Optimizing Ammonia Detection with a Polyaniline−Magnesia Nano Composite
Abstract
:1. Introduction
Advantages of Our Sensor Material and the Need for Developing New Sensors
2. Experimental
2.1. Materials
2.2. Methodology
2.3. Preparation of the Magnesium Oxide Nanoparticles
2.4. Preparation of the Polyaniline/MgO Polymer Nanocomposite
3. Characterizations
4. Result and Discussions
4.1. FTIR
4.2. SEM Analysis
4.3. XRD Studies
5. Application Studies
5.1. Chemical Vapor Sensor
5.2. Preparation of Sensor Probes
5.3. Sensing Results
Ammonia Vapor Sensing
5.4. DC Conductivity
5.5. Comparative Studies of Sensors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, P.; Shukla, S.K. Advances in Polyaniline-Based Nanocomposites. J. Mater. Sci. 2020, 55, 1331–1365. [Google Scholar] [CrossRef]
- Rajendran, V.; Mohan, A.M.V.; Jayaraman, M.; Nakagawa, T. All-Printed, Interdigitated, Freestanding Serpentine Interconnects Based Flexible Solid State Supercapacitor for Self Powered Wearable Electronics. Nano Energy 2019, 65, 104055. [Google Scholar] [CrossRef]
- Song, M.; Yu, H.; Zhu, J.; Ouyang, Z.; Abdalkarim, S.Y.H.; Tam, K.C.; Li, Y. Constructing Stimuli-Free Self-Healing, Robust and Ultrasensitive Biocompatible Hydrogel Sensors with Conductive Cellulose Nanocrystals. Chem. Eng. J. 2020, 398, 125547. [Google Scholar] [CrossRef]
- Ghorbani Zamani, F.; Moulahoum, H.; Ak, M.; Odaci Demirkol, D.; Timur, S. Current Trends in the Development of Conducting Polymers-Based Biosensors. TrAC Trends Anal. Chem. 2019, 118, 264–276. [Google Scholar] [CrossRef]
- Qiu, H.-J.; Song, W.-Z.; Wang, X.-X.; Zhang, J.; Fan, Z.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. A Calibration-Free Self-Powered Sensor for Vital Sign Monitoring and Finger Tap Communication Based on Wearable Triboelectric Nanogenerator. Nano Energy 2019, 58, 536–542. [Google Scholar] [CrossRef]
- Chakraborty, P.; Guterman, T.; Adadi, N.; Yadid, M.; Brosh, T.; Adler-Abramovich, L.; Dvir, T.; Gazit, E. A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS Nano 2019, 13, 163–175. [Google Scholar] [CrossRef]
- Xiong, C.; Li, M.; Zhao, W.; Duan, C.; Dai, L.; Shen, M.; Xu, Y.; Ni, Y. A Smart Paper@polyaniline Nanofibers Incorporated Vitrimer Bifunctional Device with Reshaping, Shape-Memory and Self-Healing Properties Applied in High-Performance Supercapacitors and Sensors. Chem. Eng. J. 2020, 396, 125318. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, M.; Wan, P.; Zhang, L. A Wearable Breathable Pressure Sensor from Metal-Organic Framework Derived Nanocomposites for Highly Sensitive Broad-Range Healthcare Monitoring. Nano Energy 2020, 70, 104560. [Google Scholar] [CrossRef]
- Li, S.; Liu, A.; Yang, Z.; Zhao, L.; Wang, J.; Liu, F.; You, R.; He, J.; Wang, C.; Yan, X.; et al. Design and Preparation of the WO3 Hollow Spheres@ PANI Conducting Films for Room Temperature Flexible NH3 Sensing Device. Sens. Actuators B Chem. 2019, 289, 252–259. [Google Scholar] [CrossRef]
- Shi, K.; Zou, H.; Sun, B.; Jiang, P.; He, J.; Huang, X. Dielectric Modulated Cellulose Paper/PDMS-Based Triboelectric Nanogenerators for Wireless Transmission and Electropolymerization Applications. Adv. Funct. Mater. 2020, 30, 1904536. [Google Scholar] [CrossRef]
- Chowdhury, A.D.; Takemura, K.; Li, T.-C.; Suzuki, T.; Park, E.Y. Electrical Pulse-Induced Electrochemical Biosensor for Hepatitis E Virus Detection. Nat. Commun. 2019, 10, 3737. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Song, J.; Lu, Y.; Davis, J.J.; Gao, F.; Luo, X. Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Anal. Chem. 2019, 91, 8334–8340. [Google Scholar] [CrossRef]
- Shoaie, N.; Daneshpour, M.; Azimzadeh, M.; Mahshid, S.; Khoshfetrat, S.M.; Jahanpeyma, F.; Gholaminejad, A.; Omidfar, K.; Foruzandeh, M. Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: A Review on Recent Advances. Microchim. Acta 2019, 186, 465. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Liu, Y.; Xin, G.; Wang, M.; Zhang, Z.; Liu, Z. Electrochemical Sensor Based on a Three Dimensional Nanostructured MoS2 Nanosphere-PANI/Reduced Graphene Oxide Composite for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. RSC Adv. 2019, 9, 2997–3003. [Google Scholar] [CrossRef] [PubMed]
- Celiesiute, R.; Ramanaviciene, A.; Gicevicius, M.; Ramanavicius, A. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes. Crit. Rev. Anal. Chem. 2019, 49, 195–208. [Google Scholar] [CrossRef]
- Chu, X.; Huang, H.; Zhang, H.; Zhang, H.; Gu, B.; Su, H.; Liu, F.; Han, Y.; Wang, Z.; Chen, N.; et al. Electrochemically Building Three-Dimensional Supramolecular Polymer Hydrogel for Flexible Solid-State Micro-Supercapacitors. Electrochim. Acta 2019, 301, 136–144. [Google Scholar] [CrossRef]
- Sonker, R.K.; Yadav, B.C.; Gupta, V.; Tomar, M. Fabrication and Characterization of ZnO-TiO2-PANI (ZTP) Micro/Nanoballs for the Detection of Flammable and Toxic Gases. J. Hazard. Mater. 2019, 370, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Chethan, B.; Raj Prakash, H.G.; Ravikiran, Y.T.; Vijayakumari, S.C.; Ramana, C.H.V.V.; Thomas, S.; Kim, D. Enhancing Humidity Sensing Performance of Polyaniline/Water Soluble Graphene Oxide Composite. Talanta 2019, 196, 337–344. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Y.; Zhang, Z.; Miao, Z.; Zhang, X.; Su, Z. Fabrication of Hollow CuO/PANI Hybrid Nanofibers for Non-Enzymatic Electrochemical Detection of H2O2 and Glucose. Sens. Actuators B Chem. 2019, 286, 370–376. [Google Scholar] [CrossRef]
- Makwana, S.; Patil, V.B.; Patel, M.; Upadhyay, J.; Shah, A. A Validated Stability-Indicating Method for Separation of Prucalopride Drug by HPLC: Method Transfer to UPLC. Anal. Chem. Lett. 2021, 11, 580–595. [Google Scholar] [CrossRef]
- Patil, V.B.; Nadagouda, M.N.; Ture, S.A.; Yelamaggad, C.V.; Abbaraju, V. Detection of Energetic Materials via Polyaniline and Its Different Modified Forms. Polym. Adv. Technol. 2021, 32, 4663–4677. [Google Scholar] [CrossRef]
- Synthesis and Fluorescence Sensing of Energetic Materials Using Benzenesulfonic Acid-Doped Polyaniline. Available online: https://www.springerprofessional.de/en/synthesis-and-fluorescence-sensing-of-energetic-materials-using-/19349346 (accessed on 29 October 2021).
- Kamat, V.; Yallur, B.C.; Poojary, B.; Patil, V.B.; Nayak, S.P.; Krishna, P.M.; Joshi, S.D. Synthesis, Molecular Docking, Antibacterial, and Anti-Inflammatory Activities of Benzimidazole-Containing Tricyclic Systems. J. Chin. Chem. Soc. 2021, 68, 1055–1066. [Google Scholar] [CrossRef]
- Patil, V.B.; Ture, S.A.; Yelamaggad, C.V.; Nadagouda, M.N.; Venkataraman, A. Turn-off Fluorescent Sensing of Energetic Materials Using Protonic Acid Doped Polyaniline: A Spectrochemical Mechanistic Approach. Z. Anorg. Allg. Chem. 2021, 647, 331–340. [Google Scholar] [CrossRef]
- Ture, S.A.; Patil, V.B.; Yelamaggad, C.V.; Martínez-Máñez, R.; Abbaraju, V. Understanding of Mechanistic Perspective in Sensing of Energetic Nitro Compounds through Spectroscopic and Electrochemical Studies. J. Appl. Polym. Sci. 2021, 138, 50776. [Google Scholar] [CrossRef]
- Rahimi, R.; Ochoa, M.; Parupudi, T.; Zhao, X.; Yazdi, I.K.; Dokmeci, M.R.; Tamayol, A.; Khademhosseini, A.; Ziaie, B. A Low-Cost Flexible pH Sensor Array for Wound Assessment. Sens. Actuators B Chem. 2016, 229, 609–617. [Google Scholar] [CrossRef]
- Tatiana, N. Tikhonova, Dana Cohen-Gerassi, Zohar A. Arnon, Yuri Efremov, Peter Timashev, Lihi Adler-Abramovich, Evgeny A. Shirshin. Tunable Self-Assembled Peptide Hydrogel Sensor for Pharma Cold Supply Chain. ACS Appl. Mater. Interfaces 2022, 14, 55392–55401. [Google Scholar] [CrossRef]
- Jian, K.-S.; Chang, C.-J.; Wu, J.J.; Chang, Y.-C.; Tsay, C.-Y.; Chen, J.-H.; Horng, T.-L.; Lee, G.-J.; Karuppasamy, L.; Anandan, S.; et al. High Response CO Sensor Based on a Polyaniline/SnO2 Nanocomposite. Polymers 2019, 11, 184. [Google Scholar] [CrossRef]
- Mousavi, S.; Kang, K.; Park, J.; Park, I. A room temperature hydrogen sulfide gas sensor based on electrospun polyaniline–polyethylene oxide nanofibers directly written on flexible substrates. RSC Adv. 2016, 6, 104131–104138. [Google Scholar] [CrossRef]
- Fu, Y.; He, H.; Zhao, T.; Dai, Y.; Han, W.; Ma, J.; Xing, L.; Zhang, Y.; Xue, X. A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application. Nano-Micro Lett. 2018, 10, 76. [Google Scholar] [CrossRef]
- Suhail, M.H.; Abdullah, O.G.; Kadhim, G.A. Hydrogen Sulfide Sensors Based on PANI/f-SWCNT Polymer Nanocomposite Thin Films Prepared by Electrochemical Polymerization. J. Sci. Adv. Mater. Devices 2019, 4, 143–149. [Google Scholar] [CrossRef]
- Ly, T.N.; Park, S. Highly Sensitive Ammonia Sensor for Diagnostic Purpose Using Reduced Graphene Oxide and Conductive Polymer. Sci. Rep. 2018, 8, 18030. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Barfidokht, A.; Karajic, A.; Sempionatto, J.R.; Wang, J.; Wang, J. Wearable Potentiometric Tattoo Biosensor for On-Body Detection of G-Type Nerve Agents Simulants. Sens. Actuators B Chem. 2018, 273, 966–972. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, X.; Wu, X.; Lu, C. Self-Stabilized Polyaniline@graphene Aqueous Colloids for the Construction of Assembled Conductive Network in Rubber Matrix and Its Chemical Sensing Application. Compos. Sci. Technol. 2016, 125, 1–8. [Google Scholar] [CrossRef]
- Khalaf, A.L.; Mohamad, F.S.; Abdul Rahman, N.; Lim, H.N.; Paiman, S.; Yusof, N.A.; Mahdi, M.A.; Yaacob, M.H. Room Temperature Ammonia Sensor Using Side-Polished Optical Fiber Coated with Graphene/Polyaniline Nanocomposite. Opt. Mater. Express 2017, 7, 1858–1870. [Google Scholar] [CrossRef]
- Park, H.J.; Yoon, J.H.; Lee, K.G.; Choi, B.G. Potentiometric Performance of Flexible pH Sensor Based on Polyaniline Nanofiber Arrays. Nano Converg. 2019, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Oh, J.H.; Park, H.; Yun, J.Y.; Jin, S.W.; Sun, L.; Zi, G.; Ha, J.S. Polyurethane Foam Coated with a Multi-Walled Carbon Nanotube/Polyaniline Nanocomposite for a Skin-like Stretchable Array of Multi-Functional Sensors. NPG Asia Mater. 2017, 9, e448. [Google Scholar] [CrossRef]
- Komathi, S.; Gopalan, A.I.; Muthuchamy, N.; Lee, K.P. Polyaniline Nanoflowers Grafted onto Nanodiamonds via a Soft Template-Guided Secondary Nucleation Process for High-Performance Glucose Sensing. RSC Adv. 2017, 7, 15342–15351. [Google Scholar] [CrossRef]
- Chinnathambi, S.; Euverink, G.J.W. Polyaniline Functionalized Electrochemically Reduced Graphene Oxide Chemiresistive Sensor to Monitor the pH in Real Time during Microbial Fermentations. Sens. Actuators B Chem. 2018, 264, 38–44. [Google Scholar] [CrossRef]
- Humpolíček, P.; Radaszkiewicz, K.A.; Capáková, Z.; Pacherník, J.; Bober, P.; Kašpárková, V.; Rejmontová, P.; Lehocký, M.; Ponížil, P.; Stejskal, J. Polyaniline Cryogels: Biocompatibility of Novel Conducting Macroporous Material. Sci. Rep. 2018, 8, 135. [Google Scholar] [CrossRef]
- Zhuang, X.; Tian, C.; Luan, F.; Wu, X.; Chen, L. One-Step Electrochemical Fabrication of a Nickel Oxide Nanoparticle/Polyaniline Nanowire/Graphene Oxide Hybrid on a Glassy Carbon Electrode for Use as a Non-Enzymatic Glucose Biosensor. RSC Adv. 2016, 6, 92541–92546. [Google Scholar] [CrossRef]
- Yu, Y.; Joshi, P.C.; Wu, J.; Hu, A. Laser-Induced Carbon-Based Smart Flexible Sensor Array for Multiflavors Detection. ACS Appl. Mater. Interfaces 2018, 10, 34005–34012. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Qu, K.; Zeng, X. Investigation into the Ring-Substituted Polyanilines and Their Application for the Detection and Adsorption of Sulfur Dioxide. Sens. Actuators B Chem. 2017, 249, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.A.; Shaipuzaman, N.N.; Aspar, M.A.S.M.; Salim, M.R.; Manap, H. Advancements in Ammonia Gas Detection: A Comparative Study of Sensor Technologies. Int. J. Electr. Comput. Eng. 2024, 14, 5107–5116. [Google Scholar] [CrossRef]
- Xu, K.; Zheng, W. Fabrication of Graphene-Based Ammonia Sensors: A Review. Curr. Nanosci. 2024, 20, 578–598. [Google Scholar] [CrossRef]
- Singh, R.; Agrohiya, S.; Rawal, I.; Ohlan, A.; Dahiya, S.; Punia, R.; Maan, A.S. Porous Polyaniline/Flower-like Hybrid Phase MoS2/Phosphorus-Doped Graphene Ternary Nanocomposite for Efficient Room Temperature Ammonia Sensors. Synth. Met. 2024, 307, 117676. [Google Scholar] [CrossRef]
- Soudi, M.; Cencillo-Abad, P.; Patel, J.; Ghimire, S.; Dillon, J.; Biswas, A.; Mukhopadhyay, K.; Chanda, D. Self-Assembled Plasmonic Structural Color Colorimetric Sensor for Smartphone-Based Point-Of-Care Ammonia Detection in Water. ACS Appl. Mater. Interfaces 2024, 16, 45632–45639. [Google Scholar] [CrossRef] [PubMed]
- Rosiers, M.; Falzone, C.; Martin, J.; Clarisse, L.; Van Damme, M.; Coheur, P.; Romain, A.-C. Monitoring Atmospheric Ammonia with Satellite and On-Field Gas Sensor Array Measurement Techniques. In Proceedings of the 2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Grapevine, TX, USA, 12–15 May 2024; pp. 1–4. [Google Scholar]
Sensing Material | Detection Limit in ppm | Response Time in Seconds | Recovery Time in Seconds | Operating Temperature in °C | Detection Range in ppm | Ref. |
---|---|---|---|---|---|---|
Catalytic, metal oxide, polymer-based | 1–50 ppm | 10–60 | 40–120 | 25–300 °C | 1–100 | [45] |
Graphene/semiconductor and FET sensors | ~1 ppm | 5–15 | 10–20 | ~25 °C | 0.1–100 | [46] |
PANI/MoS2/PGO nanocomposite | 0.01 ppm | 12 | 30 | ~25 °C | 10–100 | [47] |
Plasmonic nanostructures | 8.5 ppm | Instant (color change) | N/A | ~25 °C | 8.5–100 | [48] |
Various gas sensor arrays | 0.1–50 ppm | 5–30 | 10–60 s | ~25 °C | 0.1–100 | [29,48] |
PANI/MgO nanocomposite | 30 ppm | 10 | 16 | ~27 °C | 30–100 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganachari, S.V.; Shilar, F.A.; Patil, V.B.; Khan, T.M.Y.; Saleel, C.A.; Ali, M.A. Optimizing Ammonia Detection with a Polyaniline−Magnesia Nano Composite. Polymers 2024, 16, 2892. https://doi.org/10.3390/polym16202892
Ganachari SV, Shilar FA, Patil VB, Khan TMY, Saleel CA, Ali MA. Optimizing Ammonia Detection with a Polyaniline−Magnesia Nano Composite. Polymers. 2024; 16(20):2892. https://doi.org/10.3390/polym16202892
Chicago/Turabian StyleGanachari, Sharanabasava V., Fatheali A. Shilar, Veerabhadragouda B. Patil, T. M. Yunus Khan, C. Ahamed Saleel, and Mohammed Azam Ali. 2024. "Optimizing Ammonia Detection with a Polyaniline−Magnesia Nano Composite" Polymers 16, no. 20: 2892. https://doi.org/10.3390/polym16202892
APA StyleGanachari, S. V., Shilar, F. A., Patil, V. B., Khan, T. M. Y., Saleel, C. A., & Ali, M. A. (2024). Optimizing Ammonia Detection with a Polyaniline−Magnesia Nano Composite. Polymers, 16(20), 2892. https://doi.org/10.3390/polym16202892