Role of Sterilization on In Situ Gel-Forming Polymer Stability
Abstract
:1. Introduction
2. Current Sterilization Methods and Risks for the ISS
3. Basic Polymers for ISS Development
3.1. Thermoreversible Polymers
3.1.1. Chitosan
3.1.2. Block Co-Polymers of Polyethylene Oxide and Polypropylene Oxide (Poloxamers)
3.1.3. Cellulose Derivatives
3.1.4. Xyloglucan
3.2. Ion-Sensitive Polymers
3.2.1. Gums
3.2.2. Alginate
3.3. pH-Sensitive Polymers
3.3.1. Acrylic Acid Derivatives (Carbomers)
3.3.2. Polycarbophil
3.3.3. Zeolites
3.4. Polymer Mixtures with Different Gelation Stimuli
3.5. Protection of ISS Polymer Complexes from the Effects of Sterilization
3.5.1. Autoclaving
3.5.2. Gamma Radiation
3.6. Methods for Screening the Stability of the ISS Following Sterilization
3.6.1. General Appearance and Transparency
3.6.2. Gel pH
3.6.3. Viscosity
3.6.4. Gelation Ability
3.6.5. In Situ Gelation Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kolawole, O.M.; Cook, M.T. In Situ Gelling Drug Delivery Systems for Topical Drug Delivery. Eur. J. Pharm. Biopharm. 2023, 184, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Juyal, V.; Nagaich, U. Formulation, Optimization, and Evaluation of in-Situ Gel of Moxifloxacin Hydrochloride for Ophthalmic Drug Delivery. Int. J. Appl. Pharm. 2019, 11, 147–158. [Google Scholar] [CrossRef]
- Bakhrushina, E.O.; Mikhel, I.B.; Buraya, L.M.; Moiseev, E.D.; Zubareva, I.M.; Belyatskaya, A.V.; Evzikov, G.Y.; Bondarenko, A.P.; Krasnyuk, I.I.; Krasnyuk, I.I. Implantation of In Situ Gelling Systems for the Delivery of Chemotherapeutic Agents. Gels 2024, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, A.B.; Rakde, A.K.; Chaudhari, P. In Situ Gel Forming Injectable Drug Delivery System. Int. J. Pharm. Sci. Res. 2013, 4, 597–609. [Google Scholar] [CrossRef]
- Venkatesh, M.P.; Kumar, T.P.; Pai, D.R. Targeted Drug Delivery of Methotrexate in Situ Gels for the Treatment of Rheumatoid Arthritis. Saudi Pharm. J. 2020, 28, 1548–1557. [Google Scholar] [CrossRef]
- Gupta, H.; Jain, S.; Mathur, R.; Mishra, P.; Mishra, A.K.; Velpandian, T. Sustained Ocular Drug Delivery from a Temperature and PH Triggered Novel In Situ Gel System. Drug Deliv. 2007, 14, 507–515. [Google Scholar] [CrossRef]
- Bakhrushina, E.O.; Demina, N.B.; Shumkova, M.M.; Rodyuk, P.S.; Shulikina, D.S.; Krasnyuk, I.I. In Situ Intranasal Delivery Systems: Application Prospects and Main Pharmaceutical Aspects of Development (Review). Drug Dev. Regist. 2021, 10, 54–63. [Google Scholar] [CrossRef]
- Cooper, R.C.; Yang, H. Hydrogel-Based Ocular Drug Delivery Systems: Emerging Fabrication Strategies, Applications, and Bench-to-Bedside Manufacturing Considerations. J. Control. Release 2019, 306, 29–39. [Google Scholar] [CrossRef]
- Memisoglu-Bilensoy, E.; Hincal, A.A. Sterile, Injectable Cyclodextrin Nanoparticles: Effects of Gamma Irradiation and Autoclaving. Int. J. Pharm. 2006, 311, 203–208. [Google Scholar] [CrossRef]
- Asasutjarit, R.; Thanasanchokpibull, S.; Fuongfuchat, A.; Veeranondha, S. Optimization and Evaluation of Thermoresponsive Diclofenac Sodium Ophthalmic in Situ Gels. Int. J. Pharm. 2011, 411, 128–135. [Google Scholar] [CrossRef]
- Galante, R.; Pinto, T.J.A.; Colaço, R.; Serro, A.P. Sterilization of Hydrogels for Biomedical Applications: A Review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2472–2492. [Google Scholar] [CrossRef] [PubMed]
- El Maghraby, G.M.; Alomrani, A.H. Effects of Hydroxypropyl-β-Cyclodextrin, Gel and in Situ Gelling Systems on the Stability of Hydrocortisone after Gamma Irradiation. J. Drug Deliv. Sci. Technol. 2010, 20, 385–389. [Google Scholar] [CrossRef]
- CHMP. CVMP Guideline on the Sterilisation of the Medicinal Product, Active Substance, Excipient and Primary Container; European Medicines Agency: Amsterdam, The Netherlands, 2019; Volume 31, pp. 1–25. [Google Scholar]
- Ferreira, I.; Marques, A.C.; Costa, P.C.; Amaral, M.H. Effects of Steam Sterilization on the Properties of Stimuli-Responsive Polymer-Based Hydrogels. Gels 2023, 9, 385. [Google Scholar] [CrossRef]
- Rabek, J.F. Chapter 4 Oxidative Degradation of Polymers. In Comprehensive Chemical Kinetics; Elsevier: Amsterdam, The Netherlands, 1975; Volume 14, pp. 425–538. [Google Scholar] [CrossRef]
- David, C. Chapter 1 Thermal Degradation of Polymers. In Comprehensive Chemical Kinetics; Elsevier: Amsterdam, The Netherlands, 1975; Volume 14, pp. 1–173. [Google Scholar] [CrossRef]
- Andriola Silva Brun-Graeppi, A.K.; Richard, C.; Bessodes, M.; Scherman, D.; Narita, T.; Ducouret, G.; Merten, O.W. The Effect of Sterilization Methods on the Thermo-Gelation Properties of Xyloglucan Hydrogels. Polym. Degrad. Stab. 2010, 95, 254–259. [Google Scholar] [CrossRef]
- Burak, J.; Grela, K.P.; Pluta, J.; Karolewicz, B.; Marciniak, D.M. Impact of Sterilisation Conditions on the Rheological Properties of Thermoresponsive Pluronic F-127-Based Gels for the Ophthalmic Use. Acta Pol. Pharm. Drug Res. 2018, 75, 471–481. [Google Scholar] [CrossRef]
- Rafael, D.; Andrade, F.; Martinez-Trucharte, F.; Basas, J.; Seras-Franzoso, J.; Palau, M.; Gomis, X.; Pérez-Burgos, M.; Blanco, A.; López-Fernández, A.; et al. Sterilization Procedure for Temperature-Sensitive Hydrogels Loaded with Silver Nanoparticles for Clinical Applications. Nanomaterials 2019, 9, 380. [Google Scholar] [CrossRef]
- Sheshala, R.; Wai, N.Z.; Said, I.D.; Ashraf, K.; Lim, S.M.; Ramasamy, K.; Zeeshan, F. Poloxamer and Chitosan-Based In Situ Gels Loaded with Orthosiphon Stamineus Benth. Extracts Containing Rosmarinic Acid for the Treatment of Ocular Infections. Turk. J. Pharm. Sci. 2022, 19, 671–680. [Google Scholar] [CrossRef]
- Paul, S.; Majumdar, S.; Chakraborty, M. Revolutionizing Ocular Drug Delivery: Recent Advancements in in Situ Gel Technology. Bull. Natl. Res. Cent. 2023, 47, 154. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research Progress of In-Situ Gelling Ophthalmic Drug Delivery System. Asian J. Pharm. Sci. 2019, 14, 1–15. [Google Scholar] [CrossRef]
- Bakhrushina, E.O.; Mikhel, I.B.; Kondratieva, V.M.; Demina, N.B.; Grebennikova, T.V. In Situ Gels as a Modern Method of Intranasal Vaccine Delivery. Vopr. Virusol. 2022, 67, 395–402. [Google Scholar] [CrossRef]
- Szymańska, E.; Winnicka, K. Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef] [PubMed]
- Jarry, C.; Chaput, C.; Chenite, A.; Renaud, M.A.; Buschmann, M.; Leroux, J.C. Effects of Steam Sterilization on Thermogelling Chitosan-Based Gels. J. Biomed. Mater. Res. 2001, 58, 127–135. [Google Scholar] [CrossRef]
- Irimia, T.; Dinu-Pîrvu, C.E.; Ghica, M.V.; Lupuleasa, D.; Muntean, D.L.; Udeanu, D.I.; Popa, L. Chitosan-Based in Situ Gels for Ocular Delivery of Therapeutics: A State-of-the-Art Review. Mar. Drugs 2018, 16, 373. [Google Scholar] [CrossRef]
- Lim, L.Y.; Khor, E.; Koo, O. Irradiation of Chitosan. J. Biomed. Mater. Res. 1998, 43, 282–290. [Google Scholar] [CrossRef]
- Jarry, C.; Leroux, J.C.; Haeck, J.; Chaput, C. Irradiating or Autoclaving Chitosan/Polyol Solutions: Effect on Thermogelling Chitosan-β-Glycerophosphate Systems. Chem. Pharm. Bull. 2002, 50, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R.R. Poloxamer-Based in Situ Gelling Thermoresponsive Systems for Ocular Drug Delivery Applications. Drug Discov. Today 2019, 24, 1575–1586. [Google Scholar] [CrossRef]
- Beard, M.C.; Cobb, L.H.; Grant, C.S.; Varadarajan, A.; Henry, T.; Swanson, E.A.; Kundu, S.; Priddy, L.B. Autoclaving of Poloxamer 407 Hydrogel and Its Use as a Drug Delivery Vehicle. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Nesseem, D.I. Ophthalmic Delivery of Sparfloxacin from in Situ Gel Formulation for Treatment of Experimentally Induced Bacterial Keratitis. Drug Test. Anal. 2011, 3, 106–115. [Google Scholar] [CrossRef]
- Saher, O.; Ghorab, D.M.; Mursi, N.M. Preparation and in Vitro/in Vivo Evaluation of Antimicrobial Ocular in Situ Gels Containing a Disappearing Preservative for Topical Treatment of Bacterial Conjunctivitis. Pharm. Dev. Technol. 2016, 21, 600–610. [Google Scholar] [CrossRef]
- El-Bagory, I.M.; Bayomi, M.A.; Mahrous, G.M.; Alanazi, F.K.; Alsarra, I.A. Effect of Gamma Irradiation on Pluronic Gels for Ocular Delivery of Ciprofloxacin: In Vitro Evaluation. Aust. J. Basic Appl. Sci. 2010, 4, 4490–4498. [Google Scholar]
- Charoo, N.A.; Kohli, K.; Ali, A. Preparation of in Situ-Forming Ophthalmic Gels of Ciprofloxacin Hydrochloride for the Treatment of Bacterial Conjunctivitis: In Vitro and in Vivo Studies. J. Pharm. Sci. 2003, 92, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Maggi, L.; Segale, L.; Machiste, E.O.; Buttafava, A.; Faucitano, A.; Conte, U. Chemical and Physical Stability of Hydroxypropylmethylcellulose Matrices Containing Diltiazem Hydrochloride after Gamma Irradiation. J. Pharm. Sci. 2003, 92, 131–141. [Google Scholar] [CrossRef]
- Sebert, P.; Andrianoff, N.; Rollet, M. Effect of Gamma Irradiation on Hydroxypropylmethylcellulose Powders: Consequences on Physical, Rheological and Pharmacotechnical Properties. Int. J. Pharm. 1993, 99, 37–42. [Google Scholar] [CrossRef]
- Adams, I.; Davis, S.S. The Formulation and Sterilization of a Surgical Lubricant Gel Based on Carboxypolymethylene. J. Pharm. Pharmacol. 1973, 25, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.I.; Lee, H.S.; Kim, J.H.; Lee, K.W.; Lee, J.W.; Seo, S.J.; Kang, K.W.; Byun, M.W. Controlling the Radiation Degradation of Carboxymethylcellulose Solution. Polym. Degrad. Stab. 2008, 93, 310–315. [Google Scholar] [CrossRef]
- Zhukovskii, V.A.; Edomina, N.A.; Akhmetshina, O.Z.; Khokhlova, V.A.; Polyanskii, A.V. Sterilization of Carboxymethylcellulose Anti-Commissural Biomaterials. Fibre Chem. 2015, 47, 312–316. [Google Scholar] [CrossRef]
- Basumallick, L.; Ji, J.A.; Naber, N.; Wang, Y.J. The Fate of Free Radicals in a Cellulose Based Hydrogel: Detection by Electron Paramagnetic Resonance Spectroscopy. J. Pharm. Sci. 2009, 98, 2464–2471. [Google Scholar] [CrossRef]
- Ji, J.A.; Ingham, E.; Wang, J.Y. Effect of EDTA and Methionine on Preventing Loss of Viscosity of Cellulose-Based Topical Gel. AAPS PharmSciTech 2009, 10, 678–683. [Google Scholar] [CrossRef]
- Wasylaschuk, W.R.; Harmon, P.A.; Wagner, G.; Harman, A.B.; Templeton, A.C.; Xu, H.; Reed, R.A. Evaluation of Hydroperoxides in Common Pharmaceutical Excipients. J. Pharm. Sci. 2007, 96, 106–116. [Google Scholar] [CrossRef]
- Gonçalves, C.; Ferreira, N.; Lourenço, L. Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS): A Review. Polymers 2021, 13, 2466. [Google Scholar] [CrossRef]
- Li, X.; Xu, A.; Xie, H.; Yu, W.; Xie, W.; Ma, X. Preparation of Low Molecular Weight Alginate by Hydrogen Peroxide Depolymerization for Tissue Engineering. Carbohydr. Polym. 2010, 79, 660–664. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, T.; Sun, W.; Ren, X. The Depolymerization of Sodium Alginate by Oxidative Degradation. Pharm. Dev. Technol. 2012, 17, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Woo, H.C.; Lee, J. Eco-Friendly Depolymerization of Alginates by H2O2 and High-Frequency Ultrasonication. Clean Technol. 2023, 5, 1402–1414. [Google Scholar] [CrossRef]
- Prajapat, A.L.; Gogate, P.R. Intensification of Degradation of Guar Gum: Comparison of Approaches Based on Ozone, Ultraviolet and Ultrasonic Irradiations. Chem. Eng. Process. Process Intensif. 2015, 98, 165–173. [Google Scholar] [CrossRef]
- Tichý, E.; Murányi, A.; Pšenková, J. The Effects of Moist Heat Sterilization Process and the Presence of Electrolytes on Rheological and Textural Properties of Hydrophilic Dispersions of Polymers-Hydrogels. Adv. Polym. Technol. 2016, 35, 198–207. [Google Scholar] [CrossRef]
- Alipour, S.; Negahban, N.; Ahmadi, F.; Parhizkar, E. The Effects of Moist Heat Sterilization Process on Rheological Properties of Hydrophilic Gels Containing Drug Model. Trends Pharm. Sci. 2022, 8, 175–182. [Google Scholar] [CrossRef]
- Chandra Mohan, E.; Mohan Kandukuri, J.; Allenki, V. Preparation and Evaluation of In-Situ-Gels for Ocular Drug Delivery. J. Pharm. Res. 2009, 2, 1089–1094. [Google Scholar]
- Li, Y.J.; Ha, Y.M.; Wang, F.; Li, Y.F. Effect of Irradiation on the Molecular Weight, Structure and Apparent Viscosity of Xanthan Gum in Aqueous Solution. Adv. Mater. Res. 2011, 239–242, 2632–2637. [Google Scholar] [CrossRef]
- Hayrabolulu, H.; Demeter, M.; Cutrubinis, M.; Güven, O.; Şen, M. Radiation Induced Degradation of Xanthan Gum in Aqueous Solution. Radiat. Phys. Chem. 2018, 144, 189–193. [Google Scholar] [CrossRef]
- Bindal, A.; Narsimhan, G.; Hem, S.L.; Kulshreshtha, A. Structural Changes in Xanthan Gum Solutions during Steam Sterilization for Sterile Preparations. Pharm. Dev. Technol. 2007, 12, 159–167. [Google Scholar] [CrossRef]
- Bindal, A.; Narsimhan, G.; Hem, S.L.; Kulshreshtha, A. Effect of Steam Sterilization on the Rheology of Polymer Solutions. Pharm. Dev. Technol. 2003, 8, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Dasankoppa, F.S.; Swamy, N.G.N. Design, Development and Evaluation of Cationic Guar and Hydroxypropylguar Based in Situ Gels for Ophthalmic Drug Delivery. Indian Drugs 2013, 50, 30–41. [Google Scholar] [CrossRef]
- Hamdani, A.M.; Wani, I.A.; Bhat, N.A. Effect of Gamma Irradiation on the Physicochemical and Structural Properties of Plant Seed Gums. Int. J. Biol. Macromol. 2018, 106, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Jumel, K.; Harding, S.E.; Mitchell, J.R. Effect of Gamma Irradiation on the Macromolecular Integrity of Guar Gum. Carbohydr. Res. 1996, 282, 223–236. [Google Scholar] [CrossRef]
- Sultana, Y.; Aqil, M.; Ali, A. Ion-Activated, Gelrite®-Based in Situ Ophthalmic Gels of Pefloxacin Mesylate: Comparison with Conventional Eye Drops. Drug Deliv. J. Deliv. Target. Ther. Agents 2006, 13, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Geethalakshmi, A.; Karki, R.; Kumar Jha, S.; Venkatesh, D.P.; Nikunj, B. Sustained Ocular Delivery of Brimonidine Tartrate Using Ion Activated In Situ Gelling System. Curr. Drug Deliv. 2012, 9, 197–204. [Google Scholar] [CrossRef]
- Kalam, M.A.; Sultana, Y.; Samad, A.; Ali, A.; Aqil, M.; Sharma, M.; Mishra, A.K. Gelrite-Based In Vitro Gelation Ophthalmic Drug Delivery System of Gatifloxacin. J. Dispers. Sci. Technol. 2008, 29, 89–96. [Google Scholar] [CrossRef]
- Saher, O.; Ghorab, D.M.; Mursi, N.M. Levofloxacin Hemihydrate Ocular Semi-Sponges for Topical Treatment of Bacterial Conjunctivitis: Formulation and in-Vitro/in-Vivo Characterization. J. Drug Deliv. Sci. Technol. 2016, 31, 22–34. [Google Scholar] [CrossRef]
- Stoppel, W.L.; White, J.C.; Horava, S.D.; Henry, A.C.; Roberts, S.C.; Bhatia, S.R. Terminal Sterilization of Alginate Hydrogels: Efficacy and Impact on Mechanical Properties. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 877–884. [Google Scholar] [CrossRef]
- Lee, D.W.; Choi, W.S.; Byun, M.W.; Park, H.J.; Yu, Y.M.; Lee, C.M. Effect of γ-Irradiation on Degradation of Alginate. J. Agric. Food Chem. 2003, 51, 4819–4823. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Dussault, D.; Salmieri, S.; Khan, R.A.; Lacroix, M. Effect of Gamma Radiation on the Physico-Chemical Properties of Alginate-Based Films and Beads. Radiat. Phys. Chem. 2012, 81, 945–948. [Google Scholar] [CrossRef]
- Budiman, A. Effect of Sterilization Using Gamma Radiation on the Physicochemical Properties of Gel Containing Aloe Vera Powder. Int. J. Appl. Pharm. 2021, 13, 282–285. [Google Scholar] [CrossRef]
- Gupta, S.; Samanta, M.K.; Raichur, A.M. Dual-Drug Delivery System Based on in Situ Gel-Forming Nanosuspension of Forskolin to Enhance Antiglaucoma Efficacy. AAPS PharmSciTech 2010, 11, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sun, J.; Wang, Y.; Ma, Y.; Chen, W.; Zhang, Z.; Gui, G.; Lin, B. Ocular Pharmacokinetics of Naringenin Eye Drops Following Topical Administration to Rabbits. J. Ocul. Pharmacol. Ther. 2015, 31, 51–56. [Google Scholar] [CrossRef]
- Geng, L.; Lu, T.; Jing, H.; Zhou, Y.; Liang, X.; Li, J.; Li, N. Iron-based and BRD4-downregulated strategy for amplified ferroptosis based on pH-sensitive/NIR-II-boosted nano-matchbox. Acta Pharm. Sin. 2023, 13, 863–878. [Google Scholar] [CrossRef]
- Hao, J.; Stavljenić Milašin, I.; Batu Eken, Z.; Mravak-Stipetic, M.; Pavelić, K.; Ozer, F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules 2021, 26, 6196. [Google Scholar] [CrossRef]
- Zaarour, M.; Dong, B.; Naydenova, I.; Retoux, R.; Mintova, S. Progress in zeolite synthesis promotes advanced applications. Microporous Mesoporous Mater. 2014, 189, 11–21. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, X.; Li, Y.; Dong, Y.; Meng, J.; Zhang, S.; Xia, L.; He, Z.; Ren, L.; Chen, Z.; et al. Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact. Mater. 2022, 17, 289–299. [Google Scholar] [CrossRef]
- Shastri, D.H.; Patel, L.D.; Parikh, R.K. Studies on in Situ Hydrogel: A Smart Way for Safe and Sustained Ocular Drug Delivery. J. Young Pharm. 2010, 2, 116–120. [Google Scholar] [CrossRef]
- Lihong, W.; Xin, C.; Yongxue, G.; Yiying, B.; Gang, C. Thermoresponsive Ophthalmic Poloxamer/Tween/Carbopol in Situ Gels of a Poorly Water-Soluble Drug Fluconazole: Preparation and in Vitro-in Vivo Evaluation. Drug Dev. Ind. Pharm. 2014, 40, 1402–1410. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, P.; Landin, M. Controlled Release of Indomethacin from Alginate-Poloxamer-Silicon Carbide Composites Decrease in-Vitro Inflammation. Int. J. Pharm. 2015, 480, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.D.; Blanchard, J. In Vitro Evaluation of Pluronic F127-Based Controlled-Release Ocular Delivery Systems for Pilocarpine. J. Pharm. Sci. 1998, 87, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Sathali, A.A.H.; Noufal, A.M. Formulation and Evaluation of Diacerein Implantable in Situ Gel for the Treatment of Osteoarthritis. World J. Pharm. Res. 2022, 11, 1503–1515. [Google Scholar] [CrossRef]
- Varshosaz, J.; Tabbakhian, M.; Salmani, Z. Designing of a Thermosensitive Chitosan/Poloxamer In Situ Gel for Ocular Delivery of Ciprofloxacin. Open Drug Deliv. J. 2008, 2, 61–70. [Google Scholar] [CrossRef]
- Srividya, B.; Cardoza, R.M.; Amin, P.D. Sustained Ophthalmic Delivery of Ofloxacin from a PH Triggered in Situ Gelling System. J. Control. Release 2001, 73, 205–211. [Google Scholar] [CrossRef]
- Dol, H.; Gandhi, S.; Pardhi, D.; Vyawahare, N. Formulation and Evaluation of in Situ Ophthalmic Gel of Moxifloxacin Hydrochloride. Pharma Innov. 2014, 3, 60–66. [Google Scholar]
- Jain, S.P.; Shah, S.P.; Rajadhyaksha, N.S.; Pirthi, P.S.P.S.; Amin, P.D. In Situ Ophthalmic Gel of Ciprofloxacin Hydrochloride for Once a Day Sustained Delivery. Drug Dev. Ind. Pharm. 2008, 34, 445–452. [Google Scholar] [CrossRef]
- Ranch, K.M.; Maulvi, F.A.; Naik, M.J.; Koli, A.R.; Parikh, R.K.; Shah, D.O. Optimization of a Novel in Situ Gel for Sustained Ocular Drug Delivery Using Box-Behnken Design: In Vitro, Ex Vivo, in Vivo and Human Studies. Int. J. Pharm. 2019, 554, 264–275. [Google Scholar] [CrossRef]
- Patel, P.; Patel, G. Formulation, Ex-Vivo and Preclinical in-Vivo Studies of Combined Ph and Ion-Sensitive Ocular Sustained in Situ Hydrogel of Timolol Maleate for the Treatment of Glaucoma. Biointerface Res. Appl. Chem. 2021, 11, 8242–8265. [Google Scholar] [CrossRef]
- Dasankoppa, F.; Solankiy, P.; Sholapur, H.; Jamakandi, V.; Sajjanar, V.; Walveka, P. Design, Formulation, and Evaluation of in Situ Gelling Ophthalmic Drug Delivery System Comprising Anionic and Nonionic Polymers. Indian J. Health Sci. Biomed. Res. 2017, 10, 323. [Google Scholar] [CrossRef]
- Nagargoje, S.; Phatak, A.; Bhingare, C.; Chaudhari, S. Formulation and Evaluation of Ophthalmic Delivery of Fluconazole from Ion Activated in Situ Gelling System. Der Pharm. Lett. 2012, 4, 1228–1235. [Google Scholar]
- Gupta, H.; Sharma, A. Ion Activated Bioadhesive in Situ Gel of Clindamycin for Vaginal Application. Int. J. Drug Deliv. 2011, 1, 32–40. [Google Scholar] [CrossRef]
- Balasubramaniam, J.; Pandit, J.K. Ion-Activated in Situ Gelling Systems for Sustained Ophthalmic Delivery of Ciprofloxacin Hydrochloride. Drug Deliv. J. Deliv. Target. Ther. Agents 2003, 10, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Nanjundaswamy, N.G.; Dasankoppa, F.S. Compatibility Testing and Rheological Characterization in Development of Novel in Situ Guar Gum-Based Ophthalmic Dosage Form. Asian J. Pharm. 2011, 5, 191–197. [Google Scholar] [CrossRef]
- Patel, P.B.; Shastri, D.H.; Shelat, P.K.; Shukla, A.K.; Shah, G.B. Design and Characterization of Ofloxacin Mucoadhesive in Situ Hydrogel. African J. Pharm. Pharmacol. 2012, 6, 1644–1652. [Google Scholar] [CrossRef]
- Schuetz, Y.B.; Gurny, R.; Jordan, O. A Novel Thermoresponsive Hydrogel Based on Chitosan. Eur. J. Pharm. Biopharm. 2008, 68, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Hasson, K.; Clements, J.A. Effects of ascorbic acid and disodium edetate on the stability of isoprenaline hydrochloride injection. J. Clin. Pharm. Ther. 1984, 9, 209–215. [Google Scholar] [CrossRef]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. EDTA and α-Tocopherol Improve the Chemical Stability of Astaxanthin Loaded into Nanostructured Lipid Carriers. Eur. J. Lipid Sci. Technol. 2014, 116, 968–977. [Google Scholar] [CrossRef]
- Maquille, A.; Habib Jiwan, J.L.; Tilquin, B. Cryo-Irradiation as a Terminal Method for the Sterilization of Drug Aqueous Solutions. Eur. J. Pharm. Biopharm. 2008, 69, 358–363. [Google Scholar] [CrossRef]
- Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising Ion-Sensitive in Situ Ocular Nanoemulsion Gels of Terbinafine Hydrochloride: Design, in Vitro Characterization and in Vivo Estimation of the Ocular Irritation and Drug Pharmacokinetics in the Aqueous Humor of Rabbits. Int. J. Pharm. 2013, 443, 293–305. [Google Scholar] [CrossRef]
- Maquille, A.; Jiwan, J.L.H.; Tilquin, B. Radiosterilization of Drugs in Aqueous Solutions May Be Achieved by the Use of Radioprotective Excipients. Int. J. Pharm. 2008, 349, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Sintzel, M.B.; Merkli, A.; Tabatabay, C.; Gurny, R. Influence of Irradiation Sterilization on Polymers Used as Drug Carriers—A Review. Drug Dev. Ind. Pharm. 1997, 23, 857–878. [Google Scholar] [CrossRef]
- Bazafkan, S. Radiation Protection on Polysaccharide Solutions and Gels. Ph.D. Thesis, University of Salford, Salford, UK, 1996. [Google Scholar]
- Liu, F.F.; Ji, L.; Zhang, L.; Dong, X.Y.; Sun, Y. Molecular Basis for Polyol-Induced Protein Stability Revealed by Molecular Dynamics Simulations. J. Chem. Phys. 2010, 132, 225103. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.N.; Kalonia, D.S. Mechanism of Stabilization of Proteins by Poly-Hydroxy Co-Solvents: Concepts and Implications in Formulation Development. Am. Pharm. Rev. 2012, 15. Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/112491-Mechanism-of-Stabilization-of-Proteins-by-Poly-hydroxy-Co-solvents-Concepts-and-Implications-in-Formulation-Development/ (accessed on 10 May 2012).
- Supper, S.; Anton, N.; Seidel, N.; Riemenschnitter, M.; Schoch, C.; Vandamme, T. Rheological Study of Chitosan/Polyol-Phosphate Systems: Influence of the Polyol Part on the Thermo-Induced Gelation Mechanism. Langmuir 2013, 29, 10229–10237. [Google Scholar] [CrossRef]
- Singh, L.R.; Poddar, N.K.; Dar, T.A.; Kumar, R.; Ahmad, F. Protein and DNA Destabilization by Osmolytes: The Other Side of the Coin. Life Sci. 2011, 88, 117–125. [Google Scholar] [CrossRef]
- Szweda-Lewandowska, Z.; Puchala, M. Effect of Ethanol on the Radiation Sensitivity of Human Hemoglobin. Radiat. Res. 1981, 88, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Phillis, J.W.; Estevez, A.Y.; O’Regan, M.H. Protective Effects of the Free Radical Scavengers, Dimethyl Sulfoxide and Ethanol, in Cerebral Ischemia in Gerbils. Neurosci. Lett. 1998, 244, 109–111. [Google Scholar] [CrossRef]
- Allaveisi, F.; Hashemi, B.; Mortazavi, S.M.J. Radioprotective Effect of N-Acetyl-L-Cysteine Free Radical Scavenger on Compressive Mechanical Properties of the Gamma Sterilized Cortical Bone of Bovine Femur. Cell Tissue Bank. 2015, 16, 97–108. [Google Scholar] [CrossRef]
- González, E.; Cruces, M.P.; Pimentel, E.; Sánchez, P. Evidence That the Radioprotector Effect of Ascorbic Acid Depends on the Radiation Dose Rate. Environ. Toxicol. Pharmacol. 2018, 62, 210–214. [Google Scholar] [CrossRef]
- Zbikowska, H.M.; Nowak, P.; Wachowicz, B. The Role of Ascorbate and Histidine in Fibrinogen Protection against Changes Following Exposure to a Sterilizing Dose of γ-Irradiation. Blood Coagul. Fibrinolysis 2007, 18, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Katsumura, Y.; Lin, M.; Muroya, Y.; Hata, K.; Fujii, K.; Yokoya, A.; Hatano, Y. Free Radical Scavenging and Radioprotective Effects of Carnosine and Anserine. Radiat. Phys. Chem. 2009, 78, 1192–1197. [Google Scholar] [CrossRef]
- Kumta, U.S.; Shimazu, F.; Tappel, A.L. Decrease of Radiation Damage to Proteins by Sulfhydryl Protectors. Radiat. Res. 1962, 16, 679–685. [Google Scholar] [CrossRef]
- Neal, R.; Matthews, R.H.; Lutz, P.; Ercal, N. Antioxidant Role of N-Acetyl Cysteine Isomers Following High Dose Irradiation. Free Radic. Biol. Med. 2003, 34, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Smith, S.W.; Anderson, B.D. Kinetics and Mechanism of the Reaction of Cysteine and Hydrogen Peroxide in Aqueous Solution. J. Pharm. Sci. 2005, 94, 304–316. [Google Scholar] [CrossRef]
- Agnihotri, N.; Mishra, P.C. Mechanism of Scavenging Action of N-Acetylcysteine for the OH Radical: A Quantum Computational Study. J. Phys. Chem. B 2009, 113, 12096–12104. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Z.; Tang, W.; Dai, Y. Gel/Hydrogel-based in Situ Biomaterial Platforms for Cancer Postoperative Treatment and Recovery. Exploration 2023, 3, 20220173. [Google Scholar] [CrossRef]
- Geng, Z.; Cao, Z.; Liu, J. Recent Advances in Targeted Antibacterial Therapy Basing on Nanomaterials. Exploration 2023, 3, 20210117. [Google Scholar] [CrossRef]
Sterilization Method | Advantages |
---|---|
Autoclaving |
|
Gamma radiation |
|
Membrane filtration |
|
Polymer | Sterilization Method | Protective Agent | Reference |
---|---|---|---|
Xanthan gum | Autoclaving | Sodium chloride | [54] |
CMC HPMC Carbopol | Autoclaving | Succinate buffer and sodium chloride | [48] |
Chitosan | Autoclaving | Triethylene glycol, glycerin, sorbitol, glucose, PEG | [28] |
HPMC | Autoclaving | EDTA | [41] |
Carbopol | Gamma radiation | Ethanol | [37] |
Hyaluronic acid | Gamma radiation | Cetylpyridinium chloride | [95] |
Sodium alginate Xanthan gum | Gamma radiation | Mannitol | [96] |
Xanthan gum CMC | Gamma radiation | Mannitol and ascorbic acid | [96] |
CMC | Gamma radiation | Ascorbic acid | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhrushina, E.O.; Afonina, A.M.; Mikhel, I.B.; Demina, N.B.; Plakhotnaya, O.N.; Belyatskaya, A.V.; Krasnyuk, I.I., Jr.; Krasnyuk, I.I. Role of Sterilization on In Situ Gel-Forming Polymer Stability. Polymers 2024, 16, 2943. https://doi.org/10.3390/polym16202943
Bakhrushina EO, Afonina AM, Mikhel IB, Demina NB, Plakhotnaya ON, Belyatskaya AV, Krasnyuk II Jr., Krasnyuk II. Role of Sterilization on In Situ Gel-Forming Polymer Stability. Polymers. 2024; 16(20):2943. https://doi.org/10.3390/polym16202943
Chicago/Turabian StyleBakhrushina, Elena O., Alina M. Afonina, Iosif B. Mikhel, Natalia B. Demina, Olga N. Plakhotnaya, Anastasiya V. Belyatskaya, Ivan I. Krasnyuk, Jr., and Ivan I. Krasnyuk. 2024. "Role of Sterilization on In Situ Gel-Forming Polymer Stability" Polymers 16, no. 20: 2943. https://doi.org/10.3390/polym16202943
APA StyleBakhrushina, E. O., Afonina, A. M., Mikhel, I. B., Demina, N. B., Plakhotnaya, O. N., Belyatskaya, A. V., Krasnyuk, I. I., Jr., & Krasnyuk, I. I. (2024). Role of Sterilization on In Situ Gel-Forming Polymer Stability. Polymers, 16(20), 2943. https://doi.org/10.3390/polym16202943