Antonijevic, M.D.; Vilain, L.; Derrar, Y.; Grau, C.; Morales, A.; Katsamenis, O.L.; Douroumis, D. 3D printing of LEGO® like designs with tailored release profiles for treatment of sleep disorder. Int. J. Pharm. 2023, 632, 122574. [Google Scholar] [CrossRef]
- Detamornrat, U.; McAlister, E.; Hutton, A.R.J.; Larrañeta, E.; Donnelly, R.F. The Role of 3D Printing Technology in Microengineering of Microneedles. Small 2022, 18, e2106392. [Google Scholar] [CrossRef]
- Vaz, V.M.; Kumar, L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech 2021, 22, 49. [Google Scholar] [CrossRef]
- Karakurt, I.; Aydoğdu, A.; Çıkrıkcı, S.; Orozco, J.; Lin, L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study. Int. J. Pharm. 2020, 584, 119428. [Google Scholar] [CrossRef]
- Xu, X.; Goyanes, A.; Trenfield, S.J.; Diaz-Gomez, L.; Alvarez-Lorenzo, C.; Gaisford, S.; Basit, A.W. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Mater. Sci. Eng. C 2021, 120, 111773. [Google Scholar] [CrossRef]
- Borrello, J.; Nasser, P.; Iatridis, J.C.; Costa, K.D. 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Addit. Manuf. 2018, 23, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.; Chiappone, A.; Dietliker, K.; Pirri, C.F.; Roppolo, I. Fabrication and Functionalization of 3D Printed Polydimethylsiloxane-Based Microfluidic Devices Obtained through Digital Light Processing. Adv. Mater. Technol. 2020, 5, 2000374. [Google Scholar] [CrossRef]
- Willson, K.; Atala, A. Medical 3D Printing: Tools and Techniques, Today and Tomorrow. Annu. Rev. Chem. Biomol. Eng. 2022, 13, 481–499. [Google Scholar] [CrossRef]
- Hisham, M.; Salih, A.E.; Butt, H. 3D Printing of Multimaterial Contact Lenses. ACS Biomater. Sci. Eng. 2023, 9, 4381–4391. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wu, F.; Gao, H.; Cui, K.; Xian, M.; Zhong, J.; Tian, Y.; Fan, S.; Wu, G. A Dexamethasone-Eluting Porous Scaffold for Bone Regeneration Fabricated by Selective Laser Sintering. ACS Appl. Bio Mater. 2020, 3, 8739–8747. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Chen, C.; Liu, M.; Chang, C.; Yan, X.; Dai, Y. Improved corrosion resistance of magnesium alloy prepared by selective laser melting through T4 heat treatment for biomedical applications. J. Mater. Res. Technol. 2023, 27, 813–825. [Google Scholar] [CrossRef]
- Gogolewski, D.; Kozior, T.; Zmarzły, P.; Mathia, T.G. Morphology of Models Manufactured by SLM Technology and the Ti6Al4V Titanium Alloy Designed for Medical Applications. Materials 2021, 14, 6249. [Google Scholar] [CrossRef]
- Bochnia, J.; Kozior, T.; Szot, W.; Rudnik, M.; Zmarzły, P.; Gogolewski, D.; Szczygieł, P.; Musiałek, M. Selected Mechanical and Rheological Properties of Medical Resin MED610 in PolyJet Matrix Three-Dimensional Printing Technology in Quality Aspects. 3D Print. Addit. Manuf. 2022, 11, 299–313. [Google Scholar] [CrossRef]
- Emiliani, N.; Porcaro, R.; Pisaneschi, G.; Bortolani, B.; Ferretti, F.; Fontana, F.; Campana, G.; Fiorini, M.; Marcelli, E.; Cercenelli, L. Post-printing processing and aging effects on Polyjet materials intended for the fabrication of advanced surgical simulators. J. Mech. Behav. Biomed. Mater. 2024, 156, 106598. [Google Scholar] [CrossRef]
- Turek, P.; Bazan, A.; Budzik, G.; Dziubek, T.; Przeszłowski, Ł. Evaluation of Macro- and Micro-Geometry of Models Made of Photopolymer Resins Using the PolyJet Method. Materials 2024, 17, 4315. [Google Scholar] [CrossRef]
- Bekisz, J.M.; Flores, R.L.; Witek, L.; Lopez, C.D.; Runyan, C.M.; Torroni, A.; Cronstein, B.N.; Coelho, P.G. Dipyridamole enhances osteogenesis of three-dimensionally printed bioactive ceramic scaffolds in calvarial defects. J. Cranio-Maxillofac. Surg. 2018, 46, 237–244. [Google Scholar] [CrossRef] [PubMed]
- DeMitchell-Rodriguez, E.M.; Shen, C.; Nayak, V.V.; Tovar, N.; Witek, L.; Torroni, A.; Yarholar, L.M.; Cronstein, B.N.; Flores, R.L.; Coelho, P.G. Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model. Plast. Reconstr. Surg. 2023, 152, 270e–280e. [Google Scholar] [CrossRef] [PubMed]
- Fama, C.; Kaye, G.J.; Flores, R.; Lopez, C.D.; Bekisz, J.M.; Torroni, A.; Tovar, N.; Coelho, P.G.; Witek, L. Three-Dimensionally-Printed Bioactive Ceramic Scaffolds: Construct Effects on Bone Regeneration. J. Craniofacial Surg. 2021, 32, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.D.; Coelho, P.G.; Witek, L.; Torroni, A.; Greenberg, M.I.; Cuadrado, D.L.; Guarino, A.M.; Bekisz, J.M.; Cronstein, B.N.; Flores, R.L. Regeneration of a Pediatric Alveolar Cleft Model Using Three-Dimensionally Printed Bioceramic Scaffolds and Osteogenic Agents: Comparison of Dipyridamole and rhBMP-2. Plast. Reconstr. Surg. 2019, 144, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.D.; Diaz-Siso, J.R.; Witek, L.; Bekisz, J.M.; Cronstein, B.N.; Torroni, A.; Flores, R.L.; Rodriguez, E.D.; Coelho, P.G. Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. J. Surg. Res. 2018, 223, 115–122. [Google Scholar] [CrossRef]
- Lopez, C.D.; Diaz-Siso, J.R.; Witek, L.; Bekisz, J.M.; Gil, L.F.; Cronstein, B.N.; Flores, R.L.; Torroni, A.; Rodriguez, E.D.; Coelho, P.G. Dipyridamole Augments Three-Dimensionally Printed Bioactive Ceramic Scaffolds to Regenerate Craniofacial Bone. Plast. Reconstr. Surg. 2019, 143, 1408–1419. [Google Scholar] [CrossRef]
- Shen, C.; Wang, M.M.; Witek, L.; Tovar, N.; Cronstein, B.N.; Torroni, A.; Flores, R.L.; Coelho, P.G. Transforming the Degradation Rate of β-tricalcium Phosphate Bone Replacement Using 3-Dimensional Printing. Ann. Plast. Surg. 2021, 87, e153–e162. [Google Scholar] [CrossRef]
- Tovar, N.; Witek, L.; Atria, P.; Sobieraj, M.; Bowers, M.; Lopez, C.D.; Cronstein, B.N.; Coelho, P.G. Form and functional repair of long bone using 3D-printed bioactive scaffolds. J. Tissue Eng. Regen. Med. 2018, 12, 1986–1999. [Google Scholar] [CrossRef]
- Wang, M.M.; Flores, R.L.; Witek, L.; Torroni, A.; Ibrahim, A.; Wang, Z.; Liss, H.A.; Cronstein, B.N.; Lopez, C.D.; Maliha, S.G.; et al. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Sci. Rep. 2019, 9, 18439. [Google Scholar] [CrossRef]
- Witek, L.; Alifarag, A.M.; Tovar, N.; Lopez, C.D.; Cronstein, B.N.; Rodriguez, E.D.; Coelho, P.G. Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffolds. J. Orthop. Res. 2019, 37, 2499–2507. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Singhmar, R.; Garg, M.; Gupta, D.; Dhiman, A.; Soo Han, S.; Agrawal, G. Designing advanced hydrogel inks with direct ink writing based 3D printability for engineered biostructures. Eur. Polym. J. 2024, 205, 112736. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Sang, M.; Li, Z.; Zhou, J.; Zhang, J.; Gong, X. Integrating intrinsic and configural superiority into advanced impact-resistant organohydrogels via cryo-assisted direct ink writing. Chem. Eng. J. 2024, 491, 152109. [Google Scholar] [CrossRef]
- Pereira, A.C.; Tovar, N.; Nayak, V.V.; Mijares, D.Q.; Smay, J.E.; Torroni, A.; Flores, R.L.; Witek, L. Direct inkjet writing type 1 bovine collagen/β-tricalcium phosphate scaffolds for bone regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35347. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.; Ricci, J.L.; Mijares, D.; Bromage, T.G.; Rabieh, S.; Coelho, P.G.; Witek, L. 3D printed mesoporous bioactive glass, bioglass 45S5, and β-TCP scaffolds for regenerative medicine: A comparative in vitro study. Bio-Med. Mater. Eng. 2023, 34, 439–458. [Google Scholar] [CrossRef]
- Nayak, V.V.; Sanjairaj, V.; Behera, R.K.; Smay, J.E.; Gupta, N.; Coelho, P.G.; Witek, L. Direct inkjet writing of polylactic acid/β-tricalcium phosphate composites for bone tissue regeneration: A proof-of-concept study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35402. [Google Scholar] [CrossRef] [PubMed]
- Elhadad, A.A.; Rosa-Sainz, A.; Cañete, R.; Peralta, E.; Begines, B.; Balbuena, M.; Alcudia, A.; Torres, Y. Applications and multidisciplinary perspective on 3D printing techniques: Recent developments and future trends. Mater. Sci. Eng. R Rep. 2023, 156, 100760. [Google Scholar] [CrossRef]
- Gao, Y.; Lalevée, J.; Simon-Masseron, A. An Overview on 3D Printing of Structured Porous Materials and Their Applications. Adv. Mater. Technol. 2023, 8, 2300377. [Google Scholar] [CrossRef]
- Kalyan, B.P.; Kumar, L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022, 23, 92. [Google Scholar] [CrossRef]
- Kabandana, G.K.M.; Zhang, T.; Chen, C. Emerging 3D printing technologies and methodologies for microfluidic development. Anal. Methods 2022, 14, 2885–2906. [Google Scholar] [CrossRef]
- Amin, M.; Singh, M.; Ravi, K.R. Fabrication of superhydrophobic PLA surfaces by tailoring FDM 3D printing and chemical etching process. Appl. Surf. Sci. 2023, 626, 157217. [Google Scholar] [CrossRef]
- Hlaváčiková, S.; Omaníková, L.; Horváth, V.; Alexy, P.; Jančovičová, V.; Baco, A.; Mikolajová, M.; Fogašová, M.; Tomanová, K.; Feranc, J.; et al. The possibility of using the regranulate of a biodegradable polymer blend based on polylactic acid and polyhydroxybutyrate in FDM 3D printing technology. Results Mater. 2024, 21, 100511. [Google Scholar] [CrossRef]
- Kumaresan, R.; Kottasamy, A.; Mogan, J.; Sandanamsamy, L.; Samykano, M.; Kadirgama, K.; Sharuzi Wan Harun, W. Preliminary investigation on the tensile properties of FDM printed PLA/copper composite. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.Q.; Vuillaume, P.Y.; Hu, L.; Vachon, A.; Diouf-Lewis, A.; Marcoux, P.-L.; Robert, M.; Elkoun, S. Effect of in situ thermal treatment on interlayer adhesion of 3D printed polyetherimide (PEI) parts produced by fused deposition modeling (FDM). Mater. Today Commun. 2024, 39, 108588. [Google Scholar] [CrossRef]
- Sonaye, S.Y.; Bokam, V.K.; Saini, A.; Nayak, V.V.; Witek, L.; Coelho, P.G.; Bhaduri, S.B.; Bottino, M.C.; Sikder, P. Patient-specific 3D printed Poly-ether-ether-ketone (PEEK) dental implant system. J. Mech. Behav. Biomed. Mater. 2022, 136, 105510. [Google Scholar] [CrossRef]
- Krueger, L.; Miles, J.A.; Popat, A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J. Control. Release 2022, 351, 444–455. [Google Scholar] [CrossRef]
- Yu, W.; Li, M.; Lei, W.; Chen, Y. FDM 3D Printing and Properties of PBAT/PLA Blends. Polymers 2024, 16, 1140. [Google Scholar] [CrossRef]
- Calì, M.; Pascoletti, G.; Gaeta, M.; Milazzo, G.; Ambu, R. A New Generation of Bio-Composite Thermoplastic Filaments for a More Sustainable Design of Parts Manufactured by FDM. Appl. Sci. 2020, 10, 5852. [Google Scholar] [CrossRef]
- Giubilini, A.; Siqueira, G.; Clemens, F.J.; Sciancalepore, C.; Messori, M.; Nyström, G.; Bondioli, F. 3D-Printing Nanocellulose-Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling. ACS Sustain. Chem. Eng. 2020, 8, 10292–10302. [Google Scholar] [CrossRef]
- Daly, M.; Tarfaoui, M.; Chihi, M.; Bouraoui, C. FDM technology and the effect of printing parameters on the tensile strength of ABS parts. Int. J. Adv. Manuf. Technol. 2023, 126, 5307–5323. [Google Scholar] [CrossRef]
- Bol, R.J.M.; Šavija, B. Micromechanical Models for FDM 3D-Printed Polymers: A Review. Polymers 2023, 15, 4497. [Google Scholar] [CrossRef]
- Grygier, D.; Kujawa, M.; Kowalewski, P. Deposition of Biocompatible Polymers by 3D Printing (FDM) on Titanium Alloy. Polymers 2022, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, J.; Pagano, C.; Fassi, I.; Treccani, L.; Bignotti, F.; Baldi, F. Mechanical behaviour of ductile polymer cellular model structures manufactured by FDM. Mech. Mater. 2024, 190, 104882. [Google Scholar] [CrossRef]
- Zub, K.; Hoeppener, S.; Schubert, U.S. Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications. Adv. Mater. 2022, 34, e2105015. [Google Scholar] [CrossRef] [PubMed]
- Šibalić, M.; Vujović, A.; Šaković Jovanović, J. Unconventional use of FDM printing method for testing the delamination of PVA material for different layer height. Procedia Struct. Integr. 2024, 56, 78–81. [Google Scholar] [CrossRef]
- Arany, P.; Papp, I.; Zichar, M.; Regdon, G.; Béres, M.; Szalóki, M.; Kovács, R.; Fehér, P.; Ujhelyi, Z.; Vecsernyés, M.; et al. Manufacturing and Examination of Vaginal Drug Delivery System by FDM 3D Printing. Pharmaceutics 2021, 13, 1714. [Google Scholar] [CrossRef]
- Macedo, J.; Marques, R.; Vervaet, C.; Pinto, J.F. Production of Bi-Compartmental Tablets by FDM 3D Printing for the Withdrawal of Diazepam. Pharmaceutics 2023, 15, 538. [Google Scholar] [CrossRef]
- Krobot, Š.; Melčová, V.; Menčík, P.; Kontárová, S.; Rampichová, M.; Hedvičáková, V.; Mojžišová, E.; Baco, A.; Přikryl, R. Poly(3-hydroxybutyrate) (PHB) and Polycaprolactone (PCL) Based Blends for Tissue Engineering and Bone Medical Applications Processed by FDM 3D Printing. Polymers 2023, 15, 2404. [Google Scholar] [CrossRef] [PubMed]
- Kökcü, İ.; Eryildiz, M.; Altan, M.; Ertuğrul, M.İ.; Odabaş, S. Scaffold fabrication from drug loaded HNT reinforced polylactic acid by FDM for biomedical applications. Polym. Compos. 2023, 44, 2138–2152. [Google Scholar] [CrossRef]
- Ge, Q.; Qi, H.J.; Dunn, M.L.J.A.P.L. Active materials by four-dimension printing. SPE Polym. Compos. 2013, 103, 131901. [Google Scholar] [CrossRef]
- Pan, H.M.; Goto, A. Topology-Dependent pH-Responsive Actuation and Shape Memory Programming for Biomimetic 4D Printing. Macromol. Rapid Commun. 2023, 44, e2300074. [Google Scholar] [CrossRef]
- Li, H.; Chng, C.B.; Zheng, H.; Wu, M.S.; Bartolo, P.J.D.S.; Qi, H.J.; Tan, Y.J.; Zhou, K. Self-Healable and 4D Printable Hydrogel for Stretchable Electronics. Adv. Sci. 2024, 11, 2305702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, X.; Cole, T.; Lu, H.; Hang, J.; Li, W.; Tang, S.Y.; Boyer, C.; Davis, T.P.; Qiao, R. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot. Nat. Commun. 2023, 14, 7815. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.T.; Ge, M.; Peng, S.; Zhong, J.; Li, Y.; Weng, Z.; Wu, L.; Zheng, L. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing. ACS Appl. Mater. Interfaces 2019, 11, 40642–40651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Li, Z.; Li, H.; Li, H.; Xiong, Y.; Zhu, X.; Lan, H.; Ge, Q. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing. ACS Appl. Mater. Interfaces 2021, 13, 41414–41423. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Bodaghi, M. Direct Fused Deposition Modeling 4D Printing and Programming of Thermoresponsive Shape Memory Polymers with Autonomous 2D-to-3D Shape Transformations. Adv. Eng. Mater. 2023, 25, 2300334. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Du, S.; Leng, J. 4D Printing of Triple-Shape Memory Cyanate Composites Based on Interpenetrating Polymer Network Structures. ACS Appl. Mater. Interfaces 2023, 15, 21496–21506. [Google Scholar] [CrossRef]
- Kuang, X.; Chen, K.; Dunn, C.K.; Wu, J.; Li, V.C.F.; Qi, H.J. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing. ACS Appl. Mater. Interfaces 2018, 10, 7381–7388. [Google Scholar] [CrossRef]
- Sheikh, A.; Abourehab, M.A.S.; Kesharwani, P. The clinical significance of 4D printing. Drug Discov. Today 2023, 28, 103391. [Google Scholar] [CrossRef]
- Alam, F.; Ubaid, J.; Butt, H.; El-Atab, N. Swift 4D printing of thermoresponsive shape-memory polymers using vat photopolymerization. NPG Asia Mater. 2023, 15, 65. [Google Scholar] [CrossRef]
- Linn, L.B.d.C.; Danas, K.; Bodelot, L. Towards 4D Printing of Very Soft Heterogeneous Magnetoactive Layers for Morphing Surface Applications via Liquid Additive Manufacturing. Polymers 2022, 14, 1684. [Google Scholar] [CrossRef]
- Li, G.; Tian, Q.; Wu, W.; Yang, S.; Wu, Q.; Zhao, Y.; Wang, J.; Zhou, X.; Wang, K.; Ren, L.; et al. Bio-Inspired 4D Printing of Dynamic Spider Silks. Polymers 2022, 14, 2069. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, T.; Okay, O. 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities. ACS Appl. Bio Mater. 2023, 6, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Arya, S.; Gupta, V.; Furukawa, H.; Khosla, A. 4D printing: Fundamentals, materials, applications and challenges. Polymers 2021, 228, 123926. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Wang, H.; Chan, J.Y.E.; Liu, H.; Zhang, B.; Zhang, Y.F.; Agarwal, K.; Yang, X.; Ranganath, A.S.; et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 2021, 12, 112. [Google Scholar] [CrossRef]
- Ren, Z.; Ding, K.; Zhou, X.; Ji, T.; Sun, H.; Chi, X.; Xu, M. 4D printing light-driven actuator with lignin photothermal conversion module. Int. J. Biol. Macromol. 2023, 253, 126562. [Google Scholar] [CrossRef]
- Qu, G.; Huang, J.; Li, Z.; Jiang, Y.; Liu, Y.; Chen, K.; Xu, Z.; Zhao, Y.; Gu, G.; Wu, X.; et al. 4D-printed bilayer hydrogel with adjustable bending degree for enteroatmospheric fistula closure. Mater. Today Bio 2022, 16, 100363. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Meng, F.; Xu, Z.; Hao, L.; Yao, Y.; Zhu, H.; Wang, C.; Wu, J.; Bian, S.; et al. 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat. Commun. 2024, 15, 1587. [Google Scholar] [CrossRef]
- Regato-Herbella, M.; Morhenn, I.; Mantione, D.; Pascuzzi, G.; Gallastegui, A.; Valle, A.B.C.d.S.; Moya, S.E.; Criado-Gonzalez, M.; Mecerreyes, D. ROS-Responsive 4D Printable Acrylic Thioether-Based Hydrogels for Smart Drug Release. Chem. Mater. 2024, 36, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Hiendlmeier, L.; Zurita, F.; Vogel, J.; Del Duca, F.; Al Boustani, G.; Peng, H.; Kopic, I.; Nikić, M.; Teshima, T.F.; Wolfrum, B. 4D-Printed Soft and Stretchable Self-Folding Cuff Electrodes for Small-Nerve Interfacing. Adv. Mater. 2023, 35, e2210206. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, H.; Zhang, Y.; Wang, J.; Guo, H.; Luo, H.; Wang, X.; Qiu, Y.; Liu, L.; Li, W.J. 4D Printed Soft Microactuator for Particle Manipulation via Surrounding Medium Variation. Small, 2024; 2311951, Early View. [Google Scholar] [CrossRef]
- Luo, K.; Wang, L.; Wang, M.X.; Du, R.; Tang, L.; Yang, K.K.; Wang, Y.Z. 4D Printing of Biocompatible Scaffolds via In Situ Photo-crosslinking from Shape Memory Copolyesters. ACS Appl. Mater. Interfaces 2023, 15, 44373–44383. [Google Scholar] [CrossRef]
- Pan, S.; Zhu, C.; Wu, Y.; Tao, L. Chitosan-Based Self-Healing Hydrogel: From Fabrication to Biomedical Application. Polymers 2023, 15, 3768. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wei, G.; Yuan, J.; Sang, X.; Miao, J.-T.; Liu, R. UV-assisted direct ink writing 4D printing of benzoxazine/epoxy thermosets. Chem. Eng. J. 2023, 477, 147221. [Google Scholar] [CrossRef]
- Weng, S.; Kuang, X.; Zhang, Q.; Hamel, C.M.; Roach, D.J.; Hu, N.; Jerry Qi, H. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness. ACS Appl. Mater. Interfaces 2021, 13, 12797–12804. [Google Scholar] [CrossRef] [PubMed]
- Slavkovic, V.; Palic, N.; Milenkovic, S.; Zivic, F.; Grujovic, N. Thermo-Mechanical Characterization of 4D-Printed Biodegradable Shape-Memory Scaffolds Using Four-Axis 3D-Printing System. Materials 2023, 16, 5186. [Google Scholar] [CrossRef]
- Zhuo, S.; Halligan, E.; Tie, B.S.H.; Breheny, C.; Geever, L.M. Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications. Polymers 2022, 14, 3155. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Jarrah, H.R.; Xavier, M.D.S.; Rolfe, B.; Bodaghi, M. Multimaterial 4D printing with a tunable bending model. Smart Mater. Struct. 2023, 32, 065001. [Google Scholar] [CrossRef]
- de Kergariou, C.; Day, G.J.; Perriman, A.W.; Armstrong, J.P.K.; Scarpa, F. Flax fibre reinforced alginate poloxamer hydrogel: Assessment of mechanical and 4D printing potential. Soft Matter 2024, 20, 4021–4034. [Google Scholar] [CrossRef]
- Fanjul-Mosteirín, N.; Aguirresarobe, R.; Sadaba, N.; Larrañaga, A.; Marin, E.; Martin, J.; Ramos-Gomez, N.; Arno, M.C.; Sardon, H.; Dove, A.P. Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels. Chem. Mater. 2021, 33, 7194–7202. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, F.; Wang, L.; Liu, Y.; Leng, J. Multidimensional cross-linked network strategies for Rapidly, Reconfigurable, refoldable shape memory polymer. Chem. Eng. J. 2023, 478, 147428. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, D.; Cao, P.; Zhang, X.; Wang, Q.; Wang, T.; Li, Z.; He, W.; Ju, J.; Zhang, Y. 4D Printing of Shape Memory Vascular Stent Based on βCD-g-Polycaprolactone. Macromol. Rapid Commun. 2021, 42, e2100176. [Google Scholar] [CrossRef]
- Wu, S.D.; Hsu, S.H. 4D bioprintable self-healing hydrogel with shape memory and cryopreserving properties. Biofabrication 2021, 13, 045029. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Liu, L.; Liu, Y.; Leng, J. 4D Printing of Bioinspired Absorbable Left Atrial Appendage Occluders: A Proof-of-Concept Study. ACS Appl. Mater. Interfaces 2021, 13, 12668–12678. [Google Scholar] [CrossRef]
- Pruksawan, S.; Lin, Z.; Lee, Y.L.; Chee, H.L.; Wang, F. 4D-Printed Hydrogel Actuators through Diffusion-Path Architecture Design. ACS Appl. Mater. Interfaces 2023, 15, 46388–46399. [Google Scholar] [CrossRef]
- Ding, A.; Jeon, O.; Cleveland, D.; Gasvoda, K.L.; Wells, D.; Lee, S.J.; Alsberg, E. Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting. Adv. Mater. 2022, 34, e2109394. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, K.; Wang, X.; Shang, Z.; Liu, Y.; Pan, N.; Sun, X.; Xu, W. Limbal stem cells carried by a four-dimensional -printed chitosan-based scaffold for corneal epithelium injury in diabetic rabbits. Front. Physiol. 2024, 15, 1285850. [Google Scholar] [CrossRef]
- Yang, G.H.; Kim, W.; Kim, J.; Kim, G. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics 2021, 11, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Jahanshahi, M.; Hasany, M.; Kadumudi, F.B.; Mehrali, M.; Shahbazi, M.A.; Alizadeh, P.; Orive, G.; Dolatshahi-Pirouz, A. Smart alginate inks for tissue engineering applications. Mater. Today Bio 2023, 23, 100829. [Google Scholar] [CrossRef]
- Díaz-Payno, P.J.; Kalogeropoulou, M.; Muntz, I.; Kingma, E.; Kops, N.; D’Este, M.; Koenderink, G.H.; Fratila-Apachitei, L.E.; van Osch, G.; Zadpoor, A.A. Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering. Adv. Heal. Mater. 2023, 12, e2201891. [Google Scholar] [CrossRef]
- Solis, D.M.; Czekanski, A. The effect of the printing temperature on 4D DLP printed pNIPAM hydrogels. Soft Matter 2022, 18, 3422–3429. [Google Scholar] [CrossRef]
- Zhuo, S.; Geever, L.M.; Halligan, E.; Tie, B.S.H.; Breheny, C. A Development of New Material for 4D Printing and the Material Properties Comparison between the Conventional and Stereolithography Polymerised NVCL Hydrogels. J. Funct. Biomater. 2022, 13, 262. [Google Scholar] [CrossRef]
- Halligan, E.; Zhuo, S.; Colbert, D.M.; Alsaadi, M.; Tie, B.S.H.; Bezerra, G.S.N.; Keane, G.; Geever, L.M. Modulation of the Lower Critical Solution Temperature of Thermoresponsive Poly(N-vinylcaprolactam) Utilizing Hydrophilic and Hydrophobic Monomers. Polymers 2023, 15, 1595. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.P.; Lokhande, G.; Singh, K.A.; Jaiswal, M.K.; Rajput, S.; Gaharwar, A.K. Light-Triggered In Situ Gelation of Hydrogels using 2D Molybdenum Disulfide (MoS2)Nanoassemblies as Crosslink Epicenter. Adv. Mater. 2021, 33, e2101238. [Google Scholar] [CrossRef] [PubMed]
- Strutynski, C.; Evrard, M.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Brachais, C.-H.; Kibler, B.; Smektala, F. 4D Optical fibers based on shape-memory polymers. Nat. Commun. 2023, 14, 6561. [Google Scholar] [CrossRef] [PubMed]
- Che, Q.T.; Seo, J.W.; Charoensri, K.; Nguyen, M.H.; Park, H.J.; Bae, H. 4D-printed microneedles from dual-sensitive chitosan for non-transdermal drug delivery. Int. J. Biol. Macromol. 2024, 261, 129638. [Google Scholar] [CrossRef]
- Zhao, C.; Lv, Q.; Yang, J.; Li, M.; Zhao, Q.; Ma, H.; Jia, X. Design and Simulation of a Magnetization Drive Coil Based on the Helmholtz Principle and an Experimental Study. Micromachines 2023, 14, 152. [Google Scholar] [CrossRef]
- Sotoudeh, S.; Yazdi, M.; Hosseinzadeh, M.; Hassanpour, M. Investigating the reversible performance of shape memory composites in 4D printing using magnetic field stimulation: Case study of polylactic acid/SrFe12O19 composite filament. Prog. Addit. Manuf. 2024. [Google Scholar] [CrossRef]
- De Marzi, A.; Diener, S.; Campagnolo, A.; Meneghetti, G.; Katsikis, N.; Colombo, P.; Franchin, G. Ultra-lightweight silicon nitride truss-based structures fabricated via UV-assisted robot direct ink writing. Mater. Des. 2024, 244, 113092. [Google Scholar] [CrossRef]
- Zhang, L.; Forgham, H.; Shen, A.; Wang, J.; Zhu, J.; Huang, X.; Tang, S.Y.; Xu, C.; Davis, T.P.; Qiao, R. Nanomaterial integrated 3D printing for biomedical applications. J. Mater. Chem. B 2022, 10, 7473–7490. [Google Scholar] [CrossRef]
- Gao, K.; Gong, J.; Cao, P.; Tang, Z.; Wang, T.; Tao, L.; Zhang, X.; Zhang, J.; Wang, Q.; Zhang, Y. Toward 4D Printing of Shape Memory Polymers Based on Polyaryletherketone/NVP/PEGDA through Molecular Engineering and Direct Ink Writing 3D Printing. ACS Appl. Polym. Mater. 2023, 5, 8833–8844. [Google Scholar] [CrossRef]
- Miksch, C.E.; Skillin, N.P.; Kirkpatrick, B.E.; Hach, G.K.; Rao, V.V.; White, T.J.; Anseth, K.S. 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture. Small 2022, 18, e2200951. [Google Scholar] [CrossRef]
- Zhao, J.; Han, M.; Li, L. Modeling and characterization of shape memory properties and decays for 4D printed parts using stereolithography. Mater. Des. 2021, 203, 109617. [Google Scholar] [CrossRef]
- Tan, L.; Lee, H.; Fang, L.; Cappelleri, D.J. A Power Compensation Strategy for Achieving Homogeneous Microstructures for 4D Printing Shape-Adaptive PNIPAM Hydrogels: Out-of-Plane Variations. Gels 2022, 8, 828. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Sun, X.; Yu, L.; Li, M.; Montgomery, S.M.; Song, Y.; Nomura, T.; Tanaka, M.; Qi, H.J. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat. Commun. 2023, 14, 5519. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yuan, C.; Cheng, J.; He, X.; Ye, H.; Jian, B.; Li, H.; Bai, J.; Ge, Q. Direct 4D printing of ceramics driven by hydrogel dehydration. Nat. Commun. 2024, 15, 758. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.Y.; Woo, B.H.; Kim, N.; Jun, Y.C. Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation. Sci. Rep. 2020, 10, 6258. [Google Scholar] [CrossRef]
- Makki, T.; Vattathurvalappil, S.H.; Theravalappil, R.; Nazir, A.; Alhajeri, A.; Azeem, M.A.; Mahdi, E.; Ummer, A.C.; Ali, U. 3D and 4D printing: A review of virgin polymers used in fused deposition modeling. Compos. Part. C Open Access 2024, 14, 100472. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, X.; Fei, G.; Wang, Z.; Xia, H.; Zhao, Y. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. ACS Appl. Mater. Interfaces 2019, 11, 44774–44782. [Google Scholar] [CrossRef]
- Yang, W.; Tu, A.; Ma, Y.; Li, Z.; Xu, J.; Lin, M.; Zhang, K.; Jing, L.; Fu, C.; Jiao, Y.; et al. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry. Molecules 2022, 27, 173. [Google Scholar] [CrossRef]
- Li, C.; Cheng, J.; He, Y.; He, X.; Xu, Z.; Ge, Q.; Yang, C. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat. Commun. 2023, 14, 4853. [Google Scholar] [CrossRef]
3D Printing Methodology | Material | Application | Highlights and Advantages | Limitations | Resolution (μm) and Printing Speed (mm/h) | Approximate Cost (Materials/Equipment) | References |
---|---|---|---|---|---|---|---|
Fused Deposition Modeling (FDM) | Thermoplastic filaments | Bone scaffolds, prosthetics, drug delivery | Improved resolution and surface finish. Cost-effective, multi-material capabilities, low cost | Lower resolution, anisotropic mechanical properties. Limited to thermoplastics | 100–300, 150–300 | Materials: 50–150 USD USD/kg; Equipment: USD 500–USD 20,000 | [24,26,27] |
Stereolithography (SLA) | Photopolymer resins | Surgical models, dental prosthetics, scaffolds | High resolution and smooth surface finish. Detailed anatomical representations | Brittle parts, limited material choices, post-processing required | 25–100, 150–300 | Materials: 100–200 USD/kg; Equipment: USD 2000–USD 50,000 | [26,29,59] |
Selective Laser Sintering (SLS) | Metal and polymer powders | Aerospace, automotive, medical implants | Produces strong, durable parts. Little support is needed for polymer materials | High cost, requires post-processing for metal heat management | 100–200, 10–50 | Materials: 100–400 USD/kg; Equipment: USD 50,000–USD 1,000,000+ | [26,34] |
Digital Light Processing (DLP) | Photopolymer resins | Microfluidic devices, tissue scaffolds | High precision, fast curing. Ideal for complex microfluidic devices | Limited to photopolymer resins, brittle parts | 25–50, 200–500 | Materials: 100–200 USD/kg; Equipment: USD 3000–USD 50,000 | [35,60] |
PolyJet | Photopolymers (rigid and flexible resins) | Surgical models, dental prosthetics, anatomical models, prosthetics | High resolution, multi-material capabilities, smooth surface finish, color and texture variation | Limited mechanical strength, high material costs | 16–85, 100–400 | Materials: 150–400 USD/kg; Equipment: USD 20,000–USD 100,000 | [39,40,41] |
Inkjet Bioprinting | Bioinks, cells | Tissue engineering, drug delivery | High precision in cell placement. Non-contact technique, high precision | Potential nozzle clogging, slower printing speed. High cost | 50–100, 15–20 | Materials: 200–500 USD/mL; Equipment: USD 50,000–USD 200,000 | [24,25,26] |
Laser-Induced Forward Transfer (LIFT) | Cells, various materials | Cellular constructs | Precise cell placement, high resolution. Avoids nozzle clogging | Requires laser setup, limited throughput. High cost | <10, 10–100 | Materials: Variable; Equipment: USD 100,000–USD 1,000,000+ | [34] |
Direct Ink Writing (DIW) | Ceramics, hydrogels | Bone scaffolds, drug delivery | High structural integrity. Controlled deposition, low cost | Limited resolution compared to other methods | 100–500, 10–50 | Materials: 100–200 USD/kg; Equipment: USD 5000–USD 50,000 | [24,25,26] |
Material | Properties | Applications | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|
Polymers | Versatile, processable, can be tailored for mechanical, chemical, and biological properties | Biomedical devices, flexible electronics, smart materials | Customizable, cost-effective, suitable for a wide range of applications | May have limited biodegradability, some polymers require high processing temperatures | [1,3,9,24] |
Hydrogels | Highly absorbent, biocompatible, responsive to environmental stimuli (e.g., pH, temperature) | Tissue engineering, drug delivery, minimally invasive implants | Biocompatible, can be designed for specific responses, suitable for various medical applications | May degrade over time, mechanical properties can be limited, sensitive to environment | [12,18,97,98,104] |
Composites | Enhanced mechanical and functional properties, often incorporate fibers or other materials | Bone scaffolds, drug delivery systems, high-performance components | Improved mechanical properties, multifunctional, suitable for demanding applications | Complex manufacturing processes, potential issues with material compatibility | [24,55,59,130,131] |
Shape-Memory Polymers (SMPs) | Ability to return to pre-defined shape upon exposure to stimuli (e.g., heat, light, magnetic fields) | Dynamic and responsive structures, personalized medical devices | Programmable transformations, biocompatible, can create complex shapes | Potential variability in response, long-term stability under repeated cycles is uncertain | [5,11,18,82,88] |
Bioinks | Mixtures of cells and biomaterials, high precision in cell placement, support cell viability | Regenerative medicine, personalized drug delivery, tissue-like structures | Support cell growth, high precision, can create complex and functional structures | Sensitive to processing conditions, potential for cell viability issues during printing | [24,25,117,132,133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.C.; Nayak, V.V.; Coelho, P.G.; Witek, L. Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies. Polymers 2024, 16, 2686. https://doi.org/10.3390/polym16192686
Pereira AC, Nayak VV, Coelho PG, Witek L. Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies. Polymers. 2024; 16(19):2686. https://doi.org/10.3390/polym16192686
Chicago/Turabian StylePereira, Angel Cabrera, Vasudev Vivekanand Nayak, Paulo G. Coelho, and Lukasz Witek. 2024. "Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies" Polymers 16, no. 19: 2686. https://doi.org/10.3390/polym16192686
APA StylePereira, A. C., Nayak, V. V., Coelho, P. G., & Witek, L. (2024). Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies. Polymers, 16(19), 2686. https://doi.org/10.3390/polym16192686