Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Synthesis
2.2.1. Paraoxon
2.2.2. Polymer Materials
2.2.3. Kinetic Measurements
3. Results and Discussion
3.1. Synthesis of Polymeric Material
3.2. Paraoxon Hydrolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bjarnason, S.; Mikler, J.; Hill, I.; Tenn, C.; Garrett, M.; Caddy, N.; Sawyer, T.W. Comparison of selected skin decontaminant products and regimens against VX in domestic swine. Hum. Exp. Toxicol. 2008, 27, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Baltrusaitis, J. Destruction of emerging organophosphate contaminants in wastewater using the heterogeneous iron-based photo-Fenton-like process. J. Hazard. Mater. Lett. 2021, 2, 100012. [Google Scholar] [CrossRef]
- Janoš, P.; Tokar, O.; Došek, M.; Mazanec, K.; Ryšánek, P.; Kormunda, M.; Henych, J.; Janoš, P., Jr. Amidoxime-functionalized bead cellulose for the decomposition of highly toxic organophosphates. RSC Adv. 2021, 11, 17976–17984. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Medintz, I.L.; Walper, S.A. Enzymatic Bioremediation of Organophosphate Compounds–Progress and Remaining Challenges. Front. Bioeng. Biotechnol. 2019, 7, 289. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem. Eng. J. 2021, 168, 107945. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, B.; Ye, X.; Wang, Z.-G. Self-assembly of the de novo designed peptides to produce supramolecular catalysts with built-in enzyme-like active sites: A review of structureeactivity relationship. Mater. Today Nano 2023, 21, 100302. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Z.; Tie, Z.; Wang, B.; Ye, M.; Du, L.; Cui, R.; Liu, W.; Wan, C.; Liu, Q.; et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 2022, 13, 827. [Google Scholar] [CrossRef]
- Moon, S.-Y.; Liu, Y.; Hupp, J.T.; Farha, O.K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal–organic framework. Angew. Chem. Int. Ed. 2015, 54, 6795–6799. [Google Scholar] [CrossRef]
- Islamoglu, T.; Ortuno, M.A.; Proussaloglou, E.; Howarth, A.J.; Vermeulen, N.A.; Atilgan, A.; Asiri, A.M.; Cramer, C.J.; Farha, O.K. Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angew. Chem. Int. Ed. 2018, 57, 1949–1953. [Google Scholar] [CrossRef]
- DeCoste, J.B.; Peterson, G.W.; Schindler, B.J.; Killops, K.L.; Browe, M.A.; Mahle, J.J. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 2013, 1, 11922–11931. [Google Scholar] [CrossRef]
- DeCoste, J.B.; Peterson, G.W. Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chem. Rev. 2014, 114, 5695–5727. [Google Scholar] [CrossRef] [PubMed]
- Denet, E.; Espina-Benitez, M.B.; Pitault, I.; Pollet, T.; Blaha, D.; Bolzinger, M.-A.; Rodriguez-Nava, V.; Briançon, S. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds. Int. J. Pharm. 2020, 583, 119373. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.-W.; Tseng, W.-B.; Tseng, W.-L. Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis, catalytic mechanism, and water remediation application. Environ. Res. 2020, 188, 109653. [Google Scholar] [CrossRef]
- Pan, J.; Liu, S.; Jia, H.; Yang, J.; Qin, M.; Zhou, T.; Chen, Z.; Jia, X.; Guo, T. Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc(II)-picolinamine-amidoxime module. J. Catal. 2019, 380, 83–90. [Google Scholar] [CrossRef]
- Cabal, J.; Míčová, J.; Kuča, K. Kinetics of hydrolysis of organophosphate soman by cationic surfactant Resamin AE. J. Appl. Biomed. 2010, 8, 111–116. [Google Scholar] [CrossRef]
- Zhang, B.; Breslow, R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997, 119, 1676–1681. [Google Scholar] [CrossRef]
- Feng, G.; Natale, D.; Prabaharan, R.; Mareque-Rivas, J.C.; Williams, N.H. Efficient Phosphodiester Binding and Cleavage by a ZnII Complex Combining Hydrogen-Bonding Interactions and Double Lewis Acid Activation. Angew. Chem. Int. Ed. 2006, 45, 7056–7059. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. Dalton Trans. 2009, 227–239. [Google Scholar] [CrossRef]
- Desbouis, D.; Troitsky, I.P.; Belousoff, M.J.; Spiccia, L.; Graham, B. Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coord. Chem. Rev. 2012, 256, 897–937. [Google Scholar] [CrossRef]
- Wende, C.; Lüdtke, C.; Kulak, N. Copper Complexes of N-Donor Ligands as Artificial Nucleases. Eur. J. Inorg. Chem. 2014, 2597–2612. [Google Scholar] [CrossRef]
- Li, F.-Z.; Feng, F.-M.; Yu, L.; Xie, J.-Q. Nucleic acid and phosphoester hydrolytic cleavage catalysed by aza-crown ether metal complexes as synthetic nucleases. Prog. React. Kin. Mech. 2014, 39, 209–232. [Google Scholar] [CrossRef]
- Yu, L.; Li, F.-Z.; Wu, J.-Y.; Xie, J.-Q.; Li, S. Development of the aza-crown ether metal complexes as artificial hydrolase. J. Inorg. Biochem. 2016, 154, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.D.; Kuźnik, N.; Walczak, K. Cyclen-based artificial nucleases: Three decades of development (1989–2022). Part a–Hydrolysis of phosphate esters. Coord. Chem. Rev. 2023, 481, 215047. [Google Scholar] [CrossRef]
- Martell, A.E.; Smith, R.M.; Motekaitis, R.J. NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes); Version 7.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Deal, K.A.; Burstyn, J.N. Mechanistic studies of dichloro(1,4,7-triazacyclononane)copper(II)-catalyzed phosphate diester hydrolysis. Inorg. Chem. 1996, 35, 2792–2798. [Google Scholar] [CrossRef]
- Deck, K.M.; Tseng, T.A.; Burstyn, J.N. Triisopropyltriazacyclononane copper(II): An efficient phosphodiester hydrolysis catalyst and DNA cleavage agent. Inorg. Chem. 2002, 41, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Fry, F.H.; Fischmann, A.J.; Belousoff, M.J.; Spiccia, L.; Brügger, J. Kinetics and mechanism of hydrolysis of a model phosphate diester by [Cu(Me3tacn)(OH2)2]2+ (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane). Inorg. Chem. 2005, 44, 941–950. [Google Scholar] [CrossRef]
- Buziková, M.; Willimetz, R.; Kotek, J. The Hydrolytic Activity of Copper(II) Complexes with 1,4,7-Triazacyclononane Derivatives for the Hydrolysis of Phosphate Diesters. Molecules 2023, 28, 7542. [Google Scholar] [CrossRef]
- Gupta, R.C. (Ed.) Toxicology of Organophosphate and Carbamate Compounds; Academic Press: Cambridge, MA, USA, 2011; ISBN 9780120885237. [Google Scholar]
- Lorke, D.E.; Nurulain, S.M.; Hasan, M.Y.; Kuča, K.; Petroianu, G.A. Combined Pre- and Posttreatment of Paraoxon Exposure. Molecules 2020, 25, 1521. [Google Scholar] [CrossRef]
- Omnic 9.2.98, Version 9.2; Thermo Fisher Scientific Inc.: Carlsbad, CA, USA.
- Shanbhag, M.M.; Ilager, D.; Mahapatra, S.; Shetti, N.P.; Chandra, P. Amberlite XAD-4 based electrochemical sensor for diclofenac detection in urine and commercial tablets. Mater. Chem. Phys. 2021, 273, 125044. [Google Scholar] [CrossRef]
- Kara, D.; Fisher, A.; Hill, S.J. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4. J. Hazard. Mater. 2009, 165, 1165–1169. [Google Scholar] [CrossRef]
- Solangi, I.B.; Memon, S.; Bhanger, M.I. Removal of fluoride from aqueous environment by modified Amberlite resin. J. Hazard. Mater. 2009, 171, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulos, G.; Doulia, D.; Anagnostopoulos, E. Adsorption of pesticides on porous polymeric adsorbents. Chem. Eng. Sci. 2005, 60, 1177–1186. [Google Scholar] [CrossRef]
- Ahmad, A.; Siddique, J.A.; Laskar, M.A.; Kumar, R.; Mohd-Setapar, S.H.; Khatoon, A.; Shiekh, R.A. New generation Amberlite XAD resin for the removal of metal ions: A review. J. Environmen. Sci. 2015, 31, 104–123. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, X. Chapter 8: Thiophene-based polymers: Synthesis and applications. In Sulfur-Containing Polymers: From Synthesis to Functional Materials; Zhang, X.-H., Theato, P., Eds.; WILEY-VCH: Weinheim, Germany, 2021; pp. 265–304. ISBN 9783527346707. [Google Scholar]
- Brambilla, L.; Capel Ferrón, C.; Tommasini, M.; Hong, K.; López Navarrete, J.T.; Hernández, V.; Zerbi, G. Infrared and multi-wavelength Raman spectroscopy of regio-regular P3HT and its deutero derivatives. J. Raman Spectrosc. 2018, 49, 569–580. [Google Scholar] [CrossRef]
- Paternò, G.M.; Robbiano, V.; Fraser, K.J.; Frost, C.; García Sakai, V.; Cacialli, F. Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: The Importance of Crystallinity for Organic Avionics. Sci. Rep. 2017, 7, 41013. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Grey, J.K. Resonance chemical imaging of polythiophene/fullerene photovoltaic thin films: Mapping morphology-dependent aggregated and unaggregated C=C Species. J. Am. Chem. Soc. 2009, 131, 9654–9662. [Google Scholar] [CrossRef]
- Tsoi, W.C.; James, D.T.; Kim, J.S.; Nicholson, P.G.; Murphy, C.E.; Bradley, D.D.C.; Nelson, J.; Kim, J.-S. The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J. Am. Chem. Soc. 2011, 133, 9834–9843. [Google Scholar] [CrossRef]
Buffer (pH 7.4) | 3:1 (v:v) Ethanol/Buffer (pH 7.4) | |||||
---|---|---|---|---|---|---|
parameter | 23 °C | 37 °C | 50 °C | 23 °C | 37 °C | 50 °C |
kobs (s−1) | 1.35∙10−5 | 4.79∙10−5 | 1.30∙10−4 | 4.70·10−6 | 1.33·10−5 | 2.93·10−5 |
half-time (h) | 14 | 4.0 | 1.5 | 41 | 14.5 | 6.6 |
pH = 6.5 | pH = 7.4 | |||||
---|---|---|---|---|---|---|
catalyst | 23 °C | 37 °C | 50 °C | 23 °C | 37 °C | 50 °C |
none 1 | 9.26·10−8 | 1.60·10−7 | 2.59·10−7 | 3.59·10−7 | 4.48·10−7 | 9.61·10−7 |
CuSO4 | pptn. 2 | pptn. 2 | pptn. 2 | 1.49·10−7 | 3.67·10−7 | 7.67·10−7 |
Cu–L1 | pptn. 2 | pptn. 2 | pptn. 2 | 1.02·10−5 | 1.74·10−5 | 2.02∙10−4 |
Cu–L2 | 2.99·10−5 | 3.83·10−5 | 7.85·10−5 | 1.35·10−5 | 4.79·10−5 | 1.30·10−4 |
pH = 6.5 | pH = 7.4 | |||||
---|---|---|---|---|---|---|
catalyst | 23 °C | 37 °C | 50 °C | 23 °C | 37 °C | 50 °C |
none 1 | 2080 | 1201 | 742 | 537 | 430 | 200 |
CuSO4 | pptn. 2 | pptn. 2 | pptn. 2 | 1290 | 525 | 251 |
Cu–L1 | pptn. 2 | pptn. 2 | pptn. 2 | 19 | 11 | 1.0 |
Cu–L2 | 6.5 | 5.0 | 2.5 | 14 | 4.0 | 1.5 |
Material | kobs (s−1) | t½ (h) |
---|---|---|
native Amberlite | 3.60∙10−7 | 534 |
Amberlite–2,2′-dithiophene–L1 | 2.42∙10−7 | 796 |
Amberlite–2,2′-dithiophene–L1–Cu(II) | 6.65∙10−7 | 290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buziková, M.; Zhukouskaya, H.; Tomšík, E.; Vetrík, M.; Kučka, J.; Hrubý, M.; Kotek, J. Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives. Polymers 2024, 16, 2911. https://doi.org/10.3390/polym16202911
Buziková M, Zhukouskaya H, Tomšík E, Vetrík M, Kučka J, Hrubý M, Kotek J. Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives. Polymers. 2024; 16(20):2911. https://doi.org/10.3390/polym16202911
Chicago/Turabian StyleBuziková, Michaela, Hanna Zhukouskaya, Elena Tomšík, Miroslav Vetrík, Jan Kučka, Martin Hrubý, and Jan Kotek. 2024. "Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives" Polymers 16, no. 20: 2911. https://doi.org/10.3390/polym16202911
APA StyleBuziková, M., Zhukouskaya, H., Tomšík, E., Vetrík, M., Kučka, J., Hrubý, M., & Kotek, J. (2024). Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives. Polymers, 16(20), 2911. https://doi.org/10.3390/polym16202911