Development of a Silicone Rubber Mold with an Innovative Waterfall Cooling Channel
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
- The findings of this work highlight significant potential applications in the investment casting industry, mainly due to the notable impact of reduced cooling times on the production costs during the mass production of wax patterns.
- The results showed that the optimal mesh element count was about 1,550,000 with a mesh size of 1 mm. The simulation software predicted the filling time of the water cup injection-molded product to be approximately 2.008 s.
- The simulation results revealed that the cooling performance of the WCC was better than that of the CCC since the WCC maintains a uniform and steady cooling performance of the wax pattern than the CCC.
- The pressure drop of the WCC is smaller than that of the CCC. The reduction in the pressure drop is about 56%. In addition, the cooling efficiency of WCC is better than that of the CCC because the core and cavity cooling efficiency is close to 50%.
- The use of WCC can save the cooling time of the product by about 265 s compared to the CCC. This shows that WCC can increase the cooling efficiency by approximately 17.47%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arman, S.; Lazoglu, I. A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds. Int. J. Adv. Manuf. Technol. 2023, 127, 2035–2106. [Google Scholar] [CrossRef]
- Marl, S.; Giesen, R.-U.; Heim, H.-P. Liquid Silicone Rubber Foamed with Thermoplastic Expandable Microspheres. Materials 2022, 15, 3779. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Farshidianfar, A.; Dalir, H. An applicable review on recent laser beam cutting process characteristics modeling: Geometrical, metallurgical, mechanical, and defect. Int. J. Adv. Manuf. Technol. 2023, 130, 2159–2217. [Google Scholar] [CrossRef]
- Rodríguez, N.B.; Moroni, F.; Lutey, A.H.A.; Favi, C. Sustainable design and life cycle engineering of adhesive joints for polymeric products: Assessment of surface activation technologies. Int. J. Adv. Manuf. Technol. 2023, 130, 1279–1306. [Google Scholar] [CrossRef]
- Bian, Y.; Dong, B.; Chen, B.; Guo, J.; Li, S.; Tian, C.; Xu, S.; He, X.; Yu, G. Dynamic evolution behavior of cracks for single-track and multi-track clads in laser cladding. Int. J. Adv. Manuf. Technol. 2023, 130, 2313–2328. [Google Scholar] [CrossRef]
- Guo, X.; Tan, L.; Xie, Z.; Zhang, L.; Zhang, G.; Ming, W. Simulation and experimentation of renewable dielectric gap flow fields in EDM. Int. J. Adv. Manuf. Technol. 2023, 130, 1935–1948. [Google Scholar] [CrossRef]
- Vargas-Isaza, C.; Benitez-Lozano, A.; Rodriguez, J. Evaluating the Cooling Efficiency of Polymer Injection Molds by Computer Simulation Using Conformal Channels. Polymers 2023, 15, 4044. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Minh, P.S.; Uyen, T.M.T.; Do, T.T.; Ha, N.C.; Nguyen, V.T.T. Conformal Cooling Channel Design for Improving Temperature Distribution on the Cavity Surface in the Injection Molding Process. Polymers 2023, 15, 2793. [Google Scholar] [CrossRef]
- Minh, P.S.; Dang, H.-S.; Ha, N.C. Optimization of 3D Cooling Channels in Plastic Injection Molds by Taguchi-Integrated Principal Component Analysis (PCA). Polymers 2023, 15, 1080. [Google Scholar] [CrossRef]
- Choi, J.H.; Gim, J.; Rhee, B. A Novel Design Method of an Evolutionary Mold Cooling Channel Using Biomimetic Engineering. Polymers 2023, 15, 798. [Google Scholar] [CrossRef]
- Torres-Alba, A.; Mercado-Colmenero, J.M.; Caballero-Garcia, J.d.D.; Martin-Doñate, C. Application of New Conformal Cooling Layouts to the Green Injection Molding of Complex Slender Polymeric Parts with High Dimensional Specifications. Polymers 2023, 15, 558. [Google Scholar] [CrossRef] [PubMed]
- Gotlih, J.; Brezocnik, M.; Pal, S.; Drstvensek, I.; Karner, T.; Brajlih, T. A Holistic Approach to Cooling System Selection and Injection Molding Process Optimization Based on Non-Dominated Sorting. Polymers 2022, 14, 4842. [Google Scholar] [CrossRef] [PubMed]
- Kanbur, B.B.; Zhou, Y.; Shen, S.; Wong, K.H.; Chen, C.; Shocket, A.; Duan, F. Metal Additive Manufacturing of Plastic Injection Molds with Conformal Cooling Channels. Polymers 2022, 14, 424. [Google Scholar] [CrossRef]
- Torres-Alba, A.; Mercado-Colmenero, J.M.; Caballero-Garcia, J.D.D.; Martin-Doñate, C. A Hybrid Cooling Model Based on the Use of Newly Designed Fluted Conformal Cooling Channels and Fastcool Inserts for Green Molds. Polymers 2021, 13, 3115. [Google Scholar] [CrossRef]
- Torres-Alba, A.; Mercado-Colmenero, J.M.; Caballero-Garcia, J.d.D.; Martin-Doñate, C. Application of New Triple Hook-Shaped Conformal Cooling Channels for Cores and Sliders in Injection Molding to Reduce Residual Stress and Warping in Complex Plastic Optical Parts. Polymers 2021, 13, 2944. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Colmenero, J.M.; Martin-Doñate, C.; Rodriguez-Santiago, M.; Moral-Pulido, F.; Rubio-Paramio, M.A. A new conformal cooling lattice design procedure for injection molding applications based on expert algorithms. Int. J. Adv. Manuf. Technol. 2019, 102, 1719–1746. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Gu, J.; Ruan, S.; Shen, C.; Lyu, Y.; Zhao, Y. Topology Optimization for the Design of Conformal Cooling System in Thin-wall Injection Molding Based on BEM. Int. J. Adv. Manuf. Technol. 2018, 94, 1041–1059. [Google Scholar] [CrossRef]
- Shin, K.-H. A method for representation and analysis of conformal cooling channels in molds made of functionally graded tool steel/Cu materials. J. Mech. Sci. Technol. 2019, 33, 1743–1750. [Google Scholar] [CrossRef]
- Park, H.-S.; Dang, X.-P. Optimization of conformal cooling channels with array of baffles for plastic injection mold. Int. J. Precis. Eng. Manuf. 2010, 11, 879–890. [Google Scholar] [CrossRef]
- Abbès, B.; Abbès, F.; Abdessalam, H.; Upganlawar, A. Finite element cooling simulations of conformal cooling hybrid injection molding tools manufactured by selective laser melting. Int. J. Adv. Manuf. Technol. 2019, 103, 2515–2522. [Google Scholar] [CrossRef]
- Hunter, L.W.; Brackett, D.; Brierley, N.; Yang, J.; Attallah, M.M. Assessment of trapped powder removal and inspection strategies for powder bed fusion techniques. Int. J. Adv. Manuf. Technol. 2020, 106, 4521–4532. [Google Scholar] [CrossRef]
- Hussam, H.; Abdelrhman, Y.; Soliman, M.-E.S.; Hassab-Allah, I.M. Effects of a new filling technique on the mechanical properties of ABS specimens manufactured by fused deposition modeling. Int. J. Adv. Manuf. Technol. 2022, 121, 1639–1650. [Google Scholar] [CrossRef]
- Kuo, C.C.; You, Z.Y.; Chang, S.J.; Liao, J.-D.; Yu, S.-T. Development of green conformal cooling channels for silicone rubber molding. Int. J. Adv. Manuf. Technol. 2020, 111, 109–125. [Google Scholar] [CrossRef]
- Wang, T.; Tan, D.; Xu, W.; Wang, C.; Tan, Y.; Hou, Y. Investigation on abrasive-wall collision mechanism and the universal design method for constraint module in soft abrasive flow polishing. Int. J. Adv. Manuf. Technol. 2023, 128, 3841–3856. [Google Scholar] [CrossRef]
- Liparoti, S.; De Piano, G.; Salomone, R.; Pantani, R. Analysis of Weld Lines in Micro-Injection Molding. Materials 2023, 16, 6053. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yang, X.; Tian, C. Influence of rotation speed on interfacial bonding mechanism and mechanical performance of aluminum 6061 fabricated by multilayer friction-based additive manufacturing. Int. J. Adv. Manuf. Technol. 2023, 126, 4119–4133. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, S.; Ma, B. A virtual injection molding system based on numerical simulation. Int. J. Adv. Manuf. Technol. 2009, 40, 297–306. [Google Scholar] [CrossRef]
- Nasiri, S.; Khosravani, M.R. Faults and failures prediction in injection molding process. Int. J. Adv. Manuf. Technol. 2019, 103, 2469–2484. [Google Scholar] [CrossRef]
- Lu, L.; Han, J.; Fan, C.; Xia, L. A predictive feedrate schedule method for sculpture surface machining and corresponding B-spline-based irredundant PVT commands generating method. Int. J. Adv. Manuf. Technol. 2018, 98, 1763–1782. [Google Scholar] [CrossRef]
- Lan, X.; Li, C.; Yang, L.; Xue, C. Deformation analysis and improvement method of the Ni-P mold core in the injection molding process. Int. J. Adv. Manuf. Technol. 2018, 99, 2659–2668. [Google Scholar] [CrossRef]
- Park, H.; Rhee, B. Effects of the viscosity and thermal property of fluids on the residual wall thickness and concentricity of the hollow products in fluid-assisted injection molding. Int. J. Adv. Manuf. Technol. 2016, 86, 3255–3265. [Google Scholar] [CrossRef]
- Pereira, M.; Zirak, N.; Shirinbayan, M.; Zywica, G.; Tcharkhtchi, A. Design, fabrication, and evaluation of a small turbine blade manufactured by rotational molding. Int. J. Adv. Manuf. Technol. 2023, 128, 3441–3450. [Google Scholar] [CrossRef]
- Li, F.; Wang, D.; Jiang, Y.; Yang, L.; Zhao, Y.; Zhang, X. Effect of centrifugal casting process on mold filling and grain structure of K418B turbine guide. Int. J. Adv. Manuf. Technol. 2019, 104, 3065–3072. [Google Scholar] [CrossRef]
- Kurusu, R.S.; Gholami, M.; Demarquette, N.R.; Demers, V. Surface properties of molds for powder injection molding and their effect on feedstock moldability and mold adhesion. Int. J. Adv. Manuf. Technol. 2023, 126, 381–390. [Google Scholar] [CrossRef]
- Guerra, N.B.; Reis, T.M.; Scopel, T.; de Lima, M.S.; Figueroa, C.A.; Michels, A.F. Influence of process parameters and post-molding condition on shrinkage and warpage of injection-molded plastic parts with complex geometry. Int. J. Adv. Manuf. Technol. 2023, 128, 479–490. [Google Scholar] [CrossRef]
- Guo, W.; Shen, W.; Zeng, F.; Yu, Z.; Meng, Z.; Hua, L. Investigation of film–substrate interfacial characteristics of polymer parts fabricated via in-mold decoration and microcellular injection molding process. Int. J. Adv. Manuf. Technol. 2023, 125, 4363–4377. [Google Scholar] [CrossRef]
- Gel’atko, M.; Hatala, M.; Botko, F.; Vandžura, R.; Hajnyš, J.; Šajgalík, M.; Török, J. Stress Relieving Heat Treatment of 316L Stainless Steel Made by Additive Manufacturing Process. Materials 2023, 16, 6461. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Tasi, Q.-Z.; Huang, S.-H.; Tseng, S.-F. Enhancing Surface Temperature Uniformity in a Liquid Silicone Rubber Injection Mold with Conformal Heating Channels. Materials 2023, 16, 5739. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-C.; Qiu, S.-X. A Simple Method of Reducing Coolant Leakage for Direct Metal Printed Injection Mold with Conformal Cooling Channels Using General Process Parameters and Heat Treatment. Materials 2021, 14, 7258. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Pan, X.-Y. Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins. Polymers 2023, 15, 3513. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Tasi, Q.-Z.; Hunag, S.-H.; Tseng, S.-F. Development of an Injection Mold with High Energy Efficiency of Vulcanization for Liquid Silicone Rubber Injection Molding of the Fisheye Optical Lens. Polymers 2023, 15, 2869. [Google Scholar] [CrossRef]
- Zinovieva, O.; Romanova, V.; Dymnich, E.; Zinoviev, A.; Balokhonov, R. A Review of Computational Approaches to the Microstructure-Informed Mechanical Modelling of Metals Produced by Powder Bed Fusion Additive Manufacturing. Materials 2023, 16, 6459. [Google Scholar] [CrossRef] [PubMed]
- Ávila, B.N.; Sato, B.K.; Ribeiro, F.S.F.; Talon, A.G.; Sanchez, L.E.D.A.; Bianchi, E.C.; Lopes, J.C. Grinding effect of thermoplastic mold steel using green manufacturing concepts combined with various conventional wheels. Int. J. Adv. Manuf. Technol. 2023, 129, 2443–2456. [Google Scholar] [CrossRef]
- Anders, D.; Reinicke, U.; Baum, M. Analysis of heat transfer enhancement due to helical static mixing elements inside cooling channels in machine tools. Int. J. Adv. Manuf. Technol. 2023, 127, 2273–2285. [Google Scholar] [CrossRef]
- Shinonaga, T.; Kobayashi, H.; Okada, A.; Tsuji, T. Surface smoothing of additively manufactured Ti-6Al-4V alloy by combination of grit blasting and large-area electron beam irradiation. Int. J. Adv. Manuf. Technol. 2023, 127, 5127–5137. [Google Scholar] [CrossRef]
Parameters | Data |
---|---|
Injection pressure (MPa) | 0.06 |
Filling time (s) | 2 |
Melt temperature (°C) | 82 |
Injection mold temperature (°C) | 27 |
Shot volume (cm3) | 22.8 |
Hodling time (s) | 0.1 |
Coolant flow rate (cm3/s) | 60 |
Demolding temperature (°C) | 35 |
Parameters | Data |
---|---|
Density (g/cm3) | 1.07 |
Viscocity (CPS) | 75,000 |
Shore hardness D | 40 |
Tensile strengtg (psi) | 850 |
Elongation (%) | 340 |
Parameters | Data |
---|---|
Melting point (°C) | 80–85 |
Specific gravity | 0.96 |
Linear shrinkage (%) | 0.9–1.0 |
Poisson ratio | 0.17 |
Penetration | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-C.; Lin, P.-H.; Xu, J.-Y.; Lin, Z.-X.; Wang, Z.-H.; Lai, Z.-J.; Huang, S.-H. Development of a Silicone Rubber Mold with an Innovative Waterfall Cooling Channel. Polymers 2024, 16, 256. https://doi.org/10.3390/polym16020256
Kuo C-C, Lin P-H, Xu J-Y, Lin Z-X, Wang Z-H, Lai Z-J, Huang S-H. Development of a Silicone Rubber Mold with an Innovative Waterfall Cooling Channel. Polymers. 2024; 16(2):256. https://doi.org/10.3390/polym16020256
Chicago/Turabian StyleKuo, Chil-Chyuan, Pin-Han Lin, Jing-Yan Xu, Zhe-Xhi Lin, Zi-Huan Wang, Zhi-Jun Lai, and Song-Hua Huang. 2024. "Development of a Silicone Rubber Mold with an Innovative Waterfall Cooling Channel" Polymers 16, no. 2: 256. https://doi.org/10.3390/polym16020256
APA StyleKuo, C. -C., Lin, P. -H., Xu, J. -Y., Lin, Z. -X., Wang, Z. -H., Lai, Z. -J., & Huang, S. -H. (2024). Development of a Silicone Rubber Mold with an Innovative Waterfall Cooling Channel. Polymers, 16(2), 256. https://doi.org/10.3390/polym16020256