Revealing the Effect of the Molecular Weight Distribution on the Chain Diffusion and Crystallization Process under a Branched Trimodal Polyethylene System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Models
2.2. Simulation Details
2.3. Analysis Methods
3. Results
3.1. Mobility of Backbones in the Nucleation and Crystal Growth Steps
3.2. Mechanism of Nucleation and Crystallization
3.3. Crystallinity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos, J.; Vega, J.F.; Martínez-Salazar, J. Predicting experimental results for polyethylene by computer simulation. Eur. Polym. J. 2018, 99, 298–331. [Google Scholar] [CrossRef]
- Hubert, L.; David, L.; Séguéla, R.; Vigier, G.; Corfias-Zuccalli, C.; Germain, Y. Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. II. Short-term creep of isotropic and drawn materials. J. Appl. Polym. Ence 2002, 84, 2308–2317. [Google Scholar]
- Long, C.; Dong, Z.; Liu, X.; Yu, F.; Shang, Y.; Wang, K.; Feng, S.; Hou, X.; He, C.; Chen, Z.-R. Simultaneous enhancement in processability and mechanical properties of polyethylenes via tuning the molecular weight distribution from unimodal to bimodal shape. Polymer 2022, 258, 125287. [Google Scholar] [CrossRef]
- Lustiger, A.; Markham, R.L. Importance of tie molecules in preventing polyethylene fracture under long-term loading conditions. Polymer 1983, 24, 1647–1654. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, Z.; Brown, N. A sensitive mechanical test for slow crack growth in polyethylene. Polym. Eng. Sci. 1997, 37, 1896–1900. [Google Scholar]
- Gholami, F.; Pircheraghi, G.; Rashedi, R.; Sepahi, A. Correlation between isothermal crystallization properties and slow crack growth resistance of polyethylene pipe materials. Polym. Test. 2019, 80, 106128. [Google Scholar] [CrossRef]
- Moyassari, A.; Gkourmpis, T.; Hedenqvist, M.S.; Gedde, U.W. Molecular dynamics simulation of linear polyethylene blends: Effect of molar mass bimodality on topological characteristics and mechanical behavior. Polymer 2019, 161, 139–150. [Google Scholar] [CrossRef]
- Alt, F.P.; Böhm, L.L.; Enderle, H.-F.; Berthold, J. Bimodal polyethylene—Interplay of catalyst and process. Macromol. Symp. 2001, 163, 135–144. [Google Scholar]
- Bhm, L.L. The ethylene polymerization with Ziegler catalysts: Fifty years after the discovery. Angew. Chem. Int. Ed. 2010, 42, 5010–5030. [Google Scholar]
- Shan, C.; Soares, J.; Penlidis, A. HDPE/LLDPE reactor blends with bimodal microstructures-Part II: Rheological properties. Polymer 2003, 44, 177–185. [Google Scholar] [CrossRef]
- García, R.A.; Carrero, A.; Martín, C.; Domínguez, C. Effects of the structural components on slow crack growth process in polyethylene blends. Composition intervals prediction for pipe applications. J. Appl. Polym. Sci. 2011, 121, 3269–3276. [Google Scholar]
- Stürzel, M.; Hees, T.; Enders, M.; Thomann, Y.; Blattmann, H.; Mülhaupt, R. Nanostructured Polyethylene Reactor Blends with Tailored Trimodal Molar Mass Distributions as Melt-Processable All-Polymer Composites. Macromolecules 2016, 49, 8048–8060. [Google Scholar] [CrossRef]
- Tsou, A.H.; Doufas, A.K.; Atienza, C.C.H.; Passino, H.L. Processability-enhanced bimodal high-density polyethylene with comb-branched high-density polyethylene. J. Appl. Polym. Sci. 2017, 135, 45755. [Google Scholar] [CrossRef]
- Zhong, F.; Thomann, R.; Mülhaupt, R. Tailoring Mono-, Bi-, and Trimodal Molar Mass Distributions and All-Hydrocarbon Composites by Ethylene Polymerization on Bis(imino)pyridine Chromium(III) Supported on Ultrathin Gibbsite Single Crystal Nanoplatelets. Macromolecules 2019, 52, 2701–2711. [Google Scholar] [CrossRef]
- Hofmann, D.; Kurek, A.; Thomann, R.; Schwabe, J.; Mark, S.; Enders, M.; Hees, T.; Mülhaupt, R. Tailored Nanostructured HDPE Wax/UHMWPE Reactor Blends as Additives for Melt-Processable All-Polyethylene Composites and in Situ UHMWPE Fiber Reinforcement. Macromolecules 2017, 50, 8129–8139. [Google Scholar] [CrossRef]
- Zhong, F.; Schwabe, J.; Thomann, R.; Mulhaupt, R. Tailoring Hexagonal Gibbsite Single Crystal Nanoplatelets for Ethylene Polymerization and Nanocomposite Formation on MAO-Free Heterogeneous Bis(imino)pyridine Iron(II) Catalyst. Macromol. Rapid Commun. 2019, 40, e1900015. [Google Scholar] [CrossRef] [PubMed]
- Szántó, L.; Feng, Y.; Zhong, F.; Hees, T.; Ruymbeke, E.v.; Mülhaupt, R.; Friedrich, C. Ultra-broad molecular weight distribution effects on viscoelastic properties of linear multimodal PE. J. Rheol. 2019, 63, 773–784. [Google Scholar] [CrossRef]
- Eslamian, M.; Bagheri, R.; Pircheraghi, G. Co-crystallization in ternary polyethylene blends: Tie crystal formation and mechanical properties improvement. Polym. Int. 2016, 65, 1405–1416. [Google Scholar] [CrossRef]
- Nunes, R.W.; Martin, J.R.; Johnson, J.F. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym. Eng. Sci. 2004, 22, 205–228. [Google Scholar] [CrossRef]
- Yu, T.H.; Wilkes, G.L. Influence of molecular weight distribution on the melt extrusion of high density polyethylene (HDPE): Effects of melt relaxation behavior on morphology and orientation in HDPE extruded tubular films. J. Rheol. 1996, 40, 1079–1093. [Google Scholar] [CrossRef]
- Sun, X.; Shen, H.; Xie, B.; Yang, W.; Yang, M. Fracture behavior of bimodal polyethylene: Effect of molecular weight distribution characteristics. Polymer 2011, 52, 564–570. [Google Scholar] [CrossRef]
- Sifri, R.J.; Padilla-Vélez, O.; Coates, G.W.; Fors, B.P. Controlling the Shape of Molecular Weight Distributions in Coordination Polymerization and Its Impact on Physical Properties. J. Am. Chem. Soc. 2020, 142, 1443–1448. [Google Scholar] [CrossRef]
- Kida, T.; Tanaka, R.; Hiejima, Y.; Nitta, K.-h.; Shiono, T. Improving the strength of polyethylene solids by simple controlling of the molecular weight distribution. Polymer 2021, 218, 123526. [Google Scholar] [CrossRef]
- Wu, T.; Yu, L.; Cao, Y.; Yang, F.; Xiang, M. Effect of molecular weight distribution on rheological, crystallization and mechanical properties of polyethylene-100 pipe resins. J. Polym. Res. 2013, 20, 271. [Google Scholar] [CrossRef]
- Zhang, M.; Lynch, D.T.; Wanke, S.E. Effect of molecular structure distribution on melting and crystallization behavior of 1-butene/ethylene copolymers. Polymer 2001, 42, 3067–3075. [Google Scholar] [CrossRef]
- Shan, C.; Soares, J.; Penlidis, A. Mechanical properties of ethylene/1-hexene copolymers with tailored short chain branching distributions. Polymer 2002, 43, 767–773. [Google Scholar] [CrossRef]
- Kim, J.M.; Baig, C. Communication: Role of short chain branching in polymer structure and dynamics. J. Chem. Phys. 2016, 144, 081101. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, M.; An, M.; Li, Y.; Miao, W.; Wang, Z.; Hsiao, B.S. The influence of short chain branch on formation of shear-induced crystals in bimodal polyethylene at low shear temperatures. Polymer 2019, 179, 121625. [Google Scholar] [CrossRef]
- Alamo, R.G.; Mandelkern, L. Thermodynamic and structural properties of ethylene copolymers. Macromolecules 1989, 88, 462–467. [Google Scholar] [CrossRef]
- Alamo, R.G.; Chan, E.; Mandelkern, L.; Voigt-Martin, I.G. Influence of molecular weight on the melting and phase structure of random copolymers of ethylene. Macromolecules 1992, 25, 6381–6394. [Google Scholar]
- Wignall, G.D.; Alamo, R.G.; Ritchson, E.J.; Mandelkern, L.; Schwahn, D. SANS studies of liquid-liquid separation in heterogeneous and metallocene-based linear low-density polyethylenes. Macromolecules 2001, 34, 8160–8165. [Google Scholar] [CrossRef]
- Akpalu, Y.; Kielhorn, L.; Hsiao, B.S.; Stein, R.S.; Russell, T.P.; Egmond, J.V.; Muthukumar, M. Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements. Macromolecules 1999, 32, 765–770. [Google Scholar]
- Gupta, P.; Wilkes, G.L.; Sukhadia, A.M.; Krishnaswamy, R.K.; Lamborn, M.J.; Wharry, S.M.; Tso, C.C.; Deslauriers, P.J.; Mansfield, T.; Beyer, F.L. Does the length of the short chain branch affect the mechanical properties of linear low density polyethylenes? An investigation based on films of copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallo. Polymer 2005, 46, 8819–8837. [Google Scholar]
- Krishnaswamy, R.K.; Yang, Q.; Fernandez-Ballester, L.; Kornfield, J.A. Effect of the Distribution of Short-Chain Branches on Crystallization Kinetics and Mechanical Properties of High-Density Polyethylene. Macromolecules 2008, 41, 1693–1704. [Google Scholar] [CrossRef]
- Zhai, Z.; Morthomas, J.; Fusco, C.; Perez, M.; Lame, O. Crystallization and Molecular Topology of Linear Semicrystalline Polymers: Simulation of Uni- and Bimodal Molecular Weight Distribution Systems. Macromolecules 2019, 52, 4196–4208. [Google Scholar] [CrossRef]
- Triandafilidi, V.; Rottler, J.; Hatzikiriakos, S.G. Molecular dynamics simulations of monodisperse/bidisperse polymer melt crystallization. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 2318–2326. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.; Shao, Y.; Liu, Z.; Liu, B.; He, X. Molecular dynamics simulation of shish-kebab crystallization of polyethylene: Unraveling the effects of molecular weight distribution. J. Chem. Phys. 2019, 150, 184114. [Google Scholar] [CrossRef]
- Zhang, X.B.; Li, Z.S.; Yang, H.; Sun, C.C. Molecular Dynamics Simulations on Crystallization of Polyethylene Copolymer with Precisely Controlled Branching. Macromolecules 2004, 37, 7393–7400. [Google Scholar]
- Zhang, X.B.; Li, Z.S.; Lu, Z.Y.; Sun, C.C. The crystallization of low-density polyethylene: A molecular dynamics simulation. Polymer 2002, 43, 3223–3227. [Google Scholar]
- Zhang, X.B.; Li, Z.S.; Lu, Z.Y.; Sun, C.C. Roles of Branch Content and Branch Length in Copolyethylene Crystallization: Molecular Dynamics Simulations. Macromolecules 2002, 35, 106–111. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Li, Z.-S.; Lu, Z.-Y.; Sun, C.-C. Molecular dynamics simulation of the linear low-density polyethylene crystallization. J. Chem. Phys. 2001, 115, 3916–3922. [Google Scholar]
- Doran, M.; Choi, P. Molecular dynamics studies of the effects of branching characteristics on the crystalline structure of polyethylene. J. Chem. Phys. 2001, 115, 2827–2830. [Google Scholar] [CrossRef]
- Gao, R.; He, X.; Shao, Y.; Hu, Y.; Zhang, H.; Liu, Z.; Liu, B. Effects of Branch Content and Branch Length on Polyethylene Crystallization: Molecular Dynamics Simulation. Macromol. Theory Simul. 2016, 25, 303–311. [Google Scholar] [CrossRef]
- Gao, R.; He, X.; Zhang, H.; Shao, Y.; Liu, Z.; Liu, B. Molecular dynamics study of the isothermal crystallization mechanism of polyethylene chain: The combined effects of chain length and temperature. J. Mol. Model. 2016, 22, 67. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shao, Y.; Zhen, L.; He, X.; Liu, B. Effect of short-chain branching on the tie chains and dynamics of bimodal polyethylene: Molecular dynamics simulation. Eur. Polym. J. 2018, 103, 312–321. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, Y.; Liu, Z.; He, X.; Liu, B. Dominant Effects of Short-Chain Branching on the Initial Stage of Nucleation and Formation of Tie Chains for Bimodal Polyethylene as Revealed by Molecular Dynamics Simulation. Polymers 2019, 11, 1840–1860. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, L.; Song, M.; Hu, F.; He, X. Molecular dynamics simulation for polyethylene crystallization: Effect of long chain branches. Polyolefins J. 2021, 8, 73–84. [Google Scholar] [CrossRef]
- Cai, M.; He, X.; Liu, Z.; Liu, B. Unraveling the influential mechanism of short-chain branching on the crystallization of trimodal polyethylene by molecular dynamics simulation. Phys. Chem. Chem. Phys. 2023, 25, 17912–17922. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Li, C.; Choi, P.; Sundararajan, P.R. Simulation of chain folding in polyethylene: A comparison of united atom and explicit hydrogen atom models. Polymer 2010, 51, 2803–2808. [Google Scholar] [CrossRef]
- Eslami, H.; Müller-Plathe, F. Self-Assembly Pathways of Triblock Janus Particles into 3D Open Lattices. Small 2023, 19, 2306337. [Google Scholar] [CrossRef] [PubMed]
- Waheed, N.; Ko, M.J.; Rutledge, G.C. Molecular simulation of crystal growth in long alkanes. Polymer 2005, 46, 8689–8702. [Google Scholar] [CrossRef]
- Meyer, H.; Müller-Plathe, F. Formation of Chain-Folded Structures in Supercooled Polymer Melts Examined by MD Simulations. Macromolecules 2002, 35, 1241–1252. [Google Scholar] [CrossRef]
- Xiang, Y.; Kong, B.; Yang, X. Molecular Dynamics Study on the Crystallization of a Cluster of Polymer Chains Depending on the Initial Entanglement Structure. Ann. Entomol. Soc. Am. 2008, 63, 197–204. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Z.; Huang, Y.; Zhao, H.; Chen, Z.; Gao, K.; Yue, T.; Zhang, L.; Liu, J. Structure–Mechanics Relation of Natural Rubber: Insights from Molecular Dynamics Simulations. ACS Appl. Polym. Mater. 2022, 4, 3575–3586. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, W.; Duan, P.; Yue, T.; Zhang, L.; Wu, X.; Liu, J. Manipulating the mechanical properties of cis-polyisoprene nanocomposites via molecular dynamics simulation. Polymer 2022, 256, 125233. [Google Scholar] [CrossRef]
- Nie, Y.; Zhao, Y.; Matsuba, G.; Hu, W. Shish-Kebab Crystallites Initiated by Shear Fracture in Bulk Polymers. Macromolecules 2018, 51, 480–487. [Google Scholar] [CrossRef]
- Zerze, H.; Mittal, J.; McHugh, A.J. Ab Initio Crystallization of Alkanes: Structure and Kinetics of Nuclei Formation. Macromolecules 2013, 46, 9151–9157. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Liu, Q.L.; Chen, Y.; Wu, J.Y.; Zhu, A.M. Microstructure dependent diffusion of water–ethanol in swollen poly(vinyl alcohol): A molecular dynamics simulation study. Chem. Eng. Sci. 2009, 64, 334–340. [Google Scholar] [CrossRef]
- Okui, N.; Umemoto, S. Maximum Crystal Growth Rate and Its Corresponding State in Polymeric Materials. In Polymer Crystallization: Observations, Concepts and Interpretations; Reiter, G., Sommer, J.-U., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 343–365. [Google Scholar]
- Umemoto, S.; Kobayashi, N.; Okui, N. Molecular weight dependence of crystal growth rate and its degree of supercooling effect. J. Macromol. Sci. Part B 2002, 41, 923–938. [Google Scholar] [CrossRef]
- Mandelkern, L. The Relation between Structure and Properties of Crystalline Polymers. Polym. J. 1985, 17, 337–350. [Google Scholar] [CrossRef]
- Roussel, S.; McElroy, K.L.; Judovits, L.H. Molecular weight dependent of the crystallization kinetics of poly(vinylidene fluoride). Polym. Eng. Sci. 2004, 32, 1300–1308. [Google Scholar] [CrossRef]
ω (S Backbone) | ω (M Backbone) | ω (L Backbone) | |
---|---|---|---|
Model A | 6.25% | 31.25% | 62.5% |
Model B | 25% | 25% | 50% |
Model C | 33.33% | 33.33% | 33.34% |
Bimodal | 50% | 50% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.; He, X.; Liu, B. Revealing the Effect of the Molecular Weight Distribution on the Chain Diffusion and Crystallization Process under a Branched Trimodal Polyethylene System. Polymers 2024, 16, 265. https://doi.org/10.3390/polym16020265
Cai M, He X, Liu B. Revealing the Effect of the Molecular Weight Distribution on the Chain Diffusion and Crystallization Process under a Branched Trimodal Polyethylene System. Polymers. 2024; 16(2):265. https://doi.org/10.3390/polym16020265
Chicago/Turabian StyleCai, Min, Xuelian He, and Boping Liu. 2024. "Revealing the Effect of the Molecular Weight Distribution on the Chain Diffusion and Crystallization Process under a Branched Trimodal Polyethylene System" Polymers 16, no. 2: 265. https://doi.org/10.3390/polym16020265
APA StyleCai, M., He, X., & Liu, B. (2024). Revealing the Effect of the Molecular Weight Distribution on the Chain Diffusion and Crystallization Process under a Branched Trimodal Polyethylene System. Polymers, 16(2), 265. https://doi.org/10.3390/polym16020265