Study on the Microscopic Mechanism and Performance of TPU/SBR Composite-Modified Asphalt
Abstract
:1. Introduction
2. Materials and Test Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Thermoplastic Polyurethane (TPU)
2.1.3. Styrene Butadiene Rubber (SBR)
2.1.4. Aggregates and Mineral Powder
2.2. Preparation of Modified Asphalt
2.2.1. Preparation of TPU Modified Asphalt
2.2.2. Preparation of SBR-Modified Asphalt
2.2.3. Preparation of TPU/SBR Composite-Modified Asphalt
2.3. Composition Design of Asphalt Mixture
2.3.1. Mix Design
2.3.2. Optimal Asphalt-to-Aggregate Ratio
2.4. Test Methods
2.4.1. Basic Performance Tests
- (1)
- Physical properties test
- (2)
- Storage stability test
- (3)
- Elastic recovery test
2.4.2. Micro-Properties Tests
- (1)
- Atomic force microscopy (AFM) test
- (2)
- Fourier transform infrared spectroscopy (FTIR) test
- (3)
- Fluorescence microscope (FM) test
3. Results and Discussion
3.1. Basic Performance
3.1.1. Performance Analysis of Single Mixed Modified Asphalt
- (1)
- physical properties
- (2)
- Storage stability
- (3)
- Elastic recovery
3.1.2. Performance Analysis of Composite-Modified Asphalt
- (1)
- Physical properties
- (2)
- Storage stability
- (3)
- Elastic recovery
3.2. Analysis of Micro-Properties
3.2.1. Atomic Force Microscopy (AFM) Test
3.2.2. Fluorescence Microscope (FM) Test
3.2.3. Fourier Transform Infrared Spectroscopy (FTIR) Test
4. Conclusions
5. The Limitations and Future Scope of the Study
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, W.; Wang, S.; Wang, H.; Xu, T. Inhibitory effects of developed composite flame retardant on bituminous combustion and volatile emissions. J. Clean. Prod. 2021, 279, 123538. [Google Scholar] [CrossRef]
- Lv, S.; Yuan, J.; Peng, X.; Cabrera, M.B.; Liu, H.; Luo, X.; You, L. Standardization to evaluate the lasting capacity of rubberized asphalt mixtures with different testing approaches. Constr. Build. Mater. 2021, 269, 121341. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, J.; Sun, L.; Liu, L. Critical position of fatigue damage within asphalt pavement considering temperature and strain distribution. Int. J. Pavement Eng. 2021, 22, 1773–1784. [Google Scholar] [CrossRef]
- Chen, J.-S.; Wang, T.J.; Lee, C.-T. Evaluation of a highly-modified asphalt binder for field performance. Constr. Build. Mater. 2018, 171, 539–545. [Google Scholar] [CrossRef]
- Sun, M.; Zheng, M.; Qu, G.; Yuan, K.; Bi, Y.; Wang, J. Performance of polyurethane modified asphalt and its mixtures. Constr. Build. Mater. 2018, 191, 386–397. [Google Scholar] [CrossRef]
- Cong, Y.; Liao, K.; Huang, W.; Zhai, Y. Performance of SBR-modified asphalt. Pet. Sci. Technol. 2006, 24, 1187–1194. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C. The research for SBS and SBR compound modified asphalts with polyphosphoric acid and sulfur. Constr. Build. Mater. 2013, 43, 461–468. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J. The research for high-performance SBR compound modified asphalt. Constr. Build. Mater. 2010, 24, 410–418. [Google Scholar] [CrossRef]
- Liu, L.P.; Dong, W.L.; Sun, L.J.; Jiang, T. Ultraviolet Radiation Aging Performance of SBS and SBR Modified Asphalt. J. Build. Mater. 2009, 12, 676–678. [Google Scholar]
- Sun, P.; Han, S.; Zhang, H.; Wang, Z.; Xu, O. High-temperature Performance of Nano-CaCO3/SBR Modified Asphalt and Mixture. Mater. Rev. 2016, 30, 122–126. [Google Scholar]
- Soliman, E.M.; Kandil, U.F.; Taha, M.M.R. The significance of carbon nanotubes on styrene butadiene rubber (SBR) and SBR modified mortar. Mater. Struct. 2012, 45, 803–816. [Google Scholar] [CrossRef]
- Lv, S.; Wang, S.; Guo, T.; Xia, C.; Li, J.; Hou, G. Laboratory Evaluation on Performance of Compound-Modified Asphalt for Rock Asphalt/Styrene-Butadiene Rubber (SBR) and Rock Asphalt/Nano-CaCO3. Appl. Sci. Basel 2018, 8, 1009. [Google Scholar] [CrossRef]
- Liu, B.B. Study on Influence of SBR Modifier on the Low Temperature Performance of Asphalt and Asphalt Mixture. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2018. [Google Scholar]
- Chen, K.; He, J.W. Study on the performance of rock asphalt styrene butadiene rubber composite modified asphalt for road use. J. China Foreign Highw. 2020, 40, 249–253. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, J.; Yuan, J.; Jiang, F.; Yu, X.; Xiao, F. Recent applications and developments of Polyurethane materials in pavement engineering. Constr. Build. Mater. 2021, 304, 124639. [Google Scholar] [CrossRef]
- Yan, W.; Ou, Y.; Xie, J.; Huang, T.; Peng, X. Study on Properties of Bone Glue/Polyurethane Composite Modified Asphalt and Its Mixture. Materials 2021, 14, 3769. [Google Scholar] [CrossRef]
- Fang, Y.; Xie, W.; Yang, J. Preparation and rheological behavior of polyurethane pre-polymer modified asphalt. J. Funct. Mater. 2019, 50, 6197–6205. [Google Scholar]
- Liu, J.; Lv, S.; Peng, X.; Yang, S. Improvements on performance of bio-asphalt modified by castor oil-based polyurethane: An efficient approach for bio-oil utilization. Constr. Build. Mater. 2021, 305, 124784. [Google Scholar] [CrossRef]
- Ying, L.; Xing, X. Study on Performance of Polyurethane Modified Asphalt for Pavement. Pet. Asph. 2015, 29, 48–53. [Google Scholar]
- Fan, T.; Lin, S.; Ying, Y. Experimental study of composite modified asphalt with polyurethane and rubber powder. New Build. Mater. 2016, 43, 83–86. [Google Scholar]
- Lin, X.Q.; Lin, J.Y.; Xu, Z.T.; Zhang, W.X.; Xiao, X. Study on the Synthesis and Heat Resistance of Polyurethane Elastomer. Polyurethane Ind. 2018, 33, 12–15. [Google Scholar]
- Zhen, Y.; Wang, W.Z. Polyurethane Resin and its Usage. Chin. J. Chem. Educ. 2003, 24, 3–5. [Google Scholar]
- Lv, W.J.; Liu, H.; Chang, P.T.; Huang, T.; Zhang, Z.P. Recent development on the application of PU modified asphalt for pavement. New Chem. Mater. 2022, 50, 227–230. [Google Scholar] [CrossRef]
- Li, L.W.; Liu, H.C.; Lin, H.; Teng, X.H.; Zhang, J.Y. Progress in the Application of Polyurethane in Road Surface Engineering. Technol. Innov. Appl. 2022, 12, 73–76. [Google Scholar] [CrossRef]
- Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q. Progress in Study of Non-Isocyanate Polyurethane. Ind. Eng. Chem. Res. 2011, 50, 6517–6527. [Google Scholar] [CrossRef]
- Chen, B.; Dong, F.; Yu, X.; Zheng, C. Evaluation of Properties and Micro-Characteristics of Waste Polyurethane/Styrene-Butadiene-Styrene Composite Modified Asphalt. Polymers 2021, 13, 2249. [Google Scholar] [CrossRef]
- Eisa, M.S.; Mohamady, A.; Basiouny, M.E.; Abdulhamid, A.; Kim, J.R. Mechanical properties of asphalt concrete modified with carbon nanotubes (CNTs). Case Stud. Constr. Mater. 2022, 16, e00930. [Google Scholar] [CrossRef]
- He, M.; Cao, D.; Zhang, H.; Wu, X.; Li, T. Study on Regular Performance of Modified Bio-asphalt. J. Highw. Transp. Res. Dev. 2015, 32, 8–12. [Google Scholar]
- Ren, Z.; Zhu, Y.; Wu, Q.; Zhu, M.; Guo, F.; Yu, H.; Yu, J. Enhanced Storage Stability of Different Polymer Modified Asphalt Binders through Nano-Montmorillonite Modification. Nanomaterials 2020, 10, 641. [Google Scholar] [CrossRef]
- Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the storage stability of SBR-modified asphalt binder containing polyphosphoric acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, S.; Zhang, Y.; Zhang, Y. Low-density polyethylene/silica compound modified asphalts with high-temperature storage stability. J. Appl. Polym. Sci. 2006, 101, 472–479. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, F.; Wang, Y. Experimental Investigation on Performance of Styrene-Butadiene-Styrene(SBS) Modified Asphalt. J. Northeast. Univ. 2004, 25, 1191–1194. [Google Scholar]
- Yao, H.; Li, L.; Yang, X.; Dan, H.; Luo, S. Mechanics Performance Research and Microstructure Analysis of Nanomaterials Modified Asphalt. J. Build. Mater. 2011, 14, 712–717. [Google Scholar]
- Li, X.; Wang, Y.; Wu, Y.; Wang, H.; Wang, Q.; Zhu, X.; Liu, X.; Sun, H.; Fan, L. Effect of Graphene on Modified Asphalt Microstructures Based on Atomic Force Microscopy. Materials 2021, 14, 3677. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, X.; Dong, F. Evaluation of moisture susceptibility of foamed warm asphalt produced by water injection using surface free energy method. Constr. Build. Mater. 2017, 131, 138–145. [Google Scholar] [CrossRef]
- Kou, C.J.; Wu, X.; Kang, A.H.; Liu, Y. Acquisition and processing of fluorescent microscopic image for SBS modified asphalt. J. Jiangsu Univ. 2012, 33, 710–714. [Google Scholar]
- Zhao, Q. Research on Thermoplastic Polyurethane Warm Mix Composite Modified Asphalt and Its Mixture Performance. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2024. [Google Scholar]
- Xia, C.M. Controllable Fabrication of Polymer Modified Bitumen Emulsion with Hierarchical Structures. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Jin, X. Study on Rheological Properties and Inherent Mechanism of TPU Modified Asphalt and Mastic. Ph.D. Thesis, Dalian Maritime University, Dalian, China, 2021. [Google Scholar]
- Bi, F.; Fan, L.; Zhou, S.J.; Jiang, F. Research Progress on Construction Temperature of Modifi ed Asphalt. Synth. Mater. Aging Appl. 2020, 49, 164–167. [Google Scholar] [CrossRef]
- Wang, P.P. Research on High-Performance SBR Composite Modified Asphalt. Constr. Mach. 2024, 21–25. [Google Scholar] [CrossRef]
- Salehfard, R.; Abdi, A.; Amini, B. Effect of SBR/NC on the Rheological Properties of Bitumen and Fatigue Resistance of Hot Mix Asphalt. J. Mater. Civ. Eng. 2017, 29, 04016282. [Google Scholar] [CrossRef]
- Wang, X.K. Preparation of High Viscoelastic Modified Asphalt and Its Application in Ultra-thin Overlay. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2022. [Google Scholar]
- Gallu, R.; Mechin, F.; Dalmas, F.; Gerard, J.-F.; Perrin, R.; Loup, F. Rheology-morphology relationships of new polymer-modified bitumen based on thermoplastic polyurethanes (TPU). Constr. Build. Mater. 2020, 259, 120404. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Huang, W.L.; Zhou, Z.X. Study on compatibility of crumb rubber powder composite modified asphalt. J. Cent. South Univ. 2022, 53, 3879–3889. [Google Scholar]
- Cong, L.; Yang, F.; Guo, G.; Ren, M.; Shi, J.; Tan, L. The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review. Constr. Build. Mater. 2019, 225, 1012–1025. [Google Scholar] [CrossRef]
- Singh, B.; Tarannum, H.; Gupta, M. Use of isocyanate production waste in the preparation of improved waterproofing bitumen. J. Appl. Polym. Sci. 2003, 90, 1365–1377. [Google Scholar] [CrossRef]
- Wei, X.W.; Liu, L.; Yu, C.X. Rheological property analysis of polyurethane/rubber powder composite modified asphalt. West. China Commun. Sci. Technol. 2023, 8, 30–37. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.P.; Wang, F.; Huang, Z.G. Performance research and composition optimization of polyurethane/epoxy resin composite-modified asphalt. Thermosetting Resin 2022, 37, 1–4. [Google Scholar] [CrossRef]
- Pauli, A.T.; Grimes, R.W.; Beemer, A.G.; Turner, T.F.; Branthaver, J.F. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. Int. J. Pavement Eng. 2011, 12, 291–309. [Google Scholar] [CrossRef]
- Koyun, A.N.; Zakel, J.; Kayser, S.; Stadler, H.; Keutsch, F.N.; Grothe, H. High resolution nanoscale chemical analysis of bitumen surface microstructures. Sci. Rep. 2021, 11, 17163. [Google Scholar] [CrossRef]
- Wang, Y. Study on Microstructure and Properties of Asphalt Based on Infrared Spectroscopy and Atomic Force Microscopy. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Wang, P.; Dong, Z.J.; Tan, Y.Q.; Liu, Z.Y. Research on the Formation Mechanism of Bee-like Structures in Asphalt Binders Based on Molecular Simulations. China J. Highw. Transp. 2016, 29, 9–16. [Google Scholar] [CrossRef]
- Guan, B.; Chen, J.; Hao, P.W. Research on the morphologic change and micro-properties of matrix asphalt before and after aging based on atomic force microscope. Appl. Chem. Ind. 2017, 46, 2302–2305. [Google Scholar]
- Izquierdo, M.A.; Navarro, F.J.; Martinez-Boza, F.J.; Gallegos, C. Novel stable MDI isocyanate-based bituminous foams. Fuel 2011, 90, 681–688. [Google Scholar] [CrossRef]
- Chen, X. Study of Polyurethane/Silica In-Situ Composite Modified Bitumen. Master’s Thesis, Chongqing University of Technology, Chongqing, China, 2021. [Google Scholar]
Test Parameters | Units | Technical Standards | Test Results | |
---|---|---|---|---|
Penetration (25 °C, 5 s, 100 g) | 0.1 mm | 60~80 | 69.4 | |
Penetration Index (PI) | — | −1.5~+1.0 | −0.88 | |
Softening Point (Ring-and-Ball Method, 5 °C) | °C | ≥46 | 48.7 | |
Rotational Viscosity (135 °C) | mPa·s | <3000 | 475 | |
Ductility (cm) | 5 °C (5 cm/min) | cm | measured | 11.3 |
15 °C (5 cm/min) | cm | ≥100 | >100 | |
Wax Content (Distillation Method,%) | % | ≤2.2 | 0.85 | |
Flash Point (Open Cup) | °C | ≥260 | >300 | |
Solubility (Trichloroethylene) | % | ≥99.5 | 99.86 | |
Density (15 °C) | g/cm3 | measured | 1.036 | |
RTFOT Test | Mass Change | % | ±0.8 | −0.15 |
Residue | Penetration Ratio (25 °C) | % | ≥61 | 74.0 |
(163 °C, 5 h) | Residual Ductility (10 °C) | % | ≥6 | 6.5 |
Test Parameters | Units | Test Results |
---|---|---|
Appearance | — | White Particles |
Particle Size | Mesh | 32 |
Density | g/cm3 | 1.11 |
Tensile Strength | MPa | 55.3 |
Elongation at Break | % | 479.1 |
Test Parameters | Units | Technical Standards | Test Results |
---|---|---|---|
Appearance | — | White to slightly yellow powder | White to slightly yellow powder |
Molecular Weight | MW | 20~30 | 28 |
Particle Size | Mesh | Approximately 20 | 20 |
Styrene Content | % | 22.5~24.5 | 23.5 |
Mooney Viscosity | Pa·s | 50~70 | 67 |
Moisture Content | % | ≤25 | 1.6 |
Test Parameters | Units | Technical Standards | Test Results |
---|---|---|---|
Aggregate Crushing Value | % | ≤26 | 12.6 |
Apparent Relative Density | — | ≥2.60 | 3.1 |
Bulk Relative Density | — | — | 2.967 |
Los Angeles Abrasion Loss | % | ≤28 | 11.3 |
Flakiness and Elongation Index | % | ≤15 | 9.4 |
<0.075 mm Particle Content | % | ≤1 | 0.2 |
Water Absorption | % | ≤2.0 | 0.9 |
Durability | % | ≤12 | Pass |
Clay Content | % | ≤1 | 0.5 |
Test Parameters | Units | Technical Standards | Test Results |
---|---|---|---|
Apparent Relative Density | — | ≥2.50 | 2.708 |
Sand Equivalent | % | ≥60 | 64 |
Durability (Particles >0.3 mm) | % | ≥12 | Pass |
Clay Content (Content <0.075 mm) | % | ≤3 | 1.2 |
Test Parameters | Units | Technical Standards | Test Results |
---|---|---|---|
Apparent Density | t/m3 | ≥2.50 | 2.6 |
Sieve Analysis (Particles <0.075 mm) | % | 75~100 | 90.2 |
Moisture Content | % | ≤1 | 0.3 |
Hydrophilicity Coefficient | — | ≤1 | 0.68 |
Heat Stability (200 °C) | — | Measured Data | No Change in Color |
Asphalt Type | S1 (Softening Point of the Top, °C) | S2 (Softening Point of the Bottom, °C) | ΔS (Softening Point Difference, °C) |
---|---|---|---|
Base asphalt | 46.8 | 47.0 | 0.2 |
5%TPU | 51.6 | 52.2 | 0.6 |
10%TPU | 54.1 | 55.0 | 0.9 |
15%TPU | 56.9 | 57.8 | 0.9 |
20%TPU | 57.0 | 58.0 | 1.0 |
Asphalt Type | S1 (Softening Point of the Top, °C) | S2 (Softening Point of the Bottom, °C) | ΔS (Softening Point Difference, °C) |
---|---|---|---|
2.0%SBR | 47.7 | 48.4 | 0.7 |
2.5%SBR | 47.8 | 48.7 | 0.9 |
3.0%SBR | 48.1 | 49.3 | 1.2 |
3.5%SBR | 49.4 | 50.8 | 1.4 |
4.0%SBR | 49.7 | 51.5 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Li, L.; Liang, M.; Rong, H.; Yang, X. Study on the Microscopic Mechanism and Performance of TPU/SBR Composite-Modified Asphalt. Polymers 2024, 16, 2766. https://doi.org/10.3390/polym16192766
Wei L, Li L, Liang M, Rong H, Yang X. Study on the Microscopic Mechanism and Performance of TPU/SBR Composite-Modified Asphalt. Polymers. 2024; 16(19):2766. https://doi.org/10.3390/polym16192766
Chicago/Turabian StyleWei, Li, Linxianzi Li, Mingmei Liang, Hongliu Rong, and Xiaolong Yang. 2024. "Study on the Microscopic Mechanism and Performance of TPU/SBR Composite-Modified Asphalt" Polymers 16, no. 19: 2766. https://doi.org/10.3390/polym16192766
APA StyleWei, L., Li, L., Liang, M., Rong, H., & Yang, X. (2024). Study on the Microscopic Mechanism and Performance of TPU/SBR Composite-Modified Asphalt. Polymers, 16(19), 2766. https://doi.org/10.3390/polym16192766