Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates
Abstract
:1. Introduction
2. Specimen Preparation and Experimental Design
2.1. FMLs Specimen Preparation
2.2. Low-Velocity Impact and Damage Assessment
3. Finite Element Modeling
3.1. Metal Layer Damage Model
3.2. Fiber/Epoxy Layer Damage Model
3.3. Interlayer Damage Model
3.4. Finite Element Model
4. Results and Discussion
4.1. Low-Velocity Impact Behavior of FMLs
4.2. Comparison of Finite Element Analysis with Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogelesang, L.B.; Vlot, A. Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process Technol. 2000, 103, 1–5. [Google Scholar] [CrossRef]
- Chai, G.B.; Manikandan, P. Low velocity impact response of fibre-metal laminates—A review. Compos. Struct. 2014, 107, 363–381. [Google Scholar] [CrossRef]
- Morinière, F.; Alderliesten, R.; Sadighi, M.; Benedictus, R. An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate. Compos. Struct. 2013, 100, 89–103. [Google Scholar] [CrossRef]
- Heggemann, T.; Homberg, W. Deep drawing of fiber metal laminates for automotive lightweight structures. Compos. Struct. 2019, 216, 53–57. [Google Scholar] [CrossRef]
- Ahmed, A.; Wei, L. The Low-velocity Impact Damage resistance of the Composite Structures—A Review. Rev. Adv. Mater. Sci. 2015, 40, 127–145. [Google Scholar]
- Vlot, A. Impact loading on fibre metal laminates. Int. J. Impact. Eng. 1996, 18, 291–307. [Google Scholar] [CrossRef]
- Vlot, A.; Kroon, E.; La Rocca, G. Impact Response of Fiber Metal Laminates. Key. Eng. Mater. 1997, 141–143, 235–276. [Google Scholar] [CrossRef]
- Zhou, J.J.; Wen, P.H.; Wang, S.N. Numerical investigation on the repeated low-velocity impact behavior of composite laminates-ScienceDirect. Compos. B Eng. 2020, 185, 107771. [Google Scholar] [CrossRef]
- He, W.T.; Wang, L.F.; Liu, H.C.; Wang, C.Z.; Yao, L.; Li, Q.; Sun, G.Y. On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review. Thin-Wall. Struct. 2021, 167, 108026. [Google Scholar] [CrossRef]
- Zhou, J.J.; Wen, P.H.; Wang, S.N. Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact. Compos. Struct. 2019, 225, 111113. [Google Scholar] [CrossRef]
- Murat, D.; Fethi, A.; Tamer, S.; Mohamed, H. Damage analysis of a CFRP cross-ply laminate subjected to abrasive water jet cutting. Alex. Eng. J. 2022, 61, 7669–7684. [Google Scholar]
- Jaroslaw, B.; Barbara, S.; Patryk, J. The comparison of low-velocity impact resistance of aluminum/carbon and glass fiber metal laminates. Polym. Compos. 2016, 37, 1056–1063. [Google Scholar] [CrossRef]
- Yao, L.; Wang, C.Z.; He, W.T.; Lu, S.J.; Xie, D. Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches. Thin-Wall. Struct. 2019, 145, 106399. [Google Scholar] [CrossRef]
- Lee, D.W.; Park, B.J.; Park, S.Y.; Choi, C.H.; Song, J.I. Fabrication of high-stiffness fiber-metal laminates and study of their behavior under low-velocity impact loadings. Compos. Struct. 2018, 189, 61–69. [Google Scholar] [CrossRef]
- Pai, A.; Kini, C.R.; Shenoy, B.S. Experimental and numerical studies of fiber metal laminates comprising ballistic fabrics subjected to shock impact. Compos. Struct. 2022, 297, 115917. [Google Scholar] [CrossRef]
- Hosur, M.V.; Adbullah, M.; Jeelani, S. Studies on the low-velocity impact response of woven hybrid composites. Compos Struct. 2005, 67, 253–262. [Google Scholar] [CrossRef]
- He, F.Z.; Biolzi, L.; Carvelli, V. Effect of fiber hybridization on mechanical properties of concrete. Mater. Struct. 2022, 55, 73–85. [Google Scholar] [CrossRef]
- Liao, W.B.; Wu, P.Z.; Huang, J.T.; Chen, C.; Lin, J.X.; Guo, Y.C. Cost-Effective engineered cementitious composites with hybrid PVA and basalt/PP fiber: A study on compressive, tensile and impact performance. Materials 2023, 16, 5172. [Google Scholar] [CrossRef]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review. Compos. A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Nunna, S.; Chandra, R.P.; Shrivastava, S.; Jalan, A.K. A review on mechanical behavior of natural fiber based hybrid composites. J. Reinf. Plast. Compos. 2012, 31, 759–769. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillo, J.; Valente, M.; Ferrante, L.; Cioffi, S. Hybrid composites based on aramid and basalt woven fabrics: Impact damage modes and residual flexural properties. Mater. Des. 2013, 49, 290–302. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillo, J.; Ferrante, L.; Valente, M.; Valente, T. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos. B Eng. 2014, 59, 204–220. [Google Scholar] [CrossRef]
- Megeri, S.; Naik, G.N. Numerical studies of the low velocity impact behaviour on hybrid fiber metal laminates. Mater. Today Proc. 2021, 44, 1860–1864. [Google Scholar] [CrossRef]
- Kazemi, M.E.; Bodaghi, M.; Shanmugam, L.; Fotouhi, M.; Yang, J. Developing thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: Low-velocity impact analyses. Compos. A Appl. S. 2021, 149, 106552. [Google Scholar] [CrossRef]
- Hussain, M.; Imad, A.; Nawab, Y.; Saouab, A.; Herbelot, C.; Kanit, T. Effect of matrix and hybrid reinforcement on fibre metal laminates under low-velocity impact loading. Compos. Struct. 2022, 288, 115371. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Ma, Q.Y.; Dai, Y.; Hu, F.P.; Wei, G.B.; Xu, T.C.; Zeng, Q.W. Effect of surface treatment on the corrosion properties of magnesium-based fiber metal laminate. Appl. Surf. Sci. 2017, 396, 1264–1272. [Google Scholar] [CrossRef]
- ASTM D7136/D7136M; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM: West Conshohocken, PA, USA, 2015.
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Feng, F.; Huang, S.Y.; Meng, Z.H.; Hu, J.H.; Lei, Y.; Zhou, M.C.; Yang, Z.Z. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state. Mater. Sci. Eng. A 2014, 594, 334–343. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Hashin, Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Kim, C.H. The Yeh-Stratton criterion for composite materials. J. Compos. Mater. 1994, 28, 926–939. [Google Scholar] [CrossRef]
- Tserpes, K.I.; Labeas, G.; Papanikos, P.; Kermanidis, T.H. Strength prediction of bolted joints in graphite/epoxy composite laminates. Compos. B Eng. 2002, 33, 521–529. [Google Scholar] [CrossRef]
- Huang, C.H.; Lee, Y.J. Experiments and simulation of the static contact crush of composite laminated plates. Compos. Struct. 2003, 61, 265–270. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Sugiman, S.; Crocombe, A.D.; Katnam, K.B. Investigating the static response of hybrid fibre-metal laminate doublers loaded in tension. Compos. B Eng. 2011, 42, 1867–1884. [Google Scholar] [CrossRef]
- Parnanent, T.; Alderliesten, R.; Rans, C.; Brander, T.; Saarela, O. Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates-An experimental impact research. Compos. A Appl. Sci. Manuf. 2012, 43, 1578–1586. [Google Scholar] [CrossRef]
Specimen Codes | Incident Energy | Ply Sequence | |
---|---|---|---|
FMLs-C | FMLs-C1 | 40 J | Mg/C/C/C/Mg/C/C/C/Mg |
FMLs-C2 | 60 J | Mg/C/C/C/Mg/C/C/C/Mg | |
FMLs-C3 | 80 J | Mg/C/C/C/Mg/C/C/C/Mg | |
FMLs-H | FMLs-H1 | 40 J | Mg/C/G/C/Mg/C/G/C/Mg |
FMLs-H2 | 60 J | Mg/C/G/C/Mg/C/G/C/Mg | |
FMLs-H3 | 80 J | Mg/C/G/C/Mg/C/G/C/Mg |
n | C | m | ||
---|---|---|---|---|
172 | 360.73 | 0.45592 | 0.092 | 0.95 |
−0.35 | 0.6025 | −0.4537 | 0.206 | 7.2 |
Mechanical Property | Carbon Fiber | Glass Fiber |
---|---|---|
(MPa) | 2093 | 567 |
(MPa) | 870 | 241 |
(MPa) | 50 | 21 |
(MPa) | 198 | 83 |
(GPa) | 128 | 45.6 |
(GPa) | 8.7 | 8.2 |
(GPa) | 4.0 | 5.8 |
(MPa) | 104 | 65.2 |
(MPa) | 86 | 42 |
0.3 | 0.3 |
Failure Mode | Material Property Degradation Rules | |
---|---|---|
Fiber | Tensile failure | |
Compressive failure | ||
Matrix | Tensile failure | |
Compressive failure |
2000 | 750 | 750 | 65 | 38 | 38 | 2 | 4 | 4 | 980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Sheng, D.; Lin, Z.; Fei, P. Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates. Polymers 2024, 16, 173. https://doi.org/10.3390/polym16020173
Fang Y, Sheng D, Lin Z, Fei P. Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates. Polymers. 2024; 16(2):173. https://doi.org/10.3390/polym16020173
Chicago/Turabian StyleFang, Yuting, Dongfa Sheng, Zhongzhao Lin, and Peng Fei. 2024. "Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates" Polymers 16, no. 2: 173. https://doi.org/10.3390/polym16020173
APA StyleFang, Y., Sheng, D., Lin, Z., & Fei, P. (2024). Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates. Polymers, 16(2), 173. https://doi.org/10.3390/polym16020173