Enhancing Paper Packaging’s Wet Strength Using the Synergy between Chitosan and Nanofibrillated Cellulose Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.1.1. Preparation of Ammonium-Persulfate-Oxidized NFC
2.1.2. Preparation of the CHIT
2.2. Methods
2.2.1. Fiber Handsheet Preparation
2.2.2. Characterization of the Paper Properties
2.2.3. SEM
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Burst Index
3.2. Tensile Index and Wet Strength
3.3. Stretch
3.4. Cobb
3.5. Air Permeability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Explanations |
RFs | recovered (recycled) paper fibers |
KFs | softwood kraft pulp fibers |
HFs | hemp pulp fibers |
NFC | nanofibrillated cellulose |
CHIT | chitosan additive in 2.5% concentration of paper handsheet |
RF100 | paper handsheet made from recycled paper fibers |
RF75HF25 | paper handsheet made from 75% recycled paper fibers and 25% hemp pulp fibers |
RF75KF25 | paper handsheet made from 75% recycled paper fibers and 25% softwood kraft pulp fibers |
RF50KF50 | paper handsheet made from 50% recycled paper fibers and 50% hemp pulp fibers |
RF50KF25HF25 | paper handsheet made from 50% recycled paper fibers, 25% hemp and 25% softwood kraft pulp fibers |
NFC + CHIT | addition of NFC and chitosan solution to the fiber suspension simultaneously |
1. NFC 2. CHIT | addition of chitosan solution to the fiber suspension after NFC addition |
1. CHIT 2. NFC | addition of chitosan solution to the fiber suspension before NFC addition |
References
- Boz, Z.; Korhonen, V.; Sand, C.K. Consumer Considerations for the Implementation of Sustainable Packaging: A Review. Sustainability 2020, 12, 2192. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, H.; Liu, K.; Du, H.; Liu, Y.; Si, C. Paper-Based Products as Promising Substitutes for Plastics in the Context of Bans on Non-Biodegradables. BioResources 2020, 15, 7309–7312. [Google Scholar] [CrossRef]
- Debnath, M.; Sarder, R.; Pal, L.; Hubbe, M.A. Molded Pulp Products for Sustainable Packaging: Production Rate Challenges and Product Opportunities. BioResources 2022, 17, 3810–3870. [Google Scholar] [CrossRef]
- Wang, W.; Gu, F.; Deng, Z.; Zhu, Y.; Zhu, J.; Guo, T.; Song, J.; Xiao, H. Multilayer Surface Construction for Enhancing Barrier Properties of Cellulose-Based Packaging. Carbohydr. Polym. 2021, 255, 117431. [Google Scholar] [CrossRef]
- Tambe, C.; Graiver, D.; Narayan, R. Moisture Resistance Coating of Packaging Paper from Biobased Silylated Soybean Oil. Prog. Org. Coatings 2016, 101, 270–278. [Google Scholar] [CrossRef]
- Francolini, I.; Galantini, L.; Rea, F.; Di Cosimo, C.; Di Cosimo, P. Polymeric Wet-Strength Agents in the Paper Industry: An Overview of Mechanisms and Current Challenges. Int. J. Mol. Sci. 2023, 24, 9268. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Panjagari, N.R.; Alam, T. An Overview of Paper and Paper Based Food Packaging Materials: Health Safety and Environmental Concerns. J. Food Sci. Technol. 2019, 56, 4391–4403. [Google Scholar] [CrossRef]
- Ibrahim, I.D.; Hamam, Y.; Sadiku, E.R.; Ndambuki, J.M.; Kupolati, W.K.; Jamiru, T.; Eze, A.A.; Snyman, J. Need for Sustainable Packaging: An Overview. Polymers 2022, 14, 4430. [Google Scholar] [CrossRef]
- Fotie, G.; Limbo, S.; Piergiovanni, L. Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges. Nanomaterials 2020, 10, 1726. [Google Scholar] [CrossRef]
- Gal, M.R.; Rahmaninia, M.; Hubbe, M.A. A Comprehensive Review of Chitosan Applications in Paper Science and Technologies. Carbohydr. Polym. 2023, 309, 120665. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Ji, Y.; Bourg, V.; Bilgen, M.; Meredith, J.C. Chitin- and Cellulose-Based Sustainable Barrier Materials: A Review. Emergent Mater. 2020, 3, 919–936. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Carrera, C.; Bengoechea, C.; Carrillo, F.; Calero, N. Effect of Deacetylation Degree and Molecular Weight on Surface Properties of Chitosan Obtained from Biowastes. Food Hydrocoll. 2023, 137, 108383. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Bhardwaj, N.K.; Negi, Y.S. Improvement in Strength Properties of Packaging Paperboard Using Biopolymer Chitosan Following a Green Approach. Tchnical Pap. 2018, 30, 121–126. [Google Scholar]
- Bhardwaj, S.; Bhardwaj, N.K.; Negi, Y.S. Cleaner Approach for Improving the Papermaking from Agro and Hardwood Blended Pulps Using Biopolymers. J. Clean. Prod. 2019, 213, 134–142. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Bhardwaj, N.K.; Negi, Y.S. Enhancement of Processability, Surface, and Mechanical Properties of Paper Based on Rice Straw Pulp Using Biopolymers for Packaging Applications. Tappi J. 2019, 18, 431–440. [Google Scholar] [CrossRef]
- Andze, L.; Zoldners, J.; Rozenberga, L.; Sable, I.; Skute, M.; Laka, M.; Vecbiskena, L.; Andzs, M.; Actins, A. Effect of Molecular Chitosan on Recovered Paper Properties Described by a Mathematic Model. Cellul. Chem. Technol. 2018, 52, 873–881. [Google Scholar]
- Vikele, L.; Laka, M.; Sable, I.; Rozenberga, L.; Grinfelds, U.; Zoldners, J.; Passas, R.; Mauret, E. The Effect of Chitosan on Properties of Paper Packaging. Cellul. Chem. Technol. 2017, 51, 67–73. [Google Scholar]
- Vikele, L.; Treimanis, A.; Laka, M. Improvement of Paper Hydrophobic Properties by Using Biodegradable Natural Polymer—Chitosan. Key Eng. Mater. 2013, 559, 111–114. [Google Scholar] [CrossRef]
- Khantayanuwong, S.; Khemarom, C.; Salaemae, S. Effects of Shrimp Chitosan on the Physical Properties of Handsheets. Agric. Nat. Resour. 2017, 51, 53–56. [Google Scholar] [CrossRef]
- dos Santos, J.W.S.; Garcia, V.A.d.S.; Venturini, A.C.; de Carvalho, R.A.; da Silva, C.F.; Yoshida, C.M.P. Sustainable Coating Paperboard Packaging Material Based on Chitosan, Palmitic Acid, and Activated Carbon: Water Vapor and Fat Barrier Performance. Foods 2022, 11, 4037. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Xu, D.; Luo, L.; Zhou, Y.; Yan, W.; Leng, X.; Dai, D.; Zhou, Y.; Ahmad, H.; Rao, J.; et al. Overview of Nanocellulose as Additives in Paper Processing and Paper Products. Nanotechnol. Rev. 2021, 10, 264–281. [Google Scholar] [CrossRef]
- Balea, A.; Campano, C.; Negro, C.; Blanco, A. Industrial Application of Nanocelluloses in Solutions, and Market Perspectives. Molecules 2020, 25, 526. [Google Scholar] [CrossRef]
- Jin, S.A.; Spontak, R.J. Fundamentals of and Advances in Nanocellulose and Nanochitin Systems. Adv. Ind. Eng. Polym. Res. 2023, 6, 356–381. [Google Scholar] [CrossRef]
- Marquez-Bravo, S.; Doench, I.; Molina, P.; Bentley, F.E.; Tamo, A.K.; Passieux, R.; Lossada, F.; David, L.; Osorio-Madrazo, A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers 2021, 13, 1563. [Google Scholar] [CrossRef] [PubMed]
- Tamo, A.K.; Doench, I.; Walter, L.; Montembault, A.; Sudre, G.; David, L.; Morales-Helguera, A.; Selig, M.; Rolauffs, B.; Bernstein, A.; et al. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3d Hydrogel Constructs by 3d Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers 2021, 13, 1663. [Google Scholar] [CrossRef]
- Mao, H.; Wei, C.; Gong, Y.; Wang, S.; Ding, W. Mechanical and Water-Resistant Properties of Eco-Friendly Chitosan Membrane Reinforced with Cellulose Nanocrystals. Polymers 2019, 11, 166. [Google Scholar] [CrossRef]
- Abral, H.; Pratama, A.B.; Handayani, D.; Mahardika, M.; Aminah, I.; Sandrawati, N.; Sugiarti, E.; Muslimin, A.N.; Sapuan, S.M.; Ilyas, R.A. Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. Int. J. Polym. Sci. 2021, 2021, 6641284. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Cao, J.; Jiang, W. Improving the Performance of Edible Food Packaging Films by Using Nanocellulose as an Additive. Int. J. Biol. Macromol. 2021, 166, 288–296. [Google Scholar] [CrossRef]
- Strnad, S. Cellulose—Chitosan Functional Biocomposites. Polymers 2023, 15, 425. [Google Scholar] [CrossRef]
- Jadaun, S.; Sharma, U.; Khapudang, R.; Siddiqui, S. Biodegradable Nanocellulose Reinforced Biocomposites for Food Packaging—A Narrative Review and Future Perspective. J. Water Environ. Nanotechnol. 2023, 8, 293–319. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Saurabh, C.K.; Adnan, A.S.; Nurul Fazita, M.R.; Syakir, M.I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.K.; Haafiz, M.K.M.; Dungani, R. A Review on Chitosan-Cellulose Blends and Nanocellulose Reinforced Chitosan Biocomposites: Properties and Their Applications. Carbohydr. Polym. 2016, 150, 216–226. [Google Scholar] [CrossRef]
- Vecbiskena, L.; Vikele, L.; Rozenberga, L.; Sable, I. Wood-Based Biocomposites: Mechanical Processing, Physical and Biological Properties. Key Eng. Mater. 2016, 674, 26–30. [Google Scholar] [CrossRef]
- Laka, M.; Treimanis, A.; Chernyavskaya, S.; Skute, M.; Rozenberga, L.; Vikele, L. Micro-Nanoparticle Gels Obtained from Bark for Their Use Alone and with Chitosan and Na-CMC in Paper Coatings. Holzforschung 2015, 69, 745–749. [Google Scholar] [CrossRef]
- Bastida, G.A.; Zanuttini, M.A.; Tarrés, Q.; Fiol, N.; Delgado-Aguilar, M.; Galván, M.V. Innovative System Based on Natural Polyelectrolyte Complex and Cellulose Micro/Nanofibers to Improve Drainability and Properties of Recycled Paper. Cellulose 2023, 30, 5895–5910. [Google Scholar] [CrossRef]
- Lang, C.V.; Jung, J.; Wang, T.; Zhao, Y. Investigation of Mechanisms and Approaches for Improving Hydrophobicity of Molded Pulp Biocomposites Produced from Apple Pomace. Food Bioprod. Process. 2022, 133, 1–15. [Google Scholar] [CrossRef]
- Jayanti, M.A.; Ardhana, A.; Husna, N.; Karimah, A.; Rahmi DN, M.; Ariyanta, H.A.; Santoso, E.B.; Ridho, M.R.; Solihat, N.N.; Antov, P.; et al. Biocomposites of Rice Straw Paper with Chitosan: Hydrophobicity and Mechanical Properties. Biomass Convers. Biorefinery 2023, 1–14. [Google Scholar] [CrossRef]
- Elgat, W.A.A.A.; Taha, A.S.; Böhm, M.; Vejmelkov, E.; Mohamed, W.S.; Fares, Y.G.D.; Salem, M.Z.M. Evaluation of the Mechanical, Physical, and Anti-Fungal Properties of Flax Laboratory Papersheets with the Nanoparticles Treatment Wael. Materials 2020, 13, 363. [Google Scholar] [CrossRef]
- Abdallah, A.F.; Jawaid, M.; Mohamed, A.Z.; Tahir, P.M.; Abdullah, U.H. Performance of Nanofibrillated Cellulose with Chitosan as a Wet-End Additive for Paper Applications. Ind. Crops Prod. 2023, 203, 117219. [Google Scholar] [CrossRef]
- Filipova, I.; Andze, L.; Skute, M.; Zoldners, J.; Irbe, I.; Dabolina, I. Improving Recycled Paper Materials through the Incorporation of Hemp, Wood Cellulose Fibers, and Nanofibers. Fibers 2023, 11, 101. [Google Scholar] [CrossRef]
- Lavric, G.; Oberlintner, A.; Filipova, I.; Novak, U.; Blaz, L.; Vrabic-Brodnjak, U. Nanocomposites Designed as Active Film Packaging Materials. Polymers 2021, 13, 2523. [Google Scholar] [CrossRef]
- Filipova, I.; Serra, F.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M. Oxidative Treatments for Cellulose Nanofibers Production: A Comparative Study between TEMPO-Mediated and Ammonium Persulfate Oxidation. Cellulose 2020, 27, 10671–10688. [Google Scholar] [CrossRef]
- ISO 5269-2:2004; Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method. ISO: Geneva, Switzerland, 2004.
- ISO 1924-2:2008; Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min). ISO: Geneva, Switzerland, 2008.
- ISO 2758:2014; Paper—Determination of Bursting Strength. ISO: Geneva, Switzerland, 2014.
- TAPPI standard method T 441 om-98; Water Absorptiveness of Sized (Non-Bibulous) Paper, Paperboard, and Corrugated Fiberboard (Cobb Test). TAPPI: Nocross, GA, USA, 1998.
- 48. ISO 5636:2019; Paper and Board—Determination of Air Permeance (Medium Range)—Part 3: Bendtsen Method. ISO: Geneva, Switzerland, 2019.
- Salem, M.Z.M.; Elgat, W.A.A.A.; Taha, A.S.; Fares, Y.G.D.; Ali, H.M. Additives on the Mechanical, Optical, and Antifungal Properties of Paper Sheets Made from Eucalyptus. Materials 2020, 13, 1292. [Google Scholar] [CrossRef] [PubMed]
- Viana, L.C.; Potulski, D.C.; de Muniz, G.I.B.; de Andrade, A.S.; da Silva, E.L. Nanofibrillated Cellulose as an Additive for Recycled Paper. Cerne 2018, 24, 140–148. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Yahya, E.B.; Tajarudin, H.A.; Surya, I.; Muhammad, S.; Fazita, M.R.N. Enhancing the Properties of Industrial Waste Nanocellulose Bioaerogels Using Turmeric Nano Particles. Ind. Crops Prod. 2023, 197, 116500. [Google Scholar] [CrossRef]
- Hamzeh, Y.; Sabbaghi, S.; Ashori, A.; Abdulkhani, A.; Soltani, F. Improving Wet and Dry Strength Properties of Recycled Old Corrugated Carton (OCC) Pulp Using Various Polymers. Carbohydr. Polym. 2013, 94, 577–583. [Google Scholar] [CrossRef]
Fibers | Fiber Length, mm | Fiber Wid, µm | Fiber Shape, % | Content of Fines, % |
---|---|---|---|---|
RF | 1.19 ± 0.06 | 25.7 ± 0.4 | 89.1 ± 0.1 | 9.7 |
KF | 2.16 ± 0.02 | 29.6 ± 0.4 | 90.9 ± 0.1 | 3.2 |
HF | 0.65 ± 0.01 | 18.8 ± 0.4 | 91.8 ± 0.1 | 7.4 |
Cationic Demand, µeq/g | WRV, gH2O/g | Specific Surface Area, m2/g | Degree of Polymerization |
---|---|---|---|
333 ± 7 | 1.7 ± 0.11 | 154 | 475 ± 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andze, L.; Skute, M.; Zoldners, J.; Andzs, M.; Sirmulis, G.; Irbe, I.; Milbreta, U.; Dabolina, I.; Filipova, I. Enhancing Paper Packaging’s Wet Strength Using the Synergy between Chitosan and Nanofibrillated Cellulose Additives. Polymers 2024, 16, 227. https://doi.org/10.3390/polym16020227
Andze L, Skute M, Zoldners J, Andzs M, Sirmulis G, Irbe I, Milbreta U, Dabolina I, Filipova I. Enhancing Paper Packaging’s Wet Strength Using the Synergy between Chitosan and Nanofibrillated Cellulose Additives. Polymers. 2024; 16(2):227. https://doi.org/10.3390/polym16020227
Chicago/Turabian StyleAndze, Laura, Marite Skute, Juris Zoldners, Martins Andzs, Gatis Sirmulis, Ilze Irbe, Ulla Milbreta, Inga Dabolina, and Inese Filipova. 2024. "Enhancing Paper Packaging’s Wet Strength Using the Synergy between Chitosan and Nanofibrillated Cellulose Additives" Polymers 16, no. 2: 227. https://doi.org/10.3390/polym16020227
APA StyleAndze, L., Skute, M., Zoldners, J., Andzs, M., Sirmulis, G., Irbe, I., Milbreta, U., Dabolina, I., & Filipova, I. (2024). Enhancing Paper Packaging’s Wet Strength Using the Synergy between Chitosan and Nanofibrillated Cellulose Additives. Polymers, 16(2), 227. https://doi.org/10.3390/polym16020227