Comparison of Biowaste Fillers Extracted from Fish Scales and Collagen on the Mechanical Properties of High-Density Polyurethane Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Pretreatment of Fish Scales
2.2. Preparation of Powdered Fish Scales
2.3. Extraction of Collagen from Fish Scales (Optimization)
2.4. Preparation and Testing of the Polyurethane Composites
2.5. Characterization of Physical Properties of Pu-Based Composites
2.6. Characterization of FS and FSC Reinforced PU Foams
2.7. Data Analysis
3. Results and Discussion
3.1. Tensile Strength
3.1.1. Tensile Strength of Reinforced PU Foam with FSC and FS at Different Concentrations
3.1.2. Comparison of the Tensile Strength between FSC and FS
3.2. Hardness Assessment
3.2.1. Hardness of Reinforced PU Foam with FSC and FS at Different Concentrations
3.2.2. Comparison of the Hardness between FSC and FS
3.3. Density
3.3.1. Density of Reinforced PU Foam with FSC and FS at Different Concentrations
3.3.2. Comparison of the Density between FSC and FS
3.4. FTIR Spectrum of Reinforced PU Foam
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, A.; Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Islam, M.R.; Beg, M.D.H.; Jamari, S.S. Development of vegetable-oil-based polymers. J. Appl. Polym. Sci. 2014, 131, 1–13. [Google Scholar] [CrossRef]
- Delebecq, E.; Pascault, J.-P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118. [Google Scholar] [CrossRef] [PubMed]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Kremensas, A. Bio-based polyurethane composite foams with improved mechanical, thermal, and antibacterial properties. Materials 2020, 13, 1108. [Google Scholar] [CrossRef] [PubMed]
- Quinteiro, P.; Gama, N.V.; Ferreira, A.; Dias, A.C.; Barros-Timmons, A. Environmental assessment of different strategies to produce rigid polyurethane foams using unrefined crude glycerol. J. Clean. Prod. 2022, 371, 133554. [Google Scholar] [CrossRef]
- Alyamaç, E.; Teke, E.; Kuru, C.İ.; Seydibeyoğlu, M.Ö. Novel polyurethane foams with titanium powder and collagen for medical uses. Polym. Polym. Compos. 2022, 30, 09673911221082348. [Google Scholar] [CrossRef]
- Agrawal, A.; Kaur, R.; Walia, R. PU foam derived from renewable sources: Perspective on properties enhancement: An overview. Eur. Polym. J. 2017, 95, 255–274. [Google Scholar] [CrossRef]
- Kreye, O.; Mutlu, H.; Meier, M.A. Sustainable routes to polyurethane precursors. Green Chem. 2013, 15, 1431–1455. [Google Scholar] [CrossRef]
- Ionescu, M.; Radojčić, D.; Wan, X.; Shrestha, M.L.; Petrović, Z.S.; Upshaw, T.A. Highly functional polyols from castor oil for rigid polyurethanes. Eur. Polym. J. 2016, 84, 736–749. [Google Scholar] [CrossRef]
- Fourati, Y.; Hassen, R.B.; Bayramoğlu, G.; Boufi, S. A one step route synthesis of polyurethane newtwork from epoxidized rapeseed oil. Prog. Org. Coat. 2017, 105, 48–55. [Google Scholar] [CrossRef]
- Prociak, A.; Szczepkowski, L.; Ryszkowska, J.; Kurańska, M.; Auguścik, M.; Malewska, E.; Gloc, M.; Michałowski, S. Influence of chemical structure of petrochemical polyol on properties of bio-polyurethane foams. J. Polym. Environ. 2019, 27, 2360–2368. [Google Scholar] [CrossRef]
- Kaikade, D.S.; Sabnis, A.S. Polyurethane foams from vegetable oil-based polyols: A review. Polym. Bull. 2023, 80, 2239–2261. [Google Scholar] [CrossRef] [PubMed]
- Barczewski, M.; Kurańska, M.; Sałasińska, K.; Michałowski, S.; Prociak, A.; Uram, K.; Lewandowski, K. Rigid polyurethane foams modified with thermoset polyester-glass fiber composite waste. Polym. Test. 2020, 81, 106190. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, Y.; Chang, C.; Luo, X.; Li, Y. Thermal, mechanical, and morphological properties of rigid crude glycerol-based polyurethane foams reinforced with nanoclay and microcrystalline cellulose. Eur. J. Lipid Sci. Technol. 2018, 120, 1700413. [Google Scholar] [CrossRef]
- Guo, Z.; Yan, N.; Lapkin, A.A. Towards circular economy: Integration of bio-waste into chemical supply chain. Curr. Opin. Chem. Eng. 2019, 26, 148–156. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Adamus-Włodarczyk, A.; Kairytė, A.; Vaitkus, S. Composites of rigid polyurethane foams reinforced with POSS. Polymers 2019, 11, 336. [Google Scholar] [CrossRef]
- Sung, G.; Kim, J.H. Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Compos. Sci. Technol. 2017, 146, 147–154. [Google Scholar] [CrossRef]
- Strąkowska, A.; Członka, S.; Strzelec, K. POSS compounds as modifiers for rigid polyurethane foams (Composites). Polymers 2019, 11, 1092. [Google Scholar] [CrossRef]
- Husainie, S.M.; Deng, X.; Ghalia, M.A.; Robinson, J.; Naguib, H.E. Natural fillers as reinforcement for closed-molded polyurethane foam plaques: Mechanical, morphological, and thermal properties. Mater. Today Commun. 2021, 27, 102187. [Google Scholar] [CrossRef]
- Mistry, M.; Prajapati, V.; Dholakiya, B.Z. Redefining Construction: An In-Depth Review of Sustainable Polyurethane Applications. J. Polym. Environ. 2024, 32, 3448–3489. [Google Scholar] [CrossRef]
- Zhou, X.; Sain, M.M.; Oksman, K. Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Compos. Part A Appl. Sci. Manuf. 2016, 83, 56–62. [Google Scholar] [CrossRef]
- Paberza, A.; Cabulis, U.; Arshanitsa, A. Wheat straw lignin as filler for rigid polyurethane foams on the basis of tall oil amide. Polimery 2014, 59, 477–481. [Google Scholar] [CrossRef]
- Lizundia, E.; Luzi, F.; Puglia, D. Organic waste valorisation towards circular and sustainable biocomposites. Green Chem. 2022, 24, 5429–5459. [Google Scholar] [CrossRef]
- Rudovica, V.; Rotter, A.; Gaudêncio, S.P.; Novoveská, L.; Akgül, F.; Akslen-Hoel, L.K.; Alexandrino, D.A.; Anne, O.; Arbidans, L.; Atanassova, M.; et al. Valorization of marine waste: Use of industrial by-products and beach wrack towards the production of high added-value products. Front. Mar. Sci. 2021, 8, 723333. [Google Scholar] [CrossRef]
- Thomas, J.; Patil, R. Enabling green manufacture of polymer products via vegetable oil epoxides. Ind. Eng. Chem. Res. 2023, 62, 1725–1735. [Google Scholar] [CrossRef]
- Rawat, P.; Zhu, D.; Rahman, M.Z.; Barthelat, F. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review. Acta Biomater. 2021, 121, 41–67. [Google Scholar] [CrossRef]
- Zieleniewska, M.; Leszczyński, M.K.; Szczepkowski, L.; Bryśkiewicz, A.; Krzyżowska, M.; Bień, K.; Ryszkowska, J. Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste. Polym. Degrad. Stab. 2016, 132, 78–86. [Google Scholar] [CrossRef]
- Naidoo, D.; Onwubu, S.C.; Mokhothu, T.H.; Mdluli, P.S.; Mishra, A.K. Effect of milled fish scale powder reinforcement on physical properties of ether-based polyurethane foam composite. J. Appl. Polym. Sci. 2023, 140, e54735. [Google Scholar] [CrossRef]
- Ghomi, E.R.; Nourbakhsh, N.; Kenari, M.A.; Zare, M.; Ramakrishna, S. Collagen-based biomaterials for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1986–1999. [Google Scholar] [CrossRef]
- Qin, D.; Bi, S.; You, X.; Wang, M.; Cong, X.; Yuan, C.; Yu, M.; Cheng, X.; Chen, X.-G. Development and application of fish scale wastes as versatile natural biomaterials. Chem. Eng. J. 2022, 428, 131102. [Google Scholar] [CrossRef]
- Standard Test Method for Rubber Property—Durometer Hardness, ASTM International, 2017. Available online: https://www.plantech.com/wp-content/uploads/2017/05/ASTM-D2240-Durometer-Hardness.pdf (accessed on 18 September 2024).
- Naidoo, D.; Onwubu, S.; Mokhothu, T.; Mdluli, P.; Makgobole, M.; Mishra, A. Effectiveness of Fish Scale-Derived Collagen as an Alternative Filler Material in the Fabrication of Polyurethane Foam Composites. Adv. Polym. Technol. 2024, 2024, 1723927. [Google Scholar] [CrossRef]
- Onwubu, S.; Naidoo, D.; Obiechefu, Z.; Mokhothu, T.; Mdluli, P.; Mishra, A. Enhancing Mechanical and Thermal Properties of Epoxy Composites with Fish Scale-Derived Collagen Reinforcement. Adv. Polym. Technol. 2024, 2024, 8890654. [Google Scholar]
- Kuciel, S.; Mazur, K.; Jakubowska, P. Novel biorenewable composites based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with natural fillers. J. Polym. Environ. 2019, 27, 803–815. [Google Scholar] [CrossRef]
- Ali, M. Thermosetting polymer composites: Manufacturing and properties study. Rev. Adv. Mater. Sci. 2023, 62, 20230126. [Google Scholar] [CrossRef]
- Grezzana, G.; Loh, H.-C.; Qin, Z.; Buehler, M.J.; Masic, A.; Libonati, F. Probing the Role of Bone Lamellar Patterns through Collagen Microarchitecture Mapping, Numerical Modeling, and 3D-Printing. Adv. Eng. Mater. 2020, 22, 2000387. [Google Scholar] [CrossRef]
Materials | Sample Groups by Weight % | |||||
---|---|---|---|---|---|---|
Std | Std + 0.5 g Fish Scale Powder | Std + 1.0 g Fish Scale Powder | Std +2.5 Collagen Powder | Std + 5.0 g Collagen Powder | Std + 10 g Collagen Powder | |
POLYOL-1906 | 170.01 | 170.01 | 170.01 | 170.01 | 170.01 | 170.01 |
TDI-T80 | 123.79 | 123.79 | 123.79 | 123.79 | 123.79 | 123.79 |
WATER | 9.81 | 9.81 | 9.81 | 9.81 | 9.81 | 9.81 |
CATALYSTMIX-TIN/MESAMOL | 2.75 | 2.75 | 2.75 | 2.75 | 2.75 | 2.75 |
AMINE MIX-1906/B18 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 |
SILICONE-L620 | 3.11 | 3.11 | 3.11 | 3.11 | 3.11 | 3.11 |
BLOWING AGENT-METHYL CHLORIDE | 29.01 | 29.01 | 29.01 | 29.01 | 29.01 | 29.01 |
COLOR STABILIZER-CS-15 | 3.01 | 3.01 | 3.01 | 3.01 | 3.01 | 3.01 |
FILLER-KULU POWDER | 50.01 | 50.01 | 50.01 | 50.01 | 50.01 | 50.01 |
FISH SCALE POWDER | 0 | 0.5 | 1 | |||
COLLAGEN POWDER | 0 | 2.5 | 5 | 10 |
Tensile Strength | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | p-Value | Bonferroni Test | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Neat | 3 | 47.4333 | 6.53957 | 3.77563 | 31.1881 | 63.6785 | 0.030 | 0.242 a,b |
FS | 6 | 59.4833 | 8.53109 | 3.48280 | 50.5305 | 68.4362 | 0.702 b,c | |
FSC | 9 | 65.4289 | 9.95256 | 3.31752 | 57.7787 | 73.0791 | 0.029 a,c |
Hardness | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | p-Value | Bonferroni Test | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Neat | 3 | 3.2700 | 0.40596 | 0.23438 | 2.2616 | 4.2784 | <0.001 | 0.003 a,b |
FS | 6 | 2.3300 | 0.15505 | 0.06330 | 2.1673 | 2.4927 | <0.001 b,c | |
FSC | 9 | 4.2511 | 0.38166 | 0.12722 | 3.9577 | 4.5445 | 0.001 a,c |
Density | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | p-Value | Post Hoc | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Neat | 3 | 17.0333 | 0.22502 | 0.12991 | 16.4744 | 17.5923 | <0.001 | 1.000 |
FS | 6 | 16.5767 | 0.41089 | 0.16774 | 16.1455 | 17.0079 | <0.001 | |
FSC | 12 | 19.4017 | 0.99394 | 0.28693 | 18.7701 | 20.0332 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obiechefu, Z.; Onwubu, S.C.; Naidoo, D.; Mokhothu, T.H.; Mdluli, P.S. Comparison of Biowaste Fillers Extracted from Fish Scales and Collagen on the Mechanical Properties of High-Density Polyurethane Foams. Polymers 2024, 16, 2825. https://doi.org/10.3390/polym16192825
Obiechefu Z, Onwubu SC, Naidoo D, Mokhothu TH, Mdluli PS. Comparison of Biowaste Fillers Extracted from Fish Scales and Collagen on the Mechanical Properties of High-Density Polyurethane Foams. Polymers. 2024; 16(19):2825. https://doi.org/10.3390/polym16192825
Chicago/Turabian StyleObiechefu, Zodidi, Stanley Chibuzor Onwubu, Deneshree Naidoo, Thabang Hendrica Mokhothu, and Phumlane Selby Mdluli. 2024. "Comparison of Biowaste Fillers Extracted from Fish Scales and Collagen on the Mechanical Properties of High-Density Polyurethane Foams" Polymers 16, no. 19: 2825. https://doi.org/10.3390/polym16192825
APA StyleObiechefu, Z., Onwubu, S. C., Naidoo, D., Mokhothu, T. H., & Mdluli, P. S. (2024). Comparison of Biowaste Fillers Extracted from Fish Scales and Collagen on the Mechanical Properties of High-Density Polyurethane Foams. Polymers, 16(19), 2825. https://doi.org/10.3390/polym16192825