Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations
Abstract
:1. Introduction
2. Conventional Membranes vs. Cellulosic Membranes: Limitations and Challenges
3. Removal of Drugs from the Water
3.1. Removal of Tetracycline
3.2. Removal of Ciprofloxin
3.3. Removal of Other Antibiotics
4. Removal of Dye Contaminants from Water
5. Removal of Other Contaminants
6. Challenges and Limitations of Cellulose-Based Membranes
7. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Agadellis, E.; Tartaglia, A.; Locatelli, M.; Kabir, A.; Furton, K.G.; Samanidou, V. Mixed-Mode Fabric Phase Sorptive Extraction of Multiple Tetracycline Residues from Milk Samples Prior to High Performance Liquid Chromatography-Ultraviolet Analysis. Microchem. J. 2020, 159, 105437. [Google Scholar] [CrossRef]
- Kong, L.; Wang, Q.; Wang, Y.; Yan, Q.; Qiu, W.; Zheng, C. Sustainable Cu2(OH)2CO3/g-C3N4/Cellulose Acetate-Derived Porous Composite Membrane for Congo Red and Tetracycline Removal with Photocatalytic Self-Cleaning Properties under Natural Solar Irradiation. Sustain. Horiz. 2023, 5, 100047. [Google Scholar] [CrossRef]
- Li, Z.; Meng, F.; Li, R.; Fang, Y.; Cui, Y.; Qin, Y.; Zhang, M. Amino−functionalized Fe(III)−Based MOF for the High−efficiency Extraction and Ultrasensitive Colorimetric Detection of Tetracycline. Biosens. Bioelectron. 2023, 234, 115294. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, S.; Li, Y.; Wang, T.; Hou, X. Hierarchically Porous Zeolitic Imidazole Framework-8/Cellulose Membrane Installed in Filter as Sorbent for Microextraction in Packed Syringe towards Trace Tetracyclines in Water Samples. New J. Chem. 2023, 47, 4068–4073. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.-W. Toxicity of Metal Oxides, Dyes, and Dissolved Organic Matter in Water: Implications for the Environment and Human Health. Toxics 2024, 12, 111. [Google Scholar] [CrossRef]
- Lin, J.; Ye, W.; Xie, M.; Seo, D.H.; Luo, J.; Wan, Y.; Van Der Bruggen, B. Environmental Impacts and Remediation of Dye-Containing Wastewater. Nat. Rev. Earth Environ. 2023, 4, 785–803. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Pan, J.; Hua, D.; Hong, Y.; Cheng, X.; Guo, F.; Bing Tan, K.; Zhong, Z.; Zhan, G. Design of Hybrid G-C3N4/GO/MCE Photocatalytic Membranes with Enhanced Separation Performance under Visible-Light Irradiation. Chem. Eng. J. 2023, 466, 143164. [Google Scholar] [CrossRef]
- Li, S.; Wang, D.; Xiao, H.; Zhang, H.; Cao, S.; Chen, L.; Ni, Y.; Huang, L. Ultra-Low Pressure Cellulose-Based Nanofiltration Membrane Fabricated on Layer-by-Layer Assembly for Efficient Sodium Chloride Removal. Carbohydr. Polym. 2021, 255, 117352. [Google Scholar] [CrossRef]
- Acarer, S.; Pir, İ.; Tüfekci, M.; Erkoҫ, T.; Öztekin, V.; Güneş Durak, S.; Özҫoban, M.Ş.; Türkoğlu Demirkol, G.; Alhammod, M.; Çavuş, S.; et al. Characterisation and Modelling the Mechanics of Cellulose Nanofibril Added Polyethersulfone Ultrafiltration Membranes. Heliyon 2023, 9, e13086. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Cellulose Acetate-Based Materials for Water Treatment in the Context of Circular Economy. Water 2023, 15, 1860. [Google Scholar] [CrossRef]
- Voisin, H.; Bergström, L.; Liu, P.; Mathew, A. Nanocellulose-Based Materials for Water Purification. Nanomaterials 2017, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, D.; Liu, S.; Li, Z.; Wei, X.; Lin, S.; Guo, M. Preparation and Characterization of Sulfated Cellulose Nanocrystalline and Its Composite Membrane for Removal of Tetracycline Hydrochloride in Water. Energy Environ. Mater. 2020, 3, 209–215. [Google Scholar] [CrossRef]
- Das, S.; Barui, A.; Adak, A. Montmorillonite Impregnated Electrospun Cellulose Acetate Nanofiber Sorptive Membrane for Ciprofloxacin Removal from Wastewater. J. Water Process Eng. 2020, 37, 101497. [Google Scholar] [CrossRef]
- Khalifa, R.E.; Omer, A.M.; Tamer, T.M.; Salem, W.M.; Mohy Eldin, M.S. Removal of Methylene Blue Dye from Synthetic Aqueous Solutions Using Novel Phosphonate Cellulose Acetate Membranes: Adsorption Kinetic, Equilibrium, and Thermodynamic Studies. DWT 2019, 144, 272–285. [Google Scholar] [CrossRef]
- Patel, R.; Kim, S.J.; Roh, D.K.; Kim, J.H. Synthesis of Amphiphilic PCZ-r-PEG Nanostructural Copolymers and Their Use in CO2/N2 Separation Membranes. Chem. Eng. J. 2014, 254, 46–53. [Google Scholar] [CrossRef]
- Rehman, A.; Jahan, Z.; Sher, F.; Noor, T.; Khan Niazi, M.B.; Akram, M.A.; Sher, E.K. Cellulose Acetate Based Sustainable Nanostructured Membranes for Environmental Remediation. Chemosphere 2022, 307, 135736. [Google Scholar] [CrossRef]
- Sharma, R.; Nath, P.C.; Mohanta, Y.K.; Bhunia, B.; Mishra, B.; Sharma, M.; Suri, S.; Bhaswant, M.; Nayak, P.K.; Sridhar, K. Recent Advances in Cellulose-Based Sustainable Materials for Wastewater Treatment: An Overview. Int. J. Biol. Macromol. 2024, 256, 128517. [Google Scholar] [CrossRef]
- Wu, D.; Li, X.; Zhang, Y.; Alfred, M.; Yang, H.; Li, Z.; Huang, F.; Lv, P.; Feng, Q.; Wei, Q. Strong and Robust Cellulose-Based Enzymatic Membrane with Gradient Porous Structure in Dynamically Catalytic Removal of Sulfonamides Antibiotics. J. Hazard. Mater. 2022, 439, 129676. [Google Scholar] [CrossRef]
- Zhou, T.; Zhao, L.; Wu, D.; Feng, Q.; Zhao, B. Uniformly Assembled Polypyrrole-Covered Bacterial Cellulose/g-C3N4 Flexible Nanofiber Membrane for Catalytic Degradation of Tetracycline Hydrochloride. J. Water Process Eng. 2022, 47, 102775. [Google Scholar] [CrossRef]
- Park, S.; Patel, R.; Woo, Y.C. Polyester-Based Thin-Film Composite Membranes for Nanofiltration of Saline Water: A Review. Desalination 2024, 572, 117138. [Google Scholar] [CrossRef]
- Palimkar, S.; Galgali, P.; Jape, A.A.; Singh, S.K.; Adhikari, A.; Patel, R.; Routh, J. Critical Assessment of Polyaniline-Based Biocomposites forRemoval of Toxic Heavy Metals from Aqueous Media. Asian J. Chem. 2023, 35, 1563–1574. [Google Scholar] [CrossRef]
- Yousefi, M.; Gholami, M.; Oskoei, V.; Mohammadi, A.A.; Baziar, M.; Esrafili, A. Comparison of LSSVM and RSM in Simulating the Removal of Ciprofloxacin from Aqueous Solutions Using Magnetization of Functionalized Multi-Walled Carbon Nanotubes: Process Optimization Using GA and RSM Techniques. J. Environ. Chem. Eng. 2021, 9, 105677. [Google Scholar] [CrossRef]
- Hacıosmanoğlu, G.G.; Arenas, M.; Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Adsorption of Fluoroquinolone Antibiotics from Water and Wastewater by Colemanite. IJERPH 2023, 20, 2646. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, S.S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Saalah, S.; Lenggoro, W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes. Membranes 2022, 12, 287. [Google Scholar] [CrossRef]
- Lee, J.; Patel, R. Wastewater Treatment by Polymeric Microspheres: A Review. Polymers 2022, 14, 1890. [Google Scholar] [CrossRef]
- Kim, A.; Moon, S.J.; Kim, J.H.; Patel, R. Review on Thin-Film Nanocomposite Membranes with Various Quantum Dots for Water Treatments. J. Ind. Eng. Chem. 2023, 118, 19–32. [Google Scholar] [CrossRef]
- Galgali, P.; Palimkar, S.; Adhikari, A.; Patel, R.; Routh, J. Remediation of Potentially Toxic Elements -Containing Wastewaters Using Water Hyacinth—A Review. Int. J. Phytoremediation 2023, 25, 172–186. [Google Scholar] [CrossRef]
- Kim, A.; Hak Kim, J.; Patel, R. Modification Strategies of Membranes with Enhanced Anti-Biofouling Properties for Wastewater Treatment: A Review. Bioresour. Technol. 2022, 345, 126501. [Google Scholar] [CrossRef]
- Boo, C.; Wang, Y.; Zucker, I.; Choo, Y.; Osuji, C.O.; Elimelech, M. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environ. Sci. Technol. 2018, 52, 7279–7288. [Google Scholar] [CrossRef]
- Samavati, Z.; Samavati, A.; Goh, P.S.; Fauzi Ismail, A.; Sohaimi Abdullah, M. A Comprehensive Review of Recent Advances in Nanofiltration Membranes for Heavy Metal Removal from Wastewater. Chem. Eng. Res. Des. 2023, 189, 530–571. [Google Scholar] [CrossRef]
- Caputo, G.; Giaconia, A. Membrane Technologies for Solar-Desalination Plants. In Membranes for Clean and Renewable Power Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 347–364. ISBN 978-0-85709-545-9. [Google Scholar]
- Xu, Y.; Zhu, Y.; Chen, Z.; Zhu, J.; Chen, G. A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes. IJERPH 2022, 19, 8215. [Google Scholar] [CrossRef]
- Wang, J.; Abbas, S.C.; Li, L.; Walker, C.C.; Ni, Y.; Cai, Z. Cellulose Membranes: Synthesis and Applications for Water and Gas Separation and Purification. Membranes 2024, 14, 148. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, Fate, and Risk Assessment of Typical Tetracycline Antibiotics in the Aquatic Environment: A Review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Chang, D.; Mao, Y.; Qiu, W.; Wu, Y.; Cai, B. The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics 2023, 11, 214. [Google Scholar] [CrossRef]
- Ahmad, F.; Zhu, D.; Sun, J. Environmental Fate of Tetracycline Antibiotics: Degradation Pathway Mechanisms, Challenges, and Perspectives. Environ. Sci. Eur. 2021, 33, 64. [Google Scholar] [CrossRef]
- Zou, X.; Yao, L.; Zhou, S.; Chen, G.; Wang, S.; Liu, X.; Jiang, Y. Sulfated Lignocellulose Nanofibril Based Composite Aerogel towards Adsorption–Photocatalytic Removal of Tetracycline. Carbohydr. Polym. 2022, 296, 119970. [Google Scholar] [CrossRef]
- Lu, L.; Liu, M.; Chen, Y.; Luo, Y. Effective Removal of Tetracycline Antibiotics from Wastewater Using Practically Applicable Iron(III)-Loaded Cellulose Nanofibres. R. Soc. Open Sci. 2021, 8, 210336. [Google Scholar] [CrossRef]
- Li, W.; Li, B.; Meng, M.; Cui, Y.; Wu, Y.; Zhang, Y.; Dong, H.; Feng, Y. Bimetallic Au/Ag Decorated TiO2 Nanocomposite Membrane for Enhanced Photocatalytic Degradation of Tetracycline and Bactericidal Efficiency. Appl. Surf. Sci. 2019, 487, 1008–1017. [Google Scholar] [CrossRef]
- Pandele, A.M.; Iovu, H.; Orbeci, C.; Tuncel, C.; Miculescu, F.; Nicolescu, A.; Deleanu, C.; Voicu, S.I. Surface Modified Cellulose Acetate Membranes for the Reactive Retention of Tetracycline. Sep. Purif. Technol. 2020, 249, 117145. [Google Scholar] [CrossRef]
- Raicopol, M.D.; Andronescu, C.; Voicu, S.I.; Vasile, E.; Pandele, A.M. Cellulose Acetate/Layered Double Hydroxide Adsorptive Membranes for Efficient Removal of Pharmaceutical Environmental Contaminants. Carbohydr. Polym. 2019, 214, 204–212. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Z.; Yu, W. Citric Acid Modified Wood Membranes for Efficient Adsorption of Tetracycline: Effect of Alkali Pretreatment Concentration and Adsorption Mechanism. Chem. Eng. J. 2020, 393, 124748. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Z.; Yu, W. Comparative Investigation on Removal Characteristics of Tetracycline from Water by Modified Wood Membranes with Different Channel Walls. Sci. Total Environ. 2021, 775, 145617. [Google Scholar] [CrossRef]
- Qi, X.; Chen, Y.; Peng, J.; Zhang, X.; Qiu, X.; Li, X.; Xie, X.; Guo, X. Non-Cytotoxic Fluorescent Wood for Selective Detection and Efficient Removal of Tetracycline. Chem. Eng. J. 2023, 466, 143284. [Google Scholar] [CrossRef]
- Song, W.; Qian, L.; Miao, Z.; Nica, V.; Zhao, Y.; He, Z.; Zhu, Y.; Gao, J.; Li, X. High-Performance Functional Cellulose Foam Fabricated with Theoretically Optimized Imidazolium Salts for the Efficient Removal of Ciprofloxacin. Carbohydr. Polym. 2023, 315, 121001. [Google Scholar] [CrossRef]
- Gopal, G.; Nirmala, M.J.; Mukherjee, A. A Novel Chitosan-Coated Fe–Cu CNS Loaded with CMC–Alginate Composite for Adsorptive Removal of Ciprofloxacin from Water. Surf. Interfaces 2023, 39, 102981. [Google Scholar] [CrossRef]
- Olorunnisola, D.; Olorunnisola, C.G.; Otitoju, O.B.; Okoli, C.P.; Rawel, H.M.; Taubert, A.; Easun, T.L.; Unuabonah, E.I. Cellulose-Based Adsorbents for Solid Phase Extraction and Recovery of Pharmaceutical Residues from Water. Carbohydr. Polym. 2023, 318, 121097. [Google Scholar] [CrossRef]
- Soares, S.F.; Nogueira, J.; Trindade, T.; Daniel-da-Silva, A.L. Towards Efficient Ciprofloxacin Adsorption Using Magnetic Hybrid Nanoparticles Prepared with κ-, ι-, and λ-Carrageenan. J. Nanostruct. Chem. 2023, 13, 283–302. [Google Scholar] [CrossRef]
- Komal; Gupta, K.; Nidhi; Kaushik, A.; Singhal, S. Amelioration of Adsorptive Efficacy by Synergistic Assemblage of Functionalized Graphene Oxide with Esterified Cellulose Nanofibers for Mitigation of Pharmaceutical Waste. J. Hazard. Mater. 2022, 424, 127541. [Google Scholar] [CrossRef]
- Li, N.; Tao, K.; Xia, W.; Yu, C.; Yang, H. A Novel Cellulose/Lignin/Montmorillonite Ternary Hybrid Aerogel for Efficiently Adsorptive Removal of Antibiotics from Water. Chem. Eng. J. 2023, 466, 143265. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Y.-J.; He, G.; Li, H.; Tao, J.-C. Multifunctional Photocatalytic Filter Paper Based on Ultralong Nanowires of the Calcium-Alendronate Complex for High-Performance Water Purification. ACS Appl. Mater. Interfaces 2022, 14, 9464–9479. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Afolabi, M.A.; Xiao, D.; Chen, Y. Incorporation of Cellulose Nanocrystals into Graphene Oxide Membranes for Efficient Antibiotic Removal at High Nutrient Recovery. ACS Appl. Mater. Interfaces 2021, 13, 14102–14111. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, S.; Mehta, S.K.; Kansal, S.K. rGO-WO3 Heterostructure: Synthesis, Characterization and Utilization as an Efficient Adsorbent for the Removal of Fluoroquinolone Antibiotic Levofloxacin in an Aqueous Phase. Molecules 2022, 27, 6956. [Google Scholar] [CrossRef]
- Gopal, G.; Natarajan, C.; Mukherjee, A. Adsorptive Removal of Fluoroquinolone Antibiotics Using Green Synthesized and Highly Efficient Fe Clay Cellulose-Acrylamide Beads. Environ. Technol. Innov. 2022, 28, 102783. [Google Scholar] [CrossRef]
- Varga, B.; Meiczinger, M.; Jakab, M.; Somogyi, V. Design and Optimization of Laccase Immobilization in Cellulose Acetate Microfiltration Membrane for Micropollutant Remediation. Catalysts 2023, 13, 222. [Google Scholar] [CrossRef]
- Goodarzi, S.; Torabideh, M.; Parsaseresht, G.; Abdipour, H.; Kamani, H.; Zomorrodi Jangaee, T. Penicillin Removal from the Aqueous Environment Based on AOPs/Challenges and Outlook. A Review. Appl. Water Sci. 2024, 14, 164. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, T.; Fu, X.; Zhang, R.; Sun, P. Selective Removal of Penicillin Antibiotics in Wastewater by Rapid Hydrolysis in Goethite-Zn(II) System. ACS EST Water 2024, 4, 1601–1609. [Google Scholar] [CrossRef]
- Lirio, S.; Liu, W.-L.; Lin, C.-L.; Lin, C.-H.; Huang, H.-Y. Aluminum Based Metal-Organic Framework-Polymer Monolith in Solid-Phase Microextraction of Penicillins in River Water and Milk Samples. J. Chromatogr. A 2016, 1428, 236–245. [Google Scholar] [CrossRef]
- Collado, S.; Quero, D.; Laca, A.; Díaz, M. Efficiency and Sensitivity of the Wet Oxidation/Biological Steps in Coupled Pharmaceutical Wastewater Treatment. Chem. Eng. J. 2013, 234, 484–490. [Google Scholar] [CrossRef]
- Yang, B.; Zuo, J.; Li, P.; Wang, K.; Yu, X.; Zhang, M. Effective Ultrasound Electrochemical Degradation of Biological Toxicity and Refractory Cephalosporin Pharmaceutical Wastewater. Chem. Eng. J. 2016, 287, 30–37. [Google Scholar] [CrossRef]
- Zhao, S.; Ba, C.; Yao, Y.; Zheng, W.; Economy, J.; Wang, P. Removal of Antibiotics Using Polyethylenimine Cross-Linked Nanofiltration Membranes: Relating Membrane Performance to Surface Charge Characteristics. Chem. Eng. J. 2018, 335, 101–109. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, S.; Li, T.; Gao, R.; Zhang, W.; Tong, Y.; Wang, A. Macrolide and Quinolones Antibiotics from Wastewater Treatment Exhibit Nonnegligible Ecological Risks to the Receiving Water 2024. Available online: https://ssrn.com/abstract=4974919 (accessed on 22 August 2024). [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.-H. Occurrence and Removal of Multiple Classes of Antibiotics and Antimicrobial Agents in Biological Wastewater Treatment Processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Kishor, R.; Bharagava, R.N.; Saxena, G. Industrial Wastewaters. In Recent Advances in Environmental Management, 1st ed.; Bharagava, R.N., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–25. ISBN 978-1-351-01125-9. [Google Scholar]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- N Lotha, T.; Sorhie, V.; Bharali, P.; Jamir, L. Advancement in Sustainable Wastewater Treatment: A Multifaceted Approach to Textile Dye Removal through Physical, Biological and Chemical Techniques. ChemistrySelect 2024, 9, e202304093. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Li, G.; An, L.; Li, F.; Zhang, Z. Electrospun H4SiW12O40/Cellulose Acetate Composite Nanofibrous Membrane for Photocatalytic Degradation of Tetracycline and Methyl Orange with Different Mechanism. Carbohydr. Polym. 2017, 168, 153–162. [Google Scholar] [CrossRef]
- Bai, L.; Liu, Y.; Ding, A.; Ren, N.; Li, G.; Liang, H. Fabrication and Characterization of Thin-Film Composite (TFC) Nanofiltration Membranes Incorporated with Cellulose Nanocrystals (CNCs) for Enhanced Desalination Performance and Dye Removal. Chem. Eng. J. 2019, 358, 1519–1528. [Google Scholar] [CrossRef]
- Gorgieva, S.; Vogrinčič, R.; Kokol, V. The Effect of Membrane Structure Prepared from Carboxymethyl Cellulose and Cellulose Nanofibrils for Cationic Dye Removal. J. Polym. Environ. 2019, 27, 318–332. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Lin, S.; Wei, X.; Guo, M. Preparation and Characterization of Cellulose Nanocrystals with Different Aspect Ratios as Nano-Composite Membrane for Cationic Dye Removal. SN Appl. Sci. 2019, 1, 1596. [Google Scholar] [CrossRef]
- Lu, S.; Tang, Z.; Li, W.; Ouyang, X.; Cao, S.; Chen, L.; Huang, L.; Wu, H.; Ni, Y. Diallyl Dimethyl Ammonium Chloride-Grafted Cellulose Filter Membrane via ATRP for Selective Removal of Anionic Dye. Cellulose 2018, 25, 7261–7275. [Google Scholar] [CrossRef]
- Nematpour Sedaghati, M.; Aminian, M.; Dadvand Koohi, A. Heterogeneous Photo-Fenton Oxidation Degradation of Methyl Orange Using Alg-m, Alg-HAp, and Alg-mHAp Catalysts. Int. J. Environ. Anal. Chem. 2023, 103, 7788–7810. [Google Scholar] [CrossRef]
- Rafieian, F.; Jonoobi, M.; Yu, Q. A Novel Nanocomposite Membrane Containing Modified Cellulose Nanocrystals for Copper Ion Removal and Dye Adsorption from Water. Cellulose 2019, 26, 3359–3373. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Wu, X.; Zhang, X.; Yuan, G. Nanoporous Cellulose Membrane Doped with Silver for Continuous Catalytic Decolorization of Organic Dyes. Cellulose 2018, 25, 2547–2558. [Google Scholar] [CrossRef]
- Cai, Z.; Xiong, P.; Zhu, C.; Zhai, T.; Guo, J.; Zhao, K. Preparation and Characterization of a Bi-Layered Nano-Filtration Membrane from a Chitosan Hydrogel and Bacterial Cellulose Nanofiber for Dye Removal. Cellulose 2018, 25, 5123–5137. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, C.; Mathew, A.P. Mechanically Robust High Flux Graphene Oxide—Nanocellulose Membranes for Dye Removal from Water. J. Hazard. Mater. 2019, 371, 484–493. [Google Scholar] [CrossRef]
- Kandil, H.; Moghazy, R.M.; Amin, A. Enhancing the Adsorption Affinity of Cellulose Acetate Film toward Cationic Dye by Incorporating Cloisite 30B Grafted with Polyacrylic Acid. Polym. Eng. Sci 2023, 63, 769–781. [Google Scholar] [CrossRef]
- Sahraei, R.; Shahalizade, T.; Ghaemy, M.; Mahdavi, H. Fabrication of Cellulose Acetate/Fe3O4@GO-APTS-Poly(AMPS-Co-MA) Mixed Matrix Membrane and Its Evaluation on Anionic Dyes Removal. Cellulose 2018, 25, 3519–3532. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, C.; Zhang, S.; Wang, C. Cellulose Acetate/Activated Carbon Composite Membrane with Effective Dye Adsorption Performance. J. Macromol. Sci. Part B 2019, 58, 909–920. [Google Scholar] [CrossRef]
- Wang, S.; Ma, X.; Zheng, P. Sulfo-Functional 3D Porous Cellulose/Graphene Oxide Composites for Highly Efficient Removal of Methylene Blue and Tetracycline from Water. Int. J. Biol. Macromol. 2019, 140, 119–128. [Google Scholar] [CrossRef]
- Melese, H.; Tsade, H. Cellulose Based Adsorbent for Cationic Methylene Blue Dye Removal. Discov. Appl. Sci. 2024, 6, 46. [Google Scholar] [CrossRef]
- Grishkewich, N.; Mohammed, N.; Wei, S.; Vasudev, M.; Shi, Z.; Berry, R.M.; Tam, K.C. Dye Removal Using Sustainable Membrane Adsorbents Produced from Melamine Formaldehyde−Cellulose Nanocrystals and Hard Wood Pulp. Ind. Eng. Chem. Res. 2020, 59, 20854–20865. [Google Scholar] [CrossRef]
- Sabarish, R.; Unnikrishnan, G. Polyvinyl Alcohol/Carboxymethyl Cellulose/ZSM-5 Zeolite Biocomposite Membranes for Dye Adsorption Applications. Carbohydr. Polym. 2018, 199, 129–140. [Google Scholar] [CrossRef]
- Kong, Q.; Wang, X.; Lou, T. Preparation of Millimeter-Sized Chitosan/Carboxymethyl Cellulose Hollow Capsule and Its Dye Adsorption Properties. Carbohydr. Polym. 2020, 244, 116481. [Google Scholar] [CrossRef]
- Saha, S.; Ghosh, G.; Mondal, D.; Chakraborty, S. Efficacy of Cellulose Nanocrystals Fabricated from Crotalaria Juncea as Novel Adsorbent for Removal of Cationic Dyes. Sādhanā 2024, 49, 68. [Google Scholar] [CrossRef]
- Jodeh, S.; Erman, I.; Hamed, O.; Massad, Y.; Hanbali, G.; Samhan, S.; Dagdag, O.; Kaya, S.; Serdaroğlu, G. Zeolite/Cellulose Acetate (ZCA) in Blend Fiber for Adsorption of Erythromycin Residue From Pharmaceutical Wastewater: Experimental and Theoretical Study. Front. Chem. 2021, 9, 709600. [Google Scholar] [CrossRef]
- Taher, M.N.; Koseoglu-Imer, D.Y.; Lipnizki, F. Fabrication of Nanoclay Embedded Adsorptive Electrospun Nanofiber Membrane for Removal of Trace Organic Molecules. Mater. Today Commun. 2023, 37, 107074. [Google Scholar] [CrossRef]
- Wang, T.; Drzal, L.T. Cellulose-Nanofiber-Reinforced Poly(Lactic Acid) Composites Prepared by a Water-Based Approach. ACS Appl. Mater. Interfaces 2012, 4, 5079–5085. [Google Scholar] [CrossRef]
- Mahdavi, H.; Bagherifar, R. Cellulose Acetate/SiO2-Poly(2-Acrylamido-2-Methylpropane Sulfonic Acid) Hybrid Nanofiltration Membrane: Application in Removal of Ceftriaxone Sodium. J. Iran. Chem. Soc. 2018, 15, 2839–2849. [Google Scholar] [CrossRef]
- Moulahcene, L.; Skiba, M.; Bounoure, F.; Benamor, M.; Milon, N.; Hallouard, F.; Lahiani-Skiba, M. New Polymer Inclusion Membrane Containing β-Cyclodextrin Polymer: Application for Pharmaceutical Pollutant Removal from Waste Water. IJERPH 2019, 16, 414. [Google Scholar] [CrossRef]
- Osman, D.; Uyanık, İ.; Mıhçıokur, H.; Özkan, O. Evaluation of Ciprofloxacin (CIP) and Clarithromycin (CLA) Adsorption with Weathered PVC Microplastics. J. Environ. Sci. Health Part A 2023, 58, 498–505. [Google Scholar] [CrossRef]
- Shehata, N.; Egirani, D.; Olabi, A.G.; Inayat, A.; Abdelkareem, M.A.; Chae, K.-J.; Sayed, E.T. Membrane-Based Water and Wastewater Treatment Technologies: Issues, Current Trends, Challenges, and Role in Achieving Sustainable Development Goals, and Circular Economy. Chemosphere 2023, 320, 137993. [Google Scholar] [CrossRef]
- Grzybek, P.; Dudek, G.; Van Der Bruggen, B. Cellulose-Based Films and Membranes: A Comprehensive Review on Preparation and Applications. Chem. Eng. J. 2024, 495, 153500. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kamalesh, T.; Kumar, P.S.; Hemavathy, R.V.; Rangasamy, G. A Critical Review on Sustainable Cellulose Materials and Its Multifaceted Applications. Ind. Crop. Prod. 2023, 203, 117221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padhan, B.; Ryoo, W.; Patel, M.; Dash, J.K.; Patel, R. Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations. Polymers 2024, 16, 2938. https://doi.org/10.3390/polym16202938
Padhan B, Ryoo W, Patel M, Dash JK, Patel R. Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations. Polymers. 2024; 16(20):2938. https://doi.org/10.3390/polym16202938
Chicago/Turabian StylePadhan, Bandana, Wanki Ryoo, Madhumita Patel, Jatis Kumar Dash, and Rajkumar Patel. 2024. "Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations" Polymers 16, no. 20: 2938. https://doi.org/10.3390/polym16202938
APA StylePadhan, B., Ryoo, W., Patel, M., Dash, J. K., & Patel, R. (2024). Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations. Polymers, 16(20), 2938. https://doi.org/10.3390/polym16202938