Effect of Phase Structure on the Viscoelasticity and Mechanical Properties of Isotactic Polypropylene Multicomponents Polymerized with Non-Conjugated α,ω-Diene
Abstract
:1. Introduction
2. Experimental Design
2.1. Material Polymerization
2.2. Material Characterization
3. Results and Discussion
3.1. Synthesis of Crosslinked iPP/EPR Alloys
3.2. Viscoelasticity of the Crosslinked iPP/EPR Alloys
3.3. Mechanical Properties of iPP and Crosslinked iPP/EPR Alloys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, J.H.; Yu, W.; Zhou, C.X. The preparation and rheology characterization of long chain branching polypropylene. Polymer 2006, 47, 7962–7969. [Google Scholar] [CrossRef]
- Fan, Z.Q.; Zhang, Y.Q.; Xu, J.T.; Wang, H.T.; Feng, L.X. Structure and properties of polypropylene/poly (ethylene-co-propylene) in-situ blends synthesized by spherical Ziegler–Natta catalyst. Polymer 2001, 42, 5559–5566. [Google Scholar] [CrossRef]
- Chen, F.; Shangguan, Y.; Jiang, Y.; Qiu, B.; Luo, G.; Zheng, Q. Toughening with little rigidity loss and mechanism for modified polypropylene by polymer particles with core–shell structure. Polymer 2015, 65, 81–92. [Google Scholar] [CrossRef]
- Fu, Z.S.; Fan, Z.Q.; Zhang, Y.Q.; Feng, L.X. Structure and morphology of polypropylene/poly (ethylene-co-propylene) in situ blends synthesized by spherical Ziegler–Natta catalyst. Eur. Polym. J. 2003, 39, 795–804. [Google Scholar] [CrossRef]
- Tian, M.; Li, T.; Zhang, L.; Tian, H.; Wu, Y.; Ning, N. Interfacial crystallization and its mechanism in in-situ dynamically vulcanized iPP/POE blends. Polymer 2014, 55, 3068–3074. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Bhowmick, A.K. An effective strategy to develop nanostructured morphology and enhanced physico-mechanical properties of PP/EPDM thermoplastic elastomers. J. Mater. Sci. 2016, 51, 6722–6734. [Google Scholar] [CrossRef]
- Pang, Y.; Dong, X.; Zhao, Y.; Han, C.C.; Wang, D. Time evolution of phase structure and corresponding mechanical properties of iPP/PEOc blends in the late-stage phase separation and crystallization. Polymer 2007, 48, 6395–6403. [Google Scholar] [CrossRef]
- Luo, J.; Liang, Y.; Yang, J.; Niu, H.; Dong, J.-Y.; Han, C.C. Mechanisms of nucleation and crystal growth in a nascent isotactic polypropylene/poly (ethylene-co-octene) in-reactor alloy investigated by temperature-resolved synchrotron SAXS and DSC methods. Polymer 2011, 52, 4590–4599. [Google Scholar] [CrossRef]
- Galli, P.; Vecellio, G. Technology: Driving force behind innovation and growth of polyolefins. Prog. Polym. Sci. 2001, 26, 1287–1336. [Google Scholar] [CrossRef]
- Hustad, P.D.; Kuhlman, R.L.; Arriola, D.J.; Carnahan, E.M.; Wenzel, T.T. Continuous production of ethylene-based diblock copolymers using coordinative chain transfer polymerization. Macromolecules 2007, 40, 7061–7064. [Google Scholar] [CrossRef]
- Gahleitner, M.; Tranninger, C.; Doshev, P.J. Heterophasic copolymers of polypropylene: Development, design principles, and future challenges. Appl. Polym. Sci. 2013, 130, 3028–3037. [Google Scholar] [CrossRef]
- Greco, R.; Mancarella, C.; Martuscelli, E.; Ragosta, G.; Jinghua, Y. Polyolefin blends: 2. Effect of EPR composition on structure, morphology and mechanical properties of iPP/EPR alloys. Polymer 1987, 28, 1929–1936. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.Q.; Qu, C.; Zhang, Q.; Du, R.N.; Fu, Q.J. Hierarchy structure in injection molded polypropylene/ethylene–octane copolymer blends. Appl. Polym. Sci. 2007, 105, 2252–2259. [Google Scholar] [CrossRef]
- Du, J.; Niu, H.; Dong, J.-Y.; Dong, X.; Wang, D.; He, A.; Han, C.C. Nascent phase separation and crystallization kinetics of an iPP/PEOc polymer alloy prepared on a single multicatalyst reactor granule. Macromolecules 2008, 41, 1421–1429. [Google Scholar] [CrossRef]
- Pang, Y.; Dong, X.; Zhao, Y.; Han, C.C.; Wang, D.J. Phase separation induced morphology evolution andcorresponding impact fracture behavior of iPP/PEOc blends. Appl. Polym. Sci. 2011, 121, 445–453. [Google Scholar] [CrossRef]
- Jiang, B.; Shao, H.; Nie, H.; He, A. Sequential two-stage polymerization for synthesis of isotactic polypropylene/isotactic polybutene-1 alloys: Composition, morphology and granule growing mechanism. Polym. Chem. 2015, 6, 3315–3323. [Google Scholar] [CrossRef]
- Du, J.; Niu, H.; Dong, J.-Y.; Dong, X.; Han, C.C. Self-Similar Growth of Polyolefin Alloy Particles in a Single Granule Multi-Catalyst Reactor. Adv. Mater. 2008, 20, 2914–2917. [Google Scholar] [CrossRef]
- Zhou, Y.; Niu, H.; Kong, L.; Zhao, Y.; Dong, J.-Y.; Wang, D. Probing into the pristine basic morphology of high impact polypropylene particles. Polymer 2009, 50, 4690–4695. [Google Scholar] [CrossRef]
- Fu, Z.; Tu, S.; Fan, Z. Effect of the Combined External Electron Donors on the Structure and Properties of Polypropylene/Poly (ethylene-co-propylene) In-Reactor Alloys Prepared by High-Efficiency Industrial Ziegler–Natta Catalyst. Ind. Eng. Chem. Res. 2013, 52, 5887–5894. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, X.; Fu, Z.; Xu, J.; Fan, Z. Regulation of morphology and mechanical properties of polypropylene/poly (ethylene-co-propylene) in-reactor alloys by multi-stage sequential polymerization. Polymer 2007, 48, 5905–5916. [Google Scholar] [CrossRef]
- Zheng, Q.; Shangguan, Y.; Yan, S.K.; Song, Y.H.; Peng, M.; Zhang, Q.B. Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys. Polymer 2005, 46, 3163–3174. [Google Scholar] [CrossRef]
- Shangguan, Y.; Zhang, C.; Xie, Y.; Chen, R.; Jin, L.; Zheng, Q. Study on degradation and crosslinking of impact polypropylene copolymer by dynamic rheological measurement. Polymer 2010, 51, 500–506. [Google Scholar] [CrossRef]
- Chen, F.; Qiu, B.; Shangguan, Y.; Song, Y.; Zheng, Q. Correlation between impact properties and phase structure in impact polypropylene copolymer. Mater. Des. 2015, 69, 56–63. [Google Scholar] [CrossRef]
- McKenna, T.F.; Bouzid, D.; Matsunami, S.; Sugano, T. Evolution of particle morphology during polymerisation of high impact polypropylene. Polym. React. Eng. 2003, 11, 177–197. [Google Scholar] [CrossRef]
- Fernandez, A.; Exposito, M.T.; Pena, B.; Berger, R.; Shu, J.; Graf, R.; Spiess, H.W.; Garcia-Munoz, R.A. Molecular structure and local dynamic in impact polypropylene copolymers studied by preparative TREF, solid state NMR spectroscopy, and SFM microscopy. Polymer 2015, 61, 87–98. [Google Scholar] [CrossRef]
- Grein, C.; Gahleitner, M. On the influence of nucleation on the toughness of iPP/EPR blends with different rubber molecular architectures. Express Polym. Lett. 2008, 2, 392–397. [Google Scholar] [CrossRef]
- Oliani, W.L.; Parra, D.F.; Lima, L.; Lugao, A.B. Morphological characterization of branched PP under stretching. Polym. Bull. 2012, 68, 2121–2130. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, F.; Zhao, C.; Huang, Y.; Dong, J.-Y.; Han, C.C. Interpenetrating network formation in isotactic polypropylene/graphene composites. Polymer 2013, 54, 3680–3690. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, F.; Huang, Y.; Dong, J.-Y.; Han, C.C. Crystallization behaviors in the isotactic polypropylene/graphene composites. Polymer 2014, 55, 4125–4135. [Google Scholar] [CrossRef]
- Shi, J.; Dong, J.-Y. Simultaneous cross-linking as a way to control physical growth of random ethylene-propylene copolymer during formation of high-impact polypropylene. Polymer 2016, 85, 10–18. [Google Scholar] [CrossRef]
- Brandrup, E.H.I.J. Polymer Handbook; Wiley: New York, NY, USA, 1989; p. v29. [Google Scholar]
- Agarwal, P.K.; Somani, R.H.; Weng, W.Q.; Mehta, A.; Yang, L.; Ran, S.F.; Liu, L.Z.; Hsiao, B.S. Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and-WAXD. Macromolecules 2003, 36, 5226–5235. [Google Scholar] [CrossRef]
- Kakugo, M.; Naito, Y.; Mizunuma, K.; Miyatake, T. Carbon-13 NMR determination of monomer sequence distribution in ethylene-propylene copolymers prepared with δ-titanium trichloride-diethylaluminum chloride. Macromolecules 1982, 15, 1150–1152. [Google Scholar] [CrossRef]
- Miller, D.R.; Macosko, C.W. A new derivation of postgel properties of network polymers. Macromolecules 1976, 9, 206–211. [Google Scholar] [CrossRef]
- Alig, I.; Pötschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G.R.; Villmow, T. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 2012, 53, 4–28. [Google Scholar] [CrossRef]
- Munstedt, H. Rheological properties and molecular structure of polymer melts. Soft Matter 2011, 7, 2273–2283. [Google Scholar] [CrossRef]
- Zeltmann, S.E.; Kumar, B.R.B.; Doddamani, M.; Gupta, N. Prediction of strain rate sensitivity of high density polyethylene using integral transform of dynamic mechanical analysis data. Polymer 2016, 101, 1–6. [Google Scholar] [CrossRef]
- Liu, S.; Li, L. Self-healing double-network hydrogel for 3d printing and strain sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429–26437. [Google Scholar] [CrossRef]
Samples | DHDCS [m mol] | Cat. [mg] | t1 [min] | t2 [min] | Yield [g] | Activity [g g.cat−1 h−1] | wEPR a [wt.%] |
---|---|---|---|---|---|---|---|
iPP | 0 | 20.8 | 30 | 0 | 16.2 | 1560 | 0 |
iPP/EPR-1 | 0 | 22.0 | 30 | 16 | 22.5 | 1334 | 20.5 |
iPP/EPR-2 | 0.15 | 21.7 | 30 | 8 | 23.2 | 1688 | 25.4 |
iPP/EPR-3 | 0.30 | 22.8 | 30 | 60 | 46.2 | 1351 | 35.0 |
iPP/EPR-4 | 0.60 | 22.0 | 30 | 70 | 44.6 | 1216 | 50.6 |
iPP/EPR-5 | 1.35 | 22.3 | 30 | 40 | 59.2 | 2275 | 55.0 |
Samples | wEPR a [wt.%] | wgel a [wt.%] | [E] b in EPR [mol%] | Tc c [°C] | ΔHc c [J g−1] | Tm c [°C] | ΔHm c [J g−1] |
---|---|---|---|---|---|---|---|
iPP | 0 | 0 | 0 | 112.5 | 96.6 | 159.9 | 75.2 |
iPP/EPR-1 | 20.5 | 0 | 40.0 | 112.3;102.5 | 0.2;60.3 | 117.3;163.2 | 1.6;55.9 |
iPP/EPR-2 | 25.4 | 7.3 | 40.2 | 109.0 | 64.6 | 117.3;163.2 | 1.6;55.8 |
iPP/EPR-3 | 35.0 | 7.3 | 40.7 | 117.5 | 54.5 | 117.1;162.2 | 1.8;43.4 |
iPP/EPR-4 | 50.6 | 8.9 | 38.7 | 96.7;109.1 | 0.28;20.7 | 116.7;161.4 | 3.1;23.6 |
iPP/EPR-5 | 55.0 | 12.9 | 37.0 | 96.7;112.0 | 0.4;26.0 | 113.1;159.0 | 1.5;27.0 |
Samples | P | E | PP | PE | EE | PPP | PPE | EPE | PEP | EEP | EEE | lP | lE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
iPP/EPR-1 | 79.29 | 20.71 | 72.99 | 12.62 | 14.40 | 66.30 | 8.14 | 2.86 | 3.72 | 6.54 | 12.43 | 12.57 | 3.28 |
iPP/EPR-2 | 74.36 | 25.64 | 66.60 | 15.51 | 17.88 | 60.53 | 8.79 | 3.29 | 4.51 | 7.98 | 14.89 | 9.59 | 3.31 |
iPP/EPR-3 | 65.55 | 34.45 | 53.51 | 24.07 | 22.41 | 44.54 | 13.37 | 5.07 | 6.34 | 12.48 | 18.21 | 5.45 | 2.86 |
iPP/EPR-4 | 55.46 | 44.54 | 40.48 | 29.96 | 29.56 | 30.08 | 17.47 | 6.60 | 7.50 | 13.35 | 21.33 | 3.70 | 2.97 |
iPP/EPR-5 | 54.35 | 45.65 | 39.08 | 30.54 | 30.38 | 31.49 | 16.93 | 7.43 | 7.43 | 14.70 | 22.02 | 3.56 | 2.99 |
Samples | P | E | PP | PE | EE | PPP | PPE | EPE | PEP | EEP | EEE | lP | lE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EPR-1 | 59.10 | 40.90 | 41.03 | 36.13 | 22.84 | 29.40 | 19.03 | 7.20 | 8.57 | 20.23 | 15.56 | 3.27 | 2.26 |
EPR-2 | 57.90 | 42.10 | 39.10 | 37.60 | 23.30 | 28.54 | 20.03 | 7.41 | 10.01 | 17.72 | 16.30 | 3.08 | 2.24 |
EPR-3 | 57.73 | 42.27 | 37.86 | 39.75 | 22.39 | 26.56 | 21.64 | 6.87 | 10.25 | 19.89 | 14.79 | 2.90 | 2.13 |
EPR-4 | 55.51 | 44.49 | 35.23 | 40.56 | 24.21 | 25.38 | 23.28 | 8.87 | 11.08 | 17.07 | 14.33 | 2.74 | 2.19 |
EPR-5 | 54.19 | 45.81 | 33.74 | 40.89 | 25.36 | 24.42 | 21.89 | 10.11 | 10.53 | 17.89 | 15.16 | 2.65 | 2.24 |
Samples | wEPR [wt.%] | Tg1 [°C] | Tg2 [°C] | ΔTg [°C] |
---|---|---|---|---|
iPP | 0 | / | 10.8 | / |
iPP/EPR-1 | 20.5 | −50.38 | 0.58 | 50.96 |
iPP/EPR-2 | 25.4 | −49.45 | 0.58 | 50.03 |
iPP/EPR-3 | 35.0 | −40.23 | 1.04 | 41.27 |
iPP/EPR-4 | 50.6 | −32.85 | 1.96 | 34.81 |
iPP/EPR-5 | 55.0 | −25.48 | 0.48 | 25.96 |
Samples | wEPR [wt.%] | wgel [wt.%] | Tensile Strength [MPa] | Tensile Modulus [MPa] | Elongation at Break [%] | Impact Strength [kJ m−2] at −20 °C |
---|---|---|---|---|---|---|
iPP | 0 | 0 | 37.3 ± 0.47 | 689.0 ± 33.9 | 549 ± 318.5 | 1.4 ± 0.01(C) |
iPP/EPR-1 | 20.5 | 0 | 24.1 ± 1.2 | 308.1 ± 28.7 | 715.2 ± 33.9 | 7.4 ± 0.25(C) |
iPP/EPR-2 | 25.4 | 7.3 | 26.4 ± 0.7 | 287.4 ± 1.2 | 715.4 ± 50.7 | 19.1 ± 4.3(P) |
iPP/EPR-3 | 35.0 | 7.3 | 16.5 ± 0.05 | 151.4 ± 30.4 | 396.1 ± 98.1 | 40.2 ± 1.8(P) |
iPP/EPR-4 | 50.6 | 8.9 | 11.3 ± 0.95 | 46.5 ± 6.8 | 130.0 ± 55.4 | 35.2 ± 8.5(P) |
iPP/EPR-5 | 55.0 | 12.9 | 9.3 ± 2.2 | 70.4 ± 6.5 | 49.6 ± 23.0 | 44.0 ± 2.1(P) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Dong, J.-Y.; Qin, Y.; Zhao, C.; Yu, Y.; Liu, W. Effect of Phase Structure on the Viscoelasticity and Mechanical Properties of Isotactic Polypropylene Multicomponents Polymerized with Non-Conjugated α,ω-Diene. Polymers 2024, 16, 2715. https://doi.org/10.3390/polym16192715
Zhao S, Dong J-Y, Qin Y, Zhao C, Yu Y, Liu W. Effect of Phase Structure on the Viscoelasticity and Mechanical Properties of Isotactic Polypropylene Multicomponents Polymerized with Non-Conjugated α,ω-Diene. Polymers. 2024; 16(19):2715. https://doi.org/10.3390/polym16192715
Chicago/Turabian StyleZhao, Songmei, Jin-Yong Dong, Yawei Qin, Chuanzhuang Zhao, Yuan Yu, and Weili Liu. 2024. "Effect of Phase Structure on the Viscoelasticity and Mechanical Properties of Isotactic Polypropylene Multicomponents Polymerized with Non-Conjugated α,ω-Diene" Polymers 16, no. 19: 2715. https://doi.org/10.3390/polym16192715
APA StyleZhao, S., Dong, J. -Y., Qin, Y., Zhao, C., Yu, Y., & Liu, W. (2024). Effect of Phase Structure on the Viscoelasticity and Mechanical Properties of Isotactic Polypropylene Multicomponents Polymerized with Non-Conjugated α,ω-Diene. Polymers, 16(19), 2715. https://doi.org/10.3390/polym16192715