Unraveling the Electrochemical Insights of Cobalt Oxide/Conducting Polymer Hybrid Materials for Supercapacitor, Battery, and Supercapattery Applications
Abstract
:1. Introduction
Material | Specific Capacitance | Current Density/Scan Rate | Energy Density | Power Density | Ref. |
---|---|---|---|---|---|
Co3O4@Co(OH)2 | 1164 F g−1 | 1.2 A g−1 | 9.4 mWh cm−3 | 354 mW cm−3 | [17] |
Co-NiO@ carbon textile | 106 F g−1 | 10 mA cm−2 | 52 Wh kg−1 | 1206 W kg−1 | [18] |
Co2O4@Zn-CuO | 890 F g−1 | 1 A g−1 | 36 Wh kg−1 | 4800 W kg−1 | [19] |
CuO nanowires | 594 F g−1 | 0.71 A g−1 | 35 Wh kg−1 | 520 W kg−1 | [20] |
CuO@Ni foam | 431 F g−1 | 3.5 mA cm−2 | 19.7 Wh kg−1 | 7 kW kg−1 | [21] |
CuO nanoflowers | 612 F g−1 | 1 A g−1 | 27 Wh kg−1 | 800 W kg−1 | [22] |
FeCo2O4 | 231 C g−1 | 1 A g−1 | 400 Wh kg−1 | 930 W kg−1 | [23] |
LaMnO3-NiCo2O4@NF | 811 C g−1 | 0.5 A g−1 | 37 Wh kg−1 | 800 W kg−1 | [24] |
NiO flakes | 574 F g−1 | 0.1 mA cm−2 | 11 Wh kg−1 | 124 W kg−1 | [25] |
NiCo2O4@MnMoO4 | 1118 F g−1 | 1 A g−1 | 237 Wh kg−1 | 700 W kg−1 | [26] |
ZnCo2O4@Ni(OH)2 | 4.6 F cm−2 | 2 mA cm−2 | 49 Wh kg−1 | 428 W kg−1 | [27] |
MoS2@Ti3C2Tx | 1022.7 F/g | 1 A g−1 | 54.7 Wh kg−1 | 1601.3 W kg−1 | [28] |
Bi2O3-Sb2O4-ZrO | 441 F/g | 1 A g−1 | 18 Wh/kg | - | [29] |
MoS2/N-rGO | 539.5 F g−1 | 1 A g−1 | 71.5 Wh kg−1 | 25.4 kW kg−1 | [30] |
2. Cobalt Oxide/Polymer Nanocomposites
3. Cobalt Oxide/PPy Nanocomposites for Supercapacitors
3.1. Synthesis of Cobalt Oxide/PPy Nanocomposites
3.2. Advantages of PPy in Supercapacitors
3.3. Electrochemical Performance of Cobalt Oxide/PPy Nanocomposites in Supercapacitors
- (i)
- Faradaic redox reactions of cobalt oxide: Cobalt oxide, particularly in its spinel form Co3O4, undergoes reversible redox reactions during the charging and discharging process. These reactions involve the oxidation and reduction of cobalt ions, contributing significantly to the pseudocapacitance. These reactions are facilitated by the high surface area of the nanostructured cobalt oxide, which provides a large number of active sites for redox reactions. The typical reactions are (Equations (1) and (2)):
- (ii)
- Capacitive behavior of PPy: PPy contributes to the overall capacitance of the nanocomposite through its capacitive properties, which arise from the doping and dedoping processes. During charging, PPy undergoes oxidation, where it accepts electrons, and during discharging, it is reduced, releasing electrons. This redox process is accompanied by the exchange of ions (usually Cl− or SO42−) between the PPy matrix and the electrolyte. The reaction can be represented as (Equation (3)):
Electrode Material | Enhancement | Morphology | Synthesis Method | Specific Capacitance (F g−1) | Application | Ref. |
---|---|---|---|---|---|---|
CoO/PPy | - | Nanowires | Hydrothermal + chemical polymerization | 2223 at 1 mA cm−2 | Supercapacitor | [37] |
PPy/Co3O4/Carbon paper | Carbon paper | Composite | Hydrothermal + electrodeposition | 398.4 at 1 A g−1 | Supercapacitor | [42] |
Co3O4@PPy/MWCNT | MWCNT | Composite | Chemical polymerization + hydrothermal | 609 at 3 A g−1 | Supercapacitor | [44] |
Co3O4/PPy/MnO2 | MnO2 | Core–shell | Hydrothermal + chemical polymerization | 780 at 0.5 A g−1 | Supercapacitor | [46] |
Co3O4/AuPPy | Au | Nanowires | Hydrothermal + chemical polymerization | 2062 at 5 mA cm−2 | Supercapacitor | [47] |
AC//Co3O4/PPy/MnO2 | Activated carbon, MnO2 | Nanowires | Hydrothermal + electrodeposition | 629 at 1.2 mA cm−2 | Supercapacitor | [48] |
NiCo2O4/PPy/Carbon textiles | Carbon textiles | Nanowires | Hydrothermal + chemical polymerization | 2244.5 at 1 A g−1 | Supercapacitor | [49] |
3.4. Factors Influencing the Electrochemical Performance of Supercapacitors
4. Cobalt Oxide/PANI Nanocomposites for Supercapacitors
4.1. Synthesis of Cobalt Oxide/PANI Nanocomposites
4.2. Advantages of PANI in Supercapacitors
4.3. Electrochemical Performance of Cobalt Oxide/PANI Nanocomposites in Supercapacitors
- (i)
- Faradaic redox reactions of cobalt oxide: Similar to the cobalt oxide/PPy nanocomposite, the cobalt oxide in the cobalt oxide/PANI composite also undergoes reversible oxidation and reduction reactions. The redox reactions of Co2+/Co3+ and Co3+/Co4+ contribute to the overall pseudocapacitance. These reactions benefit from the high surface area provided by the nanostructured cobalt oxide, leading to enhanced redox activity. The reactions can be represented as (Equations (4) and (5)):
- (i)
- Pseudocapacitive and conductive properties of PANI: PANI contributes to the electrochemical performance through its pseudocapacitive properties, which are derived from its multiple redox states (leucoemeraldine, emeraldine, and pernigraniline). The redox transitions involve the transfer of protons (H⁺) and electrons (e−) and are represented as (Equation (6)):
4.4. Factors Influencing the Electrochemical Performance of Supercapacitors
Electrode Material | Enhancement | Morphology | Synthesis Method | Specific Capacitance (F g−1) | Application | Ref. |
---|---|---|---|---|---|---|
PANI-Co3O4 | - | Core–shell | Hydrothermal + chemical polymerization | 1184 at 1.25 A g−1 | Supercapacitor | [40] |
PANI/CoO/NF | Ni foam | Nanowires | Hydrothermal + electrodeposition | 2473 at 3 A g−1 | Supercapacitor | [53] |
NiCo2O4/PANI carbon textiles | Carbon textiles | Nanotubes | Hydrothermal + chemical polymerization | 720 C g−1 | Supercapacitor | [54] |
NiCo2O4/PANI/CC | Ni, Carbon cloth | Nanorods | Hydrothermal + electrodeposition | 901 at 1 A g−1 | Supercapacitor | [55] |
carbon, Co3O4, and PANI | Carbon | Nanocomposite | Hydrothermal + Chemical oxidative polymerization | 1407 at 1 A g−1 | Supercapacitor | [56] |
Graphene/PANI/Co3O4 | Graphene | Nanocomposite | Chemical polymerization + hydrothermal | 789.7 at 1 A g−1 | Supercapacitor | [60] |
FeCo2O4 and PANI | Fe | Nanorods | Hydrothermal + Chemical oxidative polymerization | 940 C g−1 | Supercapacitor | [58] |
Co2+ doped PANI | - | Films | Electrodeposition | 736 at 3 mA cm−2 | Supercapacitor | [61] |
Graphene/PANI/Co3O4 aerogel | Graphene | Aerogels | Chemical polymerization + hydrothermal | 1247 at 1 A g−1 | Supercapacitor | [62] |
PANI/Co3O4/CS | Chitosan | Nanocomposite | In-situ chemical oxidation polymerization | 687 at 1 A g−1 | Supercapacitor | [59] |
PANI/CoO/ZT | Zeolite | Composite | Co-precipitation + Chemical oxidative polymerization | 1282 at 1 A g−1 | Supercapacitor | [63] |
Co3O4/PANI | ITO | Nanoshrubs | Sol-gel + Emulsion polymerization | 1151 at 3 A g−1 | Supercapacitor | [64] |
Co3O4/PANI | ZIF-67 | Nanocage | Precipitation + Chemical polymerization | 1301 at 1 A g−1 | Supercapacitor | [57] |
5. Cobalt Oxide/PPy Nanocomposites for Batteries
5.1. Synthesis Strategies of Cobalt Oxide/PPy Nanocomposites for Batteries
5.2. Role of PPy in Enhancing Battery Performance
5.3. Electrochemical Performance of Cobalt Oxide/PPy Nanocomposites in Batteries
- (i)
- Lithium-ion batteries (LIBs): In LIBs, cobalt oxide undergoes conversion and alloying reactions during lithiation and delithiation processes. The electrochemical reactions can be summarized as in Equations (7) and (8):
- (ii)
- Sodium-ion batteries (Na-ion batteries):
5.4. Factors Influencing the Electrochemical Performance of Batteries
6. Cobalt Oxide/PANI Nanocomposites for Batteries
6.1. Synthesis Strategies of Cobalt Oxide/PANI Nanocomposites for Batteries
6.2. Role of PANI in Enhancing Battery Performance
6.3. Electrochemical Performance of Cobalt Oxide/PANI Nanocomposites in Batteries
- (i)
- Lithium-ion batteries (LIBs):
- (ii)
- Sodium-ion batteries (Na-ion batteries):
6.4. Factors Influencing the Electrochemical Performance of Batteries
7. Supercapattery: Basic Concept, Comparison, and How It Works
8. Cobalt Oxide/PPy and Cobalt Oxide/PANI Nanocomposites for Supercapatteries
8.1. Synthesis Strategies
8.2. Role of PPY and PANI in Enhancing Supercapattery Performance
8.3. Electrochemical Performance of Cobalt Oxide/PANI Nanocomposites in Supercapatteries
8.4. Factors Influencing the Electrochemical Performance of Supercapatteries
9. Effect of Electrolytes on Supercapacitors, Batteries, and Supercapatteries
10. Other Miscellaneous Electrochemical Studies and Applications
11. Current Challenges
12. Future Outlook
13. Critical Thinking Insights and Recommendations
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials 2022, 12, 3708. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.P.; Nandi, A.K. A Review on the Recent Advances in Hybrid Supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. [Google Scholar] [CrossRef]
- Njema, G.G.; Ouma, R.B.O.; Kibet, J.K. A Review on the Recent Advances in Battery Development and Energy Storage Technologies. J. Renew. Energy 2024, 2024, 2329261. [Google Scholar] [CrossRef]
- Srivastava, R.; Bhardwaj, S.; Kumar, A.; Singhal, R.; Scanley, J.; Broadbridge, C.C.; Gupta, R.K. Waste Citrus Reticulata Assisted Preparation of Cobalt Oxide Nanoparticles for Supercapacitors. Nanomaterials 2022, 12, 4119. [Google Scholar] [CrossRef]
- Nare, R.K.; Ramesh, S.; Basavi, P.K.; Kakani, V.; Bathula, C.; Yadav, H.M.; Dhanapal, P.B.; Kotanka, R.K.R.; Pasupuleti, V.R. Sonication-Supported Synthesis of Cobalt Oxide Assembled on an N-MWCNT Composite for Electrochemical Supercapacitors via Three-Electrode Configuration. Sci. Rep. 2022, 12, 1998. [Google Scholar] [CrossRef]
- Ma, J.; Wei, H.; Liu, Y.; Ren, X.; Li, Y.; Wang, F.; Han, X.; Xu, E.; Cao, X.; Wang, G.; et al. Application of Co3O4-Based Materials in Electrocatalytic Hydrogen Evolution Reaction: A Review. Int. J. Hydrogen Energy 2020, 45, 21205–21220. [Google Scholar] [CrossRef]
- Mei, J.; Liao, T.; Ayoko, G.A.; Bell, J.; Sun, Z. Cobalt Oxide-Based Nanoarchitectures for Electrochemical Energy Applications. Prog. Mater. Sci. 2019, 103, 596–677. [Google Scholar] [CrossRef]
- Raimundo, R.A.; Silva, J.N.; Silva, T.R.; Araújo, A.J.M.; Oliveira, J.F.G.A.; de Lima, L.C.; Morales, M.A.; Soares, M.M.; Macedo, D.A. Green Chemistry Synthesis of Co3O4-CoO Nanocomposite and Electrochemical Assessment for Oxygen Evolution Reaction. Mater. Lett. 2023, 341, 134196. [Google Scholar] [CrossRef]
- Laghari, A.J.; Aftab, U.; Shah, A.A.; Solangi, M.Y.; Abro, M.I.; Al-Saeedi, S.I.; Naeim, N.; Nafady, A.; Vigolo, B.; Emo, M.; et al. Surface Modification of Co3O4 Nanostructures Using Wide Range of Natural Compounds from Rotten Apple Juice for the Efficient Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2023, 48, 15447–15459. [Google Scholar] [CrossRef]
- Poonguzhali, R.V.; Kumar, E.R.; Srinivas, C.; Alshareef, M.; Aljohani, M.M.; Keshk, A.A.; El-Metwaly, N.M.; Arunadevi, N. Natural Lemon Extract Assisted Green Synthesis of Spinel Co3O4 Nanoparticles for LPG Gas Sensor Application. Sens. Actuators B Chem. 2023, 377, 133036. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Sethuraman, M.G.; Lee, Y.R. Supercapacitor Performance of Carbon Supported Co3O4 Nanoparticles Synthesized Using Terminalia Chebula Fruit. J. Taiwan Inst. Chem. Eng. 2016, 68, 489–495. [Google Scholar] [CrossRef]
- Bhatti, A.L.; Tahira, A.; Kumar, S.; Ujjan, Z.A.; Bhatti, M.A.; Kumar, S.; Aftab, U.; Karsy, A.; Nafady, A.; Infantes-Molina, A.; et al. Facile Synthesis of Efficient Co3O4 Nanostructures Using the Milky Sap of Calotropis Procera for Oxygen Evolution Reactions and Supercapacitor Applications. RSC Adv. 2023, 13, 17710–17726. [Google Scholar] [CrossRef] [PubMed]
- Al Jahdaly, B.A.; Abu-Rayyan, A.; Taher, M.M.; Shoueir, K. Phytosynthesis of Co3O4Nanoparticles as the High Energy Storage Material of an Activated Carbon/Co3O4Symmetric Supercapacitor Device with Excellent Cyclic Stability Based on a Na2SO4Aqueous Electrolyte. ACS Omega 2022, 7, 23673–23684. [Google Scholar] [CrossRef]
- Hsu, C.M.; Huang, Y.H.; Chen, H.J.; Lee, W.C.; Chiu, H.W.; Maity, J.P.; Chen, C.C.; Kuo, Y.H.; Chen, C.Y. Green Synthesis of Nano-Co3O4 by Microbial Induced Precipitation (MIP) Process Using Bacillus Pasteurii and Its Application as Supercapacitor. Mater. Today Commun. 2018, 14, 302–311. [Google Scholar] [CrossRef]
- Shim, H.W.; Lim, A.H.; Kim, J.C.; Jang, E.; Seo, S.D.; Lee, G.H.; Kim, T.D.; Kim, D.W. Scalable One-Pot Bacteria-Templating Synthesis Route toward Hierarchical, Porous-Co3O4 Superstructures for Supercapacitor Electrodes. Sci. Rep. 2013, 3, 1–9. [Google Scholar] [CrossRef]
- Pang, H.; Li, X.; Zhao, Q.; Xue, H.; Lai, W.-Y.; Hu, Z.; Huang, W. One-Pot Synthesis of Heterogeneous Co3O4-Nanocube/Co (OH)2- Nanosheet Hybrids for High-Performance Flexible Asymmetric All-Solid-State Supercapacitors. Nano Energy 2017, 35, 138–145. [Google Scholar] [CrossRef]
- Gao, Z.; Song, N.; Li, X. Microstructural Design of Hybrid CoO@NiO and Graphene Nano-Architectures for Flexible High Performance Supercapacitors. J. Mater. Chem. A 2015, 3, 14833–14844. [Google Scholar] [CrossRef]
- Zhou, S.; Ye, Z.; Hu, S.; Hao, C.; Wang, X.; Huang, C.; Wu, F. Designed Formation of Co3O4/ZnCo2O4/CuO Hollow Polyhedral Nanocages Derived from Zeolitic Imidazolate Framework-67 for High-Performance Supercapacitors. Nanoscale 2018, 10, 15771–15781. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Jiang, D.; Jia, D.; Liu, J. Hierarchical CuO Nanorod Arrays in Situ Generated on Three-Dimensional Copper Foam via Cyclic Voltammetry Oxidation for High-Performance Supercapacitors. J. Mater. Chem. A 2018, 6, 10474–10483. [Google Scholar] [CrossRef]
- Moosavifard, S.E.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Designing 3D Highly Ordered Nanoporous CuO Electrodes for High-Performance Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4851–4860. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Nayak, A.K.; Das, A.K.; Pradhan, D. Microwave-Assisted Solvothermal Synthesis of Cupric Oxide Nanostructures for High-Performance Supercapacitor. J. Phys. Chem. C 2018, 122, 11249–11261. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Sun, J.; Xu, C.; Chen, H. Simple Preparation of Porous FeCo2O4 Microspheres and Nanosheets for Advanced Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 11307–11317. [Google Scholar] [CrossRef]
- Tian, H.; Lang, X.; Nan, H.; An, P.; Zhang, W.; Hu, X.; Zhang, J. Nanosheet-Assembled LaMnO3@NiCo2O4 Nanoarchitecture Growth on Ni Foam for High Power Density Supercapacitors. Electrochim. Acta 2019, 318, 651–659. [Google Scholar] [CrossRef]
- Goel, S.; Tomar, A.K.; Sharma, R.K.; Singh, G. Highly Pseudocapacitive NiO Nanoflakes through Surfactant-Free Facile Microwave-Assisted Route. ACS Appl. Energy Mater. 2018, 1, 1540–1548. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, X. NiCo2O4@MnMoO4 Core–Shell Flowers for High Performance Supercapacitors. J. Mater. Chem. A 2016, 4, 8249–8254. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, H.; Zhang, M.; Li, L.; Wang, G.; Shan, X. Three-Dimensional Porous ZnCo2O4 Sheet Array Coated with Ni (OH)2 for High-Performance Asymmetric Supercapacitor. J. Colloid Interface Sci. 2017, 497, 50–56. [Google Scholar] [CrossRef]
- Ali, S.; Sufyan Javed, M.; Umer, K.; Wang, J.; Fu, Y.; Kong, S.; Khan, S.; Ahmad, A.; Parkash, A.; Albaqami, M.D.; et al. MoS2@Ti3C2Tx Heterostructure: A New Negative Electrode Material for Li-Ion Hybrid Supercapacitors. Chem. Eng. J. 2024, 498, 155330. [Google Scholar] [CrossRef]
- Azhar, S.; Al-Hawadi, J.S.; Annu; Ahmad, K.S.; Abrahams, I.; Lin, W.; Gupta, R.K.; Majid, S.; Abdel-Maksoud, M.A.; Malik, A. Sustainable Synthesis of Facile Bi2O3-Sb2O4-ZrO. Nanocomposite as Electrode Material for Energy Storage and Bifunctional Electrocatalyst for Energy Generation. J. Energy Storage 2024, 98, 113161. [Google Scholar] [CrossRef]
- Bokhari, S.W.; Ellis, A.V.; Uceda, M.; Wei, S.; Pope, M.; Zhu, S.; Gao, W.; Sherrell, P.C. Nitrogen-Doped Reduced Graphene Oxide/MoS2 ‘Nanoflower’ Composites for High-Performance Supercapacitors. J. Energy Storage 2022, 56, 105935. [Google Scholar] [CrossRef]
- Li, Z.; Gong, L. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion. Materials 2020, 13, 548. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, L.; Zhang, W.; Dai, Z.; Wei, W.; Luo, S.; Chen, X.; Chen, W.; Rao, F.; Wang, L.; et al. Conjugated System of PEDOT: PSS-Induced Self-Doped PANI for Flexible Zinc-Ion Batteries with Enhanced Capacity and Cyclability. ACS Appl. Mater. Interfaces 2019, 11, 30943–30952. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, P.; Charles, J.; Senthil Kumar, P.; Uma Shankar, V. Fabrication of Ternary Polyaniline-Titanium Dioxide-Polypyrrole (PANI-TiO-PPy) Nanocomposite as an Efficient Polymer Electrode for Supercapacitors. J. Appl. Polym. Sci. 2023, 140, e54478. [Google Scholar] [CrossRef]
- Naik, Y.V.; Kariduraganavar, M.; Srinivasa, H.T.; Siddagangaiah, P.B.; Naik, R. Influence of TiO2 Nanoparticles during In-Situ Polymerization of TiO2/PANI Nanocomposites and Its Supercapacitor Properties. J. Energy Storage 2024, 97, 112874. [Google Scholar] [CrossRef]
- Yan, D.; Qin, L.; Fan, X.; Zhang, X.; Pang, S. Fabrication of RGO/Cobalt-Nickel Oxide/Polypyrrole Composites and Their Electrochemical Performance. Optoelectron. Adv. Mater. Commun. 2024, 18, 66–75. [Google Scholar]
- Ishaq, S.; Moussa, M.; Kanwal, F.; Ayub, R.; Van, T.N.; Azhar, U.; Losic, D. One Step Strategy for Reduced Graphene Oxide/Cobalt-Iron Oxide/Polypyrrole Nanocomposite Preparation for High Performance Supercapacitor Electrodes. Electrochim. Acta 2022, 427, 140883. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett. 2013, 13, 2078–2085. [Google Scholar] [CrossRef]
- Nayak, S.; Kittur, A.A.; Nayak, S. Green Synthesis of Silver-Zirconia Composite Using Chitosan Biopolymer Binder for Fabrication of Electrode Materials in Supercapattery Application for Sustainable Energy Storage. Curr. Res. Green Sustain. Chem. 2022, 5, 100292. [Google Scholar] [CrossRef]
- Kuchena, S.F.; Wang, Y. Superior Polyaniline Cathode Material with Enhanced Capacity for Ammonium Ion Storage. ACS Appl. Energy Mater. 2020, 3, 11690–11698. [Google Scholar] [CrossRef]
- Hai, Z.; Gao, L.; Zhang, Q.; Xu, H.; Cui, D.; Zhang, Z.; Tsoukalas, D.; Tang, J.; Yan, S.; Xue, C. Facile Synthesis of Core–Shell Structured PANI-Co3O4 Nanocomposites with Superior Electrochemical Performance in Supercapacitors. Appl. Surf. Sci. 2016, 361, 57–62. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Wei, H.; He, C.; Liu, J.; Gu, H.; Wang, Y.; Yan, X.; Guo, J.; Ding, D.; Shen, N.Z.; Wang, X.; et al. Electropolymerized Polypyrrole Nanocomposites with Cobalt Oxide Coated on Carbon Paper for Electrochemical Energy Storage. Polymer 2015, 67, 192–199. [Google Scholar] [CrossRef]
- Yang, C.; Chen, H.; Guan, C. Hybrid CoO Nanowires Coated with Uniform Polypyrrole Nanolayers for High-Performance Energy Storage Devices. Nanomater 2019, 9, 586. [Google Scholar] [CrossRef]
- Ramesh, S.; Haldorai, Y.; Kim, H.S.; Kim, J.-H. A Nanocrystalline Co3O4@polypyrrole/MWCNT Hybrid Nanocomposite for High Performance Electrochemical Supercapacitors. RSC Adv. 2017, 7, 36833–36843. [Google Scholar] [CrossRef]
- Ramesh, S.; Karuppasamy, K.; Haldorai, Y.; Sivasamy, A.; Kim, H.-S.; Kim, H.S. Hexagonal Nanostructured Cobalt Oxide @ Nitrogen Doped Multiwalled Carbon Nanotubes/Polypyyrole Composite for Supercapacitor and Electrochemical Glucose Sensor. Colloids Surf. B Biointerfaces 2021, 205, 111840. [Google Scholar] [CrossRef]
- Wang, B.; He, X.; Li, H.; Liu, Q.; Wang, J.; Yu, L.; Yan, H.; Li, Z.; Wang, P. Optimizing the Charge Transfer Process by Designing Co3O4@PPy@MnO2 Ternary Core–Shell Composite. J. Mater. Chem. A 2014, 2, 12968–12973. [Google Scholar] [CrossRef]
- Hong, W.; Wang, J.; Li, Z.; Yang, S. Hierarchical Co3O4@Au-Decorated PPy Core/Shell Nanowire Arrays: An Efficient Integration of Active Materials for Energy Storage. J. Mater. Chem. A 2015, 3, 2535–2540. [Google Scholar] [CrossRef]
- Han, L.; Tang, P.; Zhang, L. Hierarchical Co3O4@PPy@MnO2 Core–Shell–Shell Nanowire Arrays for Enhanced Electrochemical Energy Storage. Nano Energy 2014, 7, 42–51. [Google Scholar] [CrossRef]
- Kong, D.; Ren, W.; Cheng, C.; Wang, Y.; Huang, Z.; Yang, H.Y. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. ACS Appl. Mater. Interfaces 2015, 7, 21334–21346. [Google Scholar] [CrossRef]
- Abbas, Q.; Khurshid, H.; Yoosuf, R.; Lawrence, J.; Issa, B.A.; Abdelkareem, M.A.; Olabi, A.G. Engineering of Nickel, Cobalt Oxides and Nickel/Cobalt Binary Oxides by Electrodeposition and Application as Binder Free Electrodes in Supercapacitors. Sci. Rep. 2023, 13, 15654. [Google Scholar] [CrossRef]
- Majeed, A.H.; Mohammed, L.A.; Hammoodi, O.G.; Sehgal, S.; Alheety, M.A.; Saxena, K.K.; Dadoosh, S.A.; Mohammed, I.K.; Jasim, M.M.; Salmaan, N.U. A Review on Polyaniline: Synthesis, Properties, Nanocomposites, and Electrochemical Applications. Int. J. Polym. Sci. 2022, 2022, 9047554. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, Y.; Chen, K.; Tian, Q. Hierarchical Structure Assembled from In-Situ Carbon-Coated Porous Tin Dioxide Nanosheets towards High Lithium Storage. J. Electroanal. Chem. 2019, 847, 113204. [Google Scholar] [CrossRef]
- Sahoo, S.; Dhakal, G.; Kim, W.K.; Lee, Y.R.; Shim, J.-J. Unidirectional Growth of Polyaniline on 3D CoO Nanowires for Aqueous Asymmetric Supercapacitors. J. Energy Storage 2023, 73, 109061. [Google Scholar] [CrossRef]
- Pan, C.; Liu, Z.; Li, W.; Zhuang, Y.; Wang, Q.; Chen, S. NiCo2O4@Polyaniline Nanotubes Heterostructure Anchored on Carbon Textiles with Enhanced Electrochemical Performance for Supercapacitor Application. J. Phys. Chem. C 2019, 123, 25549–25558. [Google Scholar] [CrossRef]
- Jabeen, N.; Xia, Q.; Yang, M.; Xia, H. Unique Core–Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 6093–6100. [Google Scholar] [CrossRef]
- Chhetri, K.; Tiwari, A.P.; Dahal, B.; Ojha, G.P.; Mukhiya, T.; Lee, M.; Kim, T.; Chae, S.-H.; Muthurasu, A.; Kim, H.Y. A ZIF-8-Derived Nanoporous Carbon Nanocomposite Wrapped with Co3O4-Polyaniline as an Efficient Electrode Material for an Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 856, 113670. [Google Scholar] [CrossRef]
- Ren, X.; Fan, H.; Ma, J.; Wang, C.; Zhang, M.; Zhao, N. Hierarchical Co3O4/PANI Hollow Nanocages: Synthesis and Application for Electrode Materials of Supercapacitors. Appl. Surf. Sci. 2018, 441, 194–203. [Google Scholar] [CrossRef]
- Rajkumar, S.; Elanthamilan, E.; Princy Merlin, J.; Sathiyan, A. Enhanced Electrochemical Behaviour of FeCo2O4/PANI Electrode Material for Supercapacitors. J. Alloys Compd. 2021, 874, 159876. [Google Scholar] [CrossRef]
- Vellakkat, M.; Hundekkal, D. Chitosan Mediated Synthesis of Core/Double Shell Ternary Polyaniline/Chitosan/Cobalt Oxide Nano Composite-as High Energy Storage Electrode Material in Supercapacitors. Mater. Res. Express 2016, 3, 15502. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Z.; Yao, S.; Li, Z.; Zhang, W. Design and Synthesis of Ternary Graphene/Polyaniline/Co3O4 Hierarchical Nanocomposites for Supercapacitors. Int. J. Electrochem. Sci. 2017, 12, 3721–3731. [Google Scholar] [CrossRef]
- Xu, H.; Wu, J.; Li, C.; Zhang, J.; Wang, X. Investigation of Polyaniline Films Doped with Co2+ as the Electrode Material for Electrochemical Supercapacitors. Ionics 2015, 21, 1163–1170. [Google Scholar] [CrossRef]
- Lin, H.; Huang, Q.; Wang, J.; Jiang, J.; Liu, F.; Chen, Y.; Wang, C.; Lu, D.; Han, S. Self-Assembled Graphene/Polyaniline/Co3O4 Ternary Hybrid Aerogels for Supercapacitors. Electrochim. Acta 2016, 191, 444–451. [Google Scholar] [CrossRef]
- Belardja, M.S.; Dahou, F.Z.; Djelad, H.; Benyoucef, A. Adsorption and Supercapacitor Applications of CoO-Zeolite Decorated Conducting Polymer Nanocomposite. Int. J. Environ. Anal. Chem. 2014, 1–14. [Google Scholar] [CrossRef]
- Sandya, C.P.; Rishad Baig, E.; Pillai, S.; Molji, C.; Aravind, A.; Devaki, S.J. Polyaniline-Cobalt Oxide Nano Shrubs Based Electrodes for Supercapacitors with Enhanced Electrochemical Performance. Electrochim. Acta 2019, 324, 134876. [Google Scholar]
- Blinova, N.V.; Stejskal, J.; Trchová, M.; Prokeš, J.; Omastová, M. Polyaniline and Polypyrrole: A Comparative Study of the Preparation. Eur. Polym. J. 2007, 43, 2331–2341. [Google Scholar] [CrossRef]
- Zhang, X.X.; Xie, Q.S.; Yue, G.H.; Zhang, Y.; Zhang, X.Q.; Lu, A.L.; Peng, D.L. A Novel Hierarchical Network-like Co3O4 Anode Material for Lithium Batteries. Electrochim. Acta 2013, 111, 746–754. [Google Scholar] [CrossRef]
- Liang, X.; Gao, G.; Jiang, X.; Zhang, W.; Bi, W.; Wang, J.; Du, Y.; Wu, G. Preparation of Hydrophobic PPy Coated V2O5 Yolk–Shell Nanospheres-Based Cathode Materials with Excellent Cycling Performance. ACS Appl. Energy Mater. 2020, 3, 2791–2802. [Google Scholar] [CrossRef]
- Guo, B.; Kong, Q.; Zhu, Y.; Mao, Y.; Wang, Z.; Wan, M.; Chen, L. Electrochemically Fabricated Polypyrrole–Cobalt–Oxygen Coordination Complex as High-Performance Lithium-Storage Materials. Chem. A Eur. J. 2011, 17, 14878–14884. [Google Scholar] [CrossRef]
- Liu, L.; Hou, Y.; Wang, J.; Chen, J.; Liu, H.-K.; Wu, Y.; Wang, J. Nanofibrous Co3O4/PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithium-Oxygen Batteries. Adv. Mater. Interfaces 2016, 3, 1600030. [Google Scholar] [CrossRef]
- Xiao, C.-Y.; Kubendhiran, S.; Wang, G.-B.; Kongvarhodom, C.; Chen, H.-M.; Yougbaré, S.; Saukani, M.; Wu, Y.-F.; Lin, L.-Y. Innovative Design of Dual Functional Polypyrrole-Coated Zinc Cobalt Sulfide Nanosheets on Carbon Cloth as a Binder-Free Anode of Sodium-Ion Batteries. J. Energy Storage 2024, 91, 112012. [Google Scholar] [CrossRef]
- Iqbal, J.; Numan, A.; Omaish Ansari, M.; Jafer, R.; Jagadish, P.R.; Bashir, S.; Hasan, P.M.Z.; Bilgrami, A.L.; Mohamad, S.; Ramesh, K.; et al. Cobalt Oxide Nanograins and Silver Nanoparticles Decorated Fibrous Polyaniline Nanocomposite as Battery-Type Electrode for High Performance Supercapattery. Polymers 2020, 12, 2816. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Shi, T.; Zu, L.; Lian, H.; Cui, X.; Wang, X. Highly Stable Polyaniline-Based Cathode Material Enabled by Phosphorene for Zinc-Ion Batteries with Superior Specific Capacity and Cycle Life. ACS Appl. Mater. Interfaces 2024, 16, 24781–24795. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Xie, D.; Zhong, Y.; Chen, M.; Xia, X. Smart Construction of Polyaniline Shell on Cobalt Oxides as Integrated Core-Shell Arrays for Enhanced Lithium Ion Batteries. Electrochim. Acta 2017, 247, 701–707. [Google Scholar] [CrossRef]
- Gu, L.-L.; Wang, C.; Qiu, S.-Y.; Wang, K.-X.; Gao, X.-T.; Zuo, P.-J.; Sun, K.-N.; Zhu, X.-D. Cobalt-Iron Oxide Nanotubes Decorated with Polyaniline as Advanced Cathode Hosts for Li-S Batteries. Electrochim. Acta 2021, 390, 138873. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte Selection for Supercapacitive Devices: A Critical Review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef]
- Li, Z.; Cong, Y.; Zhao, J.; Su, H.; Shang, Y.; Liu, H. Polyaniline-Coated Cobalt–Iron Oxide Composites Modified Separator for High Performance Lithium–Sulfur Batteries. ACS Appl. Electron. Mater. 2024, 6, 3780–3789. [Google Scholar] [CrossRef]
- Morales, D.V.; Astudillo, C.N.; Anastasoaie, V.; Dautreppe, B.; Urbano, B.F.; Rivas, B.L.; Gondran, C.; Aldakov, D.; Chovelon, B.; André, D.; et al. A Cobalt Oxide–Polypyrrole Nanocomposite as an Efficient and Stable Electrode Material for Electrocatalytic Water Oxidation. Sustain. Energy Fuels 2021, 5, 4710–4723. [Google Scholar] [CrossRef]
- Jayaseelan, S.S.; Bhuvanendran, N.; Xu, Q.; Su, H. Co3O4 Nanoparticles Decorated Polypyrrole/Carbon Nanocomposite as Efficient Bi-Functional Electrocatalyst for Electrochemical Water Splitting. Int. J. Hydrogen Energy 2020, 45, 4587–4595. [Google Scholar] [CrossRef]
- Shahabuddin, S.; Sarih, N.M.; Ismail, F.H.; Shahid, M.M.; Huang, N.M. Synthesis of Chitosan Grafted-Polyaniline/Co3O4 Nanocube Nanocomposites and Their Photocatalytic Activity toward Methylene Blue Dye Degradation. RSC Adv. 2015, 5, 83857–83867. [Google Scholar] [CrossRef]
- Muthumari, P.; Siva, V.; Murugan, A.; Shameem, A.; Bahadur, S.A.; Thangarasu, S. Hydrothermally Synthesized Cobalt Oxide Embedded Polymer Nanocomposites as Efficient Electrode Material for Asymmetric Supercapacitors. J. Mater. Sci. Mater. Electron. 2023, 34, 1491. [Google Scholar] [CrossRef]
- Siwatch, P.; Sharma, K.; Manyani, N.; Kang, J.; Tripathi, S.K. Characterization of Nanostructured Nickel Cobalt Oxide-Polyvinyl Alcohol Composite Films for Supercapacitor Application. J. Alloys Compd. 2021, 872, 159409. [Google Scholar] [CrossRef]
- Yang, Z.; Li, R.; Deng, Z. A Deep Study of the Protection of Lithium Cobalt Oxide with Polymer Surface Modification at 4.5 V High Voltage. Sci. Rep. 2018, 8, 863. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Xia, Q.; Xue, X.; Liu, Q.; Liu, H.-J. Synthesis of Cobalt-Based Layered Coordination Polymer Nanosheets and Their Application in Lithium-Ion Batteries as Anode Materials. RSC Adv. 2016, 6, 4442–4447. [Google Scholar] [CrossRef]
- Alimola, F.; Arsalani, N.; Ahadzadeh, I. Facile Fabrication of a New Nanocomposite Based on Cobalt Oxide and a New Polymer Dots Derived from Polyethylene Glycol Diacid as a High Performance, Ultra-Stable Symmetric Supercapacitor. Electrochim. Acta 2022, 417, 140283. [Google Scholar] [CrossRef]
- Jayalakshmi, K.; Ismayil; Hegde, S.; Sanjeev, G.; Murari, M.S. Improving Electrolyte Performance: Nanocomposite Solid Polymer Electrolyte Films with Cobalt Oxide Nanoparticles. Polym. Compos. 2024, 45, 137–150. [Google Scholar] [CrossRef]
- Xu, D.; Mu, C.; Xiang, J.; Wen, F.; Su, C.; Hao, C.; Hu, W.; Tang, Y.; Liu, Z. Carbon-Encapsulated Co3O4@CoO@Co Nanocomposites for Multifunctional Applications in Enhanced Long-Life Lithium Storage, Supercapacitor and Oxygen Evolution Reaction. Electrochim. Acta 2016, 220, 322–330. [Google Scholar] [CrossRef]
- Iqbal, J.; Numan, A.; Jafer, R.; Bashir, S.; Jilani, A.; Mohammad, S.; Khalid, M.; Ramesh, K.; Ramesh, S. Ternary Nanocomposite of Cobalt Oxide Nanograins and Silver Nanoparticles Grown on Reduced Graphene Oxide Conducting Platform for High-Performance Supercapattery Electrode Material. J. Alloys Compd. 2020, 821, 153452. [Google Scholar] [CrossRef]
- Mahmood, J.; Jung, S.-M.; Kim, S.-J.; Park, J.; Yoo, J.-W.; Baek, J.-B. Cobalt Oxide Encapsulated in C2N-H2D Network Polymer as a Catalyst for Hydrogen Evolution. Chem. Mater. 2015, 27, 4860–4864. [Google Scholar] [CrossRef]
Parameter | Supercapacitors | Batteries | Supercapatteries |
---|---|---|---|
Energy storage mechanism | Electrostatic (capacitive) | Electrochemical (faradaic) | Hybrid: capacitive + faradaic reactions |
Energy density | Low (1–10 Wh/kg) | High (100–265 Wh/kg, for LIB) | Moderate (between supercapacitors and batteries, 20–100 Wh/kg) |
Power density | Very High (>10,000 W/kg) | Moderate to Low (200–2000 W/kg) | High (closer to supercapacitors, 1000–10,000 W/kg) |
Charge-discharge speed | Very fast (seconds to minutes) | Slow (hours) | Fast (minutes to tens of minutes) |
Cycle life | Long (up to 1,000,000 GCD cycles) | Shorter (500–3000 cycles) | Long (10,000–100,000 cycles) |
Voltage window | 2.5–2.7 V per cell | 3.6–4.2 V per cell | 2.5–4.0 V (material dependent) |
Response time | Instantaneous | Slow | Fast (intermediate between the two) |
Self-discharge | Quickly when not in use | Low | Moderate (lower than supercapacitors but higher than batteries) |
Cost | Lower per unit of power | Higher per unit of energy | Moderate |
Application | High-power applications (e.g., regenerative braking) | Energy storage applications (e.g., mobile phones, EVs) | Hybrid applications (e.g., electric vehicles, power grids) |
Device | CV | GCD |
---|---|---|
Supercapacitors | ||
EDLCs | Rectangular | Linear (symmetric) |
Pseudocapacitors | Oval with redox peaks | Slightly non-linear (asymmetric) |
Hybrid capacitors | Rectangular with redox peaks (mixed) | Combination of linear and non-linear |
Batteries | Sharp redox peaks | Non-linear with distinct plateaus |
Supercapatteries | Quasi-rectangular with broad redox peaks | Quasi-linear with slight curvature |
Parameter | Supercapacitors | Batteries | Supercapatteries |
---|---|---|---|
Energy density | Higher with organic and ionic liquids; lower with aqueous electrolytes | Higher in organic/solid electrolytes, liquid electrolytes (e.g., lithium-ion systems) | Balanced; depends on electrolyte selection (aqueous for power, organic for energy) |
Power density | Higher with aqueous electrolytes due to fast ion transport | Moderate to low due to solid-state diffusion limits | Higher with aqueous electrolytes; organic provides balanced performance |
Cycle life | Aqueous and ionic liquids can provide excellent stability; organic electrolytes have moderate stability | Longer with solid-state or stable liquid electrolytes; dendrite formation is a risk with liquid | Long-term stability depends on electrolyte–electrode compatibility |
Rate capability | Aqueous electrolytes provide superior rate capability | Lower in solid-state, moderate in liquid systems | Aqueous electrolytes provide faster charge-discharge; organic is slower |
Safety | Aqueous and ionic electrolytes are safer (non-flammable) | Solid-state offers better safety than liquid; organic is flammable | Solid-state or aqueous electrolytes offer enhanced safety |
Composite | Cobalt as | Polymer | Material | Application | Ref. |
---|---|---|---|---|---|
Co–iron oxide/PANI (CFOP) | Co metal | PANI | Separator | Li-S batteries | [76] |
PPN-CoO | CoO | PPy | Anode | Electrocatalytic water splitting | [77] |
Co3O4/Ppy/MWCNT | Co3O4 | PPy | Electrode | Electrocatalytic water splitting | [78] |
ChGP/Co3O4 | Co3O4 | Chitosan, PANI | Nanocomposite | Photocatalytic dye degradation | [79] |
Co3O4/PVA/PVP | Co3O4 | Poly(vinyl alcohol), poly(vinyl pyrolidone) | Nanocomposite | Supercapacitor | [80] |
NiCo2O4/PVA | CoO | Poly(vinyl alcohol) | Electrode | Supercapacitor | [81] |
LiCoO2 (MLCO) | CoO | Poly[N,N-bis(2-cryano-ethyl)-acrylamide] | Cathode | Li-ion batteries | [82] |
[Co(tfbdc)(4,40-bpy)(H2O)2] Co-LCP | Co metal | Coordination polymer | Anode | Li-ion batteries | [83] |
PDs-CoO | CoO | Polyethylene glycol diacid | Nanocomposite | Supercapacitor | [84] |
Mg/SPE/Co3O4 | Co3O4 | Methyl cellulose | Electrolyte films | Batteries | [85] |
Phosphene-PANI | - | PANI | Cathode | Zn-ion batteries | [72] |
Co3O4/CoO/Co/C | Co3O4, CoO, Co metal | - | Electrode | Li-ion batteries, supercapacitors, and OER | [86] |
rGO/Co3O4/Ag/ activated carbon | Co3O4 | - | Anode | Supercapatteries | [87] |
Co/C2N | Cobalt oxide | C2N network | Catalyst | HER | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annu; Park, S.-S.; Alam, M.N.; Yewale, M.; Shin, D.K. Unraveling the Electrochemical Insights of Cobalt Oxide/Conducting Polymer Hybrid Materials for Supercapacitor, Battery, and Supercapattery Applications. Polymers 2024, 16, 2907. https://doi.org/10.3390/polym16202907
Annu, Park S-S, Alam MN, Yewale M, Shin DK. Unraveling the Electrochemical Insights of Cobalt Oxide/Conducting Polymer Hybrid Materials for Supercapacitor, Battery, and Supercapattery Applications. Polymers. 2024; 16(20):2907. https://doi.org/10.3390/polym16202907
Chicago/Turabian StyleAnnu, Sang-Shin Park, Md Najib Alam, Manesh Yewale, and Dong Kil Shin. 2024. "Unraveling the Electrochemical Insights of Cobalt Oxide/Conducting Polymer Hybrid Materials for Supercapacitor, Battery, and Supercapattery Applications" Polymers 16, no. 20: 2907. https://doi.org/10.3390/polym16202907
APA StyleAnnu, Park, S. -S., Alam, M. N., Yewale, M., & Shin, D. K. (2024). Unraveling the Electrochemical Insights of Cobalt Oxide/Conducting Polymer Hybrid Materials for Supercapacitor, Battery, and Supercapattery Applications. Polymers, 16(20), 2907. https://doi.org/10.3390/polym16202907