Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparations
2.2. Synthesis of Zn-Based MOF [Zn2(L)2(1,2-Bis(4-pyridyl)ethene)4]n
2.3. Computational Methodology
2.4. Photocatalytic Oxidation Studies
2.5. Fabrication and Characterization
3. Results
3.1. Material Synthesis of Laser-Driven ZnMOF and Characterization
3.2. Photophysical Properties
3.3. N2 Gas Adsorption
3.4. Pb Ion Uptake Experiments
3.5. Photocatalytic Oxidative Degradation of MB with ZnMOF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Z.; Yang, D.H.; Xu, J.; Hu, T.L.; Bu, X.H. Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Adv. Mater. 2015, 27, 5432–5441. [Google Scholar] [CrossRef] [PubMed]
- Nalaparaju, A.; Jiang, J. Metal−Organic Frameworks for Liquid Phase Applications. Adv. Sci. 2021, 8, 2003143. [Google Scholar] [CrossRef] [PubMed]
- Rogge, S.M.J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A.I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; et al. Metal−Organic and Covalent Organic Frameworks as Single-Site Catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, X.Q.; Jiang, H.L.; Sun, L.B. Metal−Organic Frameworks for Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117, 8129–8176. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhou, W.; Qian, G.; Chen, B. Methane Storage in Metal−Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678. [Google Scholar] [CrossRef] [PubMed]
- Van De Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive Separation on Metal−Organic Frameworks in the Liquid Phase. Chem. Soc. Rev. 2014, 43, 5766–5788. [Google Scholar] [CrossRef]
- Falcaro, P.; Ricco, R.; Doherty, C.M.; Liang, K.; Hill, A.J.; Styles, M.J. MOF Positioning Technology and Device Fabrication. Chem. Soc. Rev. 2014, 43, 5513–5560. [Google Scholar] [CrossRef]
- Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An Updated Roadmap for the Integration of Metal−Organic Frameworks with Electronic Devices and Chemical Sensors. Chem. Soc. Rev. 2017, 46, 3185–3241. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morri, R.E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef]
- Freund, R.; Lächelt, U.; Gruber, T.; Rühle, B.; Wuttke, S. Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials. ACS Nano 2018, 12, 2094–2105. [Google Scholar] [CrossRef]
- Chen, W.; Wu, C. Synthesis, Functionalization, and Applications of Metal−Organic Frameworks in Biomedicine. Dalton Trans. 2018, 47, 2114–2133. [Google Scholar] [CrossRef] [PubMed]
- Simon-Yarza, T.; Giménez-Marqués, M.; Mrimi, R.; Mielcarek, A.; Gref, R.; Horcajada, P.; Serre, C.; Couvreur, P. A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angew. Chem.-Int. Ed. 2017, 56, 15565–15569. [Google Scholar] [CrossRef]
- Illes, B.; Wuttke, S.; Engelke, H. Liposome-Coated Iron Fumarate Metal−Organic Framework Nanoparticles for Combination Therapy. Nanomaterials 2017, 7, 351. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; He, C.; Lin, W. Nanoscale Metal−Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715. [Google Scholar] [CrossRef] [PubMed]
- Alsaiari, S.K.; Patil, S.; Alyami, M.; Alamoudi, K.O.; Aleisa, F.A.; Merzaban, J.S.; Li, M.; Khashab, N.M. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework. J. Am. Chem. Soc. 2018, 140, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.P.; Wang, C.C.; Zhang, Y.W.; Wang, P.; Li, R. Photocatalytic Degradation of Methylene Blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Li, J.R.; Sculley, J.; Zhou, H.C. Metal−Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Li, S.H.; Ma, L.F.; Geng, J.L.; Wang, L.Y. Syntheses, Crystal Structures, and Magnetic Studies of Two Cobalt(II) Coordination Polymers Based on Concurrent Ligand Extension. Inorg. Chem. Commun. 2015, 62, 42–46. [Google Scholar] [CrossRef]
- Wang, H.; Meng, W.; Wu, J.; Ding, J.; Hou, H.; Fan, Y. Crystalline Central-Metal Transformation in Metal−Organic Frameworks. Coord. Chem. Rev. 2016, 307, 130–146. [Google Scholar] [CrossRef]
- Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. Efficient Hydrogen Production and Photocatalytic Reduction of Nitrobenzene over a Visible-Light-Responsive Metal−Organic Framework Photocatalyst. Catal. Sci. Technol. 2013, 3, 2092–2097. [Google Scholar] [CrossRef]
- Yang, H.; He, X.W.; Wang, F.; Kang, Y.; Zhang, J. Doping Copper into ZIF-67 for Enhancing Gas Uptake Capacity and Visible-Light-Driven Photocatalytic Degradation of Organic Dye. J. Mater. Chem. 2012, 22, 21849–21851. [Google Scholar] [CrossRef]
- Janiak, C.; Vieth, J.K. MOFs, MILs and More: Concepts, Properties and Applications for Porous Coordination Networks (PCNs). New J. Chem. 2010, 34, 2366–2388. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B. The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules 2020, 25, 4984. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.; Chen, S.; Zhang, Y.; Meng, F.; Guo, P.; Chen, H.; Liu, X. Fluorescence Polarization Technique: A New Method for Vegetable Oils Classification. Anal. Methods 2015, 7, 5175–5179. [Google Scholar] [CrossRef]
- Liu, J.Q.; Luo, Z.D.; Pan, Y.; Kumar Singh, A.; Trivedi, M.; Kumar, A. Recent Developments in Luminescent Coordination Polymers: Designing Strategies, Sensing Application and Theoretical Evidences. Coord. Chem. Rev. 2020, 406, 213145. [Google Scholar] [CrossRef]
- Mutlu, S.; Watanabe, K.; Takahara, S.; Arsu, N. Thioxanthone–Anthracene-9-Carboxylic Acid as Radical Photoinitiator in the Presence of Atmospheric Air. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1878–1883. [Google Scholar] [CrossRef]
- Wibowo, A.; Marsudi, M.A.; Pramono, E.; Belva, J.; Parmita, A.W.Y.P.; Patah, A.; Eddy, D.R.; Aimon, A.H.; Ramelan, A. Recent Improvement Strategies on Metal−Organic Frameworks as Adsorbent, Catalyst, and Membrane for Wastewater Treatment. Molecules 2021, 26, 5261. [Google Scholar] [CrossRef]
- Abd El Khalk, A.A.; Betiha, M.A.; Mansour, A.S.; Abd El Wahed, M.G.; Al-Sabagh, A.M. High Degradation of Methylene Blue Using a New Nanocomposite Based on Zeolitic Imidazolate Framework-8. ACS Omega 2021, 6, 26210–26220. [Google Scholar] [CrossRef]
- Ozer, D.; Tunca, E.T. Design and Construction of MOF Nanomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2022; ISBN 9780323911795. [Google Scholar]
- Abuzalat, O.; Wong, D.; Elsayed, M.; Park, S.; Kim, S. Sonochemical Fabrication of Cu(II) and Zn(II) Metal−Organic Framework Films on Metal Substrates. Ultrason. Sonochemistry 2018, 45, 180–188. [Google Scholar] [CrossRef]
- Farrusseng, D.; Aguado, S.; Pinel, C. Metal−Organic Frameworks: Opportunities for Catalysis. Angew. Chem.-Int. Ed. 2009, 48, 7502–7513. [Google Scholar] [CrossRef]
- Guo, S.; Gao, M.; Zhang, W.; Liu, F.; Guo, X.; Zhou, K. Recent Advances in Laser-Induced Synthesis of MOF Derivatives. Adv. Mater. 2023, 2303065. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Liu, X.; Deng, B.; Jiang, H.; Cheng, G.J. Liquid Metal Nanolayer-Linked MOF Nanocomposites by Laser Shock Evaporation. Matter 2021, 4, 3977–3990. [Google Scholar] [CrossRef]
- Van Lam, D.; Nguyen, U.N.T.; Roh, E.; Choi, W.; Kim, J.H.; Kim, H.; Lee, S.M. Graphitic Carbon with MnO/Mn7C3 Prepared by Laser-Scribing of MOF for Versatile Supercapacitor Electrodes. Small 2021, 17, 2100670. [Google Scholar] [CrossRef]
- Beckham, J.L.; Li, J.T.; Stanford, M.G.; Chen, W.; McHugh, E.A.; Advincula, P.A.; Wyss, K.M.; Chyan, Y.; Boldman, W.L.; Rack, P.D.; et al. High-Resolution Laser-Induced Graphene from Photoresist. ACS Nano 2021, 15, 8976–8983. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Salvatierra, R.V.; Ren, M.; Chen, J.; Stanford, M.G.; Tour, J.M. Laser-Induced Silicon Oxide for Anode-Free Lithium Metal Batteries. Adv. Mater. 2020, 32, 2002850. [Google Scholar] [CrossRef]
- Jiang, H.; Jin, S.; Wang, C.; Ma, R.; Song, Y.; Gao, M.; Liu, X.; Shen, A.; Cheng, G.J.; Deng, H. Nanoscale Laser Metallurgy and Patterning in Air Using MOFs. J. Am. Chem. Soc. 2019, 141, 5481–5489. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Saha, U.; Biswas, S.; ALOthman, Z.A.; Islam, M.A.; Dolai, M. Anthracene-Triazole-Dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind. Eng. Chem. Res. 2022, 61, 175–186. [Google Scholar] [CrossRef]
- Jung, J.Y.; Park, J.H.; Jeong, Y.J.; Yang, K.H.; Choi, N.K.; Kim, S.H.; Kim, W.J. Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts. Korean J. Physiol. Pharmacol. 2006, 10, 289–295. [Google Scholar]
- Chu, C.H.; Leung, C.W. The Convolution Equation of Choquet and Deny on [IN]-Groups. Integral Equ. Oper. Theory 2001, 40, 391–402. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Vargas-Hernández, R.A. Bayesian Optimization for Calibrating and Selecting Hybrid-Density Functional Models. J. Phys. Chem. A 2020, 124, 4053–4061. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I.C.; Angyán, J.G. Screened Hybrid Density Functionals Applied to Solids. J. Chem. Phys. 2006, 124, 154709. [Google Scholar] [CrossRef] [PubMed]
- Pack, J.D.; Monkhorst, H.J. “special Points for Brillouin-Zone Integrations”—A Reply. Phys. Rev. B 1977, 16, 1748–1749. [Google Scholar] [CrossRef]
- Adolph, B.; Gavrilenko, V.; Tenelsen, K.; Bechstedt, F.; Del Sole, R. Nonlocality and Many-Body Effects in the Optical Properties of Semiconductors. Phys. Rev. B-Condens. Matter Mater. Phys. 1996, 53, 9797–9808. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Sun, Q. Rapid and Selective Adsorption of Cationic Dyes by a Unique Metal-Organic Framework with Decorated Pore Surface. Appl. Surf. Sci. 2018, 440, 1219–1226. [Google Scholar] [CrossRef]
- Kazancioglu, E.O.; Aydin, M.; Arsu, N. Photochemical Synthesis of Nanocomposite Thin Films Containing Silver and Gold Nanoparticles with 2-Thioxanthone Thioacetic Acid-Dioxide and Their Role in Photocatalytic Degradation of Methylene Blue. Surf. Interfaces 2021, 22, 100793. [Google Scholar] [CrossRef]
- Ataei, F.; Dorranian, D.; Motakef-Kazemi, N. Synthesis of MOF-5 Nanostructures by Laser Ablation Method in Liquid and Evaluation of Its Properties. J. Mater. Sci. Mater. Electron. 2021, 32, 3819–3833. [Google Scholar] [CrossRef]
- Govindaraju, S.; Arumugasamy, S.K.; Chellasamy, G.; Yun, K. Zn-MOF Decorated Bio Activated Carbon for Photocatalytic Degradation, Oxygen Evolution and Reduction Catalysis. J. Hazard. Mater. 2022, 421, 126720. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.K.; Bae, J.; Kim, S.; Kim, K.S. Fabrication of Zn-MOF/ZnO Nanocomposites for Room Temperature H2S Removal: Adsorption, Regeneration, and Mechanism. Chemosphere 2021, 274, 129789. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Hou, J.; Ma, Y.; Li, H.; Zhai, T. Multi-Heteroatom Self-Doped Porous Carbon Derived from Swim Bladders for Large Capacitance Supercapacitors. J. Mater. Chem. A 2016, 4, 15006–15014. [Google Scholar] [CrossRef]
- Ploychompoo, S.; Liang, Q.; Zhou, X.; Wei, C.; Luo, H. Fabrication of Zn-MOF-74/Polyacrylamide Coated with Reduced Graphene Oxide (Zn-MOF-74/RGO/PAM) for As(III) Removal. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 125, 114377. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, X.; Xu, P.; Sun, J. Dual Hydrogen-Bond Donor Group-Containing Zn-MOF for the Highly Effective Coupling of CO2 and Epoxides under Mild and Solvent-Free Conditions. Inorg. Chem. Front. 2020, 7, 1995–2005. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, Y.; Zhang, J.; Zhao, D.; Lu, Y.; Shen, D.; Fan, X. Electrical and Structural Properties of P-Type ZnO:N Thin Films Prepared by Plasma Enhanced Chemical Vapour Deposition. Semicond. Sci. Technol. 2005, 20, 796–800. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Zhao, S.; Serdechnova, M.; Blawert, C.; Wang, H.; Zheludkevich, M.L.; Chen, F. Double-Ligand Strategy to Construct an Inhibitor-Loaded Zn-MOF and Its Corrosion Protection Ability for Aluminum Alloy 2A12. ACS Appl. Mater. Interfaces 2021, 13, 51685–51694. [Google Scholar] [CrossRef]
- Haider, M.B. XPS Depth Profile Analysis of Zn3N2 Thin Films Grown at Different N2/Ar Gas Flow Rates by RF Magnetron Sputtering. Nanoscale Res. Lett. 2017, 12, 5. [Google Scholar] [CrossRef]
- Dementjev, A.; de Graaf, A.; van de Sanden, M.C.; Maslakov, K.; Naumkin, A.; Serov, A. X-Ray Photoelectron Spectroscopy Reference Data for Identification of the C3N4 Phase in Carbon–Nitrogen Films. Diam. Relat. Mater. 2000, 9, 1904–1907. [Google Scholar] [CrossRef]
- Feng, D.M.; Sun, Y.; Yuan, Z.Y.; Fu, Y.; Jia, B.; Li, H.; Ma, T. Ampoule Method Fabricated Sulfur Vacancy-Rich N-Doped ZnS Electrodes for Ammonia Production in Alkaline Media. Mater. Renew. Sustain. Energy 2021, 10, 8. [Google Scholar] [CrossRef]
- Gangil, S.; Nakamura, A.; Yamamoto, K.; Ohashi, T.; Temmyo, J. Fabrication and EL Emission of ZnO-Based Heterojunction Light-Emitting Devices. J. Korean Phys. Soc. 2008, 53, 212–217. [Google Scholar] [CrossRef]
- Zeraati, M.; Moghaddam-Manesh, M.; Khodamoradi, S.; Hosseinzadegan, S.; Golpayegani, A.; Chauhan, N.P.S.; Sargazi, G. Ultrasonic Assisted Reverse Micelle Synthesis of a Novel Zn-Metal Organic Framework as an Efficient Candidate for Antimicrobial Activities. J. Mol. Struct. 2021, 1247, 131315. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, X.-M.; Zhang, Q.; Jiang, H.-B.; Feng, R. A Luminescent Zn-MOF Exhibiting High Water Stability: Selective Detection of Cr(VI) Ion and Treatment Activity on Sepsis. Des. Monomers Polym. 2021, 24, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Buasakun, J.; Srilaoong, P.; Rattanakam, R.; Duangthongyou, T. Synthesis of Heterostructure of ZnO@MOF-46(Zn) to Improve the Photocatalytic Performance in Methylene Blue Degradation. Crystals 2021, 11, 1379. [Google Scholar] [CrossRef]
- Ramish, S.M.; Ghorbani-Choghamarani, A.; Mohammadi, M. Microporous Hierarchically Zn-MOF as an Efficient Catalyst for the Hantzsch Synthesis of Polyhydroquinolines. Sci. Rep. 2022, 12, 1479. [Google Scholar] [CrossRef] [PubMed]
- Rahvar, Y.; Motakef-Kazemi, N.; Doust, R.H. Synthesis of Zn2(BDC)2(DABCO) MOF by Solution and Solvothermal Methods and Evaluation of Its Anti-Bacterial. Nanomed. Res. J. 2021, 6, 360–368. [Google Scholar] [CrossRef]
- Liang, Z.; Qu, C.; Guo, W.; Zou, R.; Xu, Q. Pristine Metal–Organic Frameworks and Their Composites for Energy Storage and Conversion. Adv. Mater. 2018, 30, 1702891. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Li, Y.; Xu, J.; Li, T.; Zhang, T. In Situ Growth of Ni-MOF Nanorods Array on Ti3C2Tx Nanosheets for Supercapacitive Electrodes. Nanomaterials 2023, 13, 610. [Google Scholar] [CrossRef]
- Gu, Q.; Zhao, Z.H.; Chan, B.; Yan, T.; Zuo, J.L.; D’Alessandro, D.M.; Li, C.H. Efficient Photothermal Energy Conversion Triggered by Near-Infrared Light in a Dithiolene-Based Metal−Organic Framework. ACS Mater. Lett. 2023, 5, 603–607. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, X.; Shao, L.; Li, L.; Liu, Y.; Zhang, X.; Liu, J.; Meng, F.; Fu, Y. An Ultra-High Quantum Yield Tb-MOF with Phenolic Hydroxyl as the Recognition Group for a Highly Selective and Sensitive Detection of Fe3+. J. Mater. Chem. C 2021, 9, 15840–15847. [Google Scholar] [CrossRef]
- Takada, K.; Sakamoto, R.; Yi, S.T.; Katagiri, S.; Kambe, T.; Nishihara, H. Electrochromic Bis(Terpyridine)Metal Complex Nanosheets. J. Am. Chem. Soc. 2015, 137, 4681–4689. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, M.; Yang, F.; Ju, X.; Jia, X. Self-Supported Porous Ni–Fe–W Hydroxide Nanosheets on Carbon Fiber: A Highly Efficient Electrode for Oxygen Evolution Reaction. Inorg. Chem. 2019, 58, 13037–13048. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-J.; Madden, D.G.; Mukherjee, S.; Pham, T.; Forrest, K.A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q.-Y.; Zaworotko, M.J. Synergistic Sorbent Separation for One-Step Ethylene Purification from a Four-Component Mixture. Science 2019, 366, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.S.; Kul, D.; Erdöl, M.; Özdemir, M.; Abbasoǧlu, R. Synthesis of a Novel Crosslinked Superabsorbent Copolymer with Diazacyclooctadecane Crown Ether and Its Sorption Capability. Eur. Polym. J. 2007, 43, 1923–1932. [Google Scholar] [CrossRef]
- Yilmaz, S.S.; Yildirim, N.; Misir, M.; Misirlioglu, Y.; Celik, E. Synthesis, Characterization of a New Polyacrylic Acid Superabsorbent, Some Heavy Metal Ion Sorption, the Adsorption Isotherms, and Quantum Chemical Investigation. Materials 2020, 13, 4390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D.C.W. Treatment of Municipal Solid Waste Incineration Fly Ash: State-of-the-Art Technologies and Future Perspectives. J. Hazard. Mater. 2021, 411, 125132. [Google Scholar] [CrossRef]
- Li, W.T.; Hu, Z.J.; Meng, J.; Zhang, X.; Gao, W.; Chen, M.L.; Wang, J.H. Zn-Based Metal Organic Framework-Covalent Organic Framework Composites for Trace Lead Extraction and Fluorescence Detection of TNP. J. Hazard. Mater. 2021, 411, 125021. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zhou, X.Y.; Zhang, W.M.; Zhao, W.K. Instrument Analysis, 1st ed.; Higher Education Press: Beijing, China, 1990. [Google Scholar]
- He, T.; Zhou, Z.; Xu, W.; Ren, F.; Ma, H.; Wang, J. Preparation and Photocatalysis of TiO2–Fluoropolymer Electrospun Fiber Nanocomposites. Polymer 2009, 50, 3031–3036. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, M.; Zhang, Z.; Liu, C.; Xu, S.; Li, Z. Zinc Phthalocyanine Coupled with UIO-66 (NH2) via a Facile Condensation Process for Enhanced Visible-Light-Driven Photocatalysis. J. Alloys Compd. 2017, 690, 123–130. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, Y.Q.; Zhu, T.; Wang, P.; Gao, S.J. Photocatalytic Degradation of Methylene Blue and Methyl Orange in a Zn(II)-Based Metal–Organic Framework. Desalin. Water Treat. 2016, 57, 17844–17851. [Google Scholar] [CrossRef]
- Hameed, A.; Gombac, V.; Montini, T.; Graziani, M.; Fornasiero, P. Synthesis, Characterization and Photocatalytic Activity of NiO–Bi2O3 Nanocomposites. Chem. Phys. Lett. 2009, 472, 212–216. [Google Scholar] [CrossRef]
- Nasalevich, M.A.; Van Der Veen, M.; Kapteijn, F.; Gascon, J. Metal−Organic Frameworks as Heterogeneous Photocatalysts: Advantages and Challenges. CrystEngComm 2014, 16, 4919–4926. [Google Scholar] [CrossRef]
MOF Name | Synthesis Time (Minutes) | Synthesis Method | References |
---|---|---|---|
Zn(byia) | 2880 | Solvothermal | [65] |
IRMOF-3 | 240 | Autoclave reactor | [66] |
ZnMOF | 1440 | Autoclave reactor | [67] |
Zn2(BDC)2(DABCO) | 300 | Solvothermal | [68] |
MOF-74 | 1440 | Solvothermal | [69] |
NiMOF | 480 | Oven | [70] |
ZnMOF | 70 | Lazer induced | This study |
ϕem[a] | τ/ns [b] | |
---|---|---|
anthracene | 33% | 4.24 |
H2L | 58% | 1.9, 5.8 |
H2L(MOF) | 63% | 1.48, 6.0 |
ZnMOF | 66% | 1.8, 5.7 |
Metal Ion Concentration, qe (mg/g), and A% Values of Pb(II) | |||
---|---|---|---|
C0 (mg/L) | C (mg/L) | qe (mg/g) | %Ads. |
50 | 48.49 | 6.04 | 3.02 |
100 | 90.50 | 38 | 9.5 |
Samples | Percentage of Degradation of MB Dye (1 min) | Percentage of Degradation of MB Dye (60 min) |
---|---|---|
Pure MB | 2.6 | 9.2 |
ZnMOF | 83 | 90.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutlu, S.; Ortaç, B.; Ozbey, D.H.; Durgun, E.; Savaskan Yılmaz, S.; Arsu, N. Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties. Polymers 2024, 16, 217. https://doi.org/10.3390/polym16020217
Mutlu S, Ortaç B, Ozbey DH, Durgun E, Savaskan Yılmaz S, Arsu N. Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties. Polymers. 2024; 16(2):217. https://doi.org/10.3390/polym16020217
Chicago/Turabian StyleMutlu, Saliha, Bülend Ortaç, Dogukan Hazar Ozbey, Engin Durgun, Sevil Savaskan Yılmaz, and Nergis Arsu. 2024. "Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties" Polymers 16, no. 2: 217. https://doi.org/10.3390/polym16020217
APA StyleMutlu, S., Ortaç, B., Ozbey, D. H., Durgun, E., Savaskan Yılmaz, S., & Arsu, N. (2024). Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties. Polymers, 16(2), 217. https://doi.org/10.3390/polym16020217