Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parameters of the Samples and Its Treatment
2.2. Surface and Structure Characterization
2.3. Electrochemical Test
2.4. Salt Spray Test
2.5. Corrosion Test in Marine Atmosphere
3. Results
3.1. Study of Initial Samples
3.2. Salt Spray Test Result
3.3. Marine Atmosphere Corrosion Tests
4. Conclusions
- ❖ A decrease from this optimal ratio leads to nonuniformity of the surface relief created by SPTFE microparticles and a decrease in the thickness of the composite layer;
- ❖ An increase in the ratio leads to oversaturation of the PVDF film with SPTFE microparticles, deteriorating their binding to each other, which leads to defects (cracks) in the composite coating even at the stage of solvent evaporation.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fayomi, O.S.I.; Akande, I.G.; Odigie, S. Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview. J. Phys. Conf. Ser. 2019, 1378, 022037. [Google Scholar] [CrossRef]
- He, Z.; Lin, H.; Zhang, X.; Chen, Y.; Bai, W.; Lin, Y.; Jian, R.; Xu, Y. Self-Healing Epoxy Composite Coating Based on Polypyrrole@MOF Nanoparticles for the Long-Efficiency Corrosion Protection on Steels. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 657, 130601. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, Q.; Li, Y.; Hou, B. Facile Fluorine-Free One Step Fabrication of Superhydrophobic Aluminum Surface towards Self-Cleaning and Marine Anticorrosion. Chem. Eng. J. 2018, 352, 625–633. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Protective Polymeric Films for Industrial Substrates: A Critical Review on Past and Recent Applications with Conducting Polymers and Polymer Composites/Nanocomposites. Prog. Mater. Sci. 2019, 104, 380–450. [Google Scholar] [CrossRef]
- Bruna, H.; Allende-Seco, R.; Artigas, A.; Monsalve, A.; Sánchez, C. Effect of Copper and Nickel Content on the Corrosion Mechanisms in Ferritic Matrix Gray Cast Irons under Simulated Marine Environments. Metals 2024, 14, 696. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, Q.; Cheng, L.; Wu, H.; Zhao, H.; Wang, L. Self-Alignment of Cationic Graphene Oxide Nanosheets for Anticorrosive Reinforcement of Epoxy Coatings. Chem. Eng. J. 2020, 389, 124435. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, H.; Li, J.; Zhao, H.; Wang, L. Polydopamine Modified Ultrathin Hydroxyapatite Nanosheets for Anti-Corrosion Reinforcement in Polymeric Coatings. Corros. Sci. 2021, 178, 109064. [Google Scholar] [CrossRef]
- Bai, Z.; Meng, S.; Cui, Y.; Sun, Y.; Pei, L.; Hu, H.; Jiang, Y.; Wang, H. A Stable Anticorrosion Coating with Multifunctional Linkage against Seawater Corrosion. Compos. Part B Eng. 2023, 259, 110733. [Google Scholar] [CrossRef]
- Shim, H.-E.; Lee, B.-M.; Lim, D.-H.; Nam, Y.-R.; Choi, P.-S.; Gwon, H.-J. A Comparative Study of Gamma-Ray Irradiation-Induced Oxidation: Polyethylene, Poly (Vinylidene Fluoride), and Polytetrafluoroethylene. Polymers 2022, 14, 4570. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Nadaraia, K.V.; Imshenetskiy, I.M.; Belov, E.A.; Gerasimenko, M.S.; Sinebryukhov, S.L.; Gnedenkov, S.V. Composite Coatings of AMg3 Alloy Formed by a Combination of Plasma Electrolytic Oxidation and Fluoropolymer Spraying. Molecules 2023, 28, 465. [Google Scholar] [CrossRef]
- Lv, W.; Wang, T.; Wang, Q.; Yap, K.K.; Song, F.; Wang, C. Tribological and Mechanochemical Properties of Nanoparticle-Filled Polytetrafluoroethylene Composites under Different Loads. Polymers 2024, 16, 894. [Google Scholar] [CrossRef]
- Vicente, A.; Rivero, P.J.; Rehfeld, N.; Stake, A.; García, P.; Carreño, F.; Mora, J.; Rodríguez, R. Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application. Polymers 2024, 16, 571. [Google Scholar] [CrossRef]
- Fan, L.; Li, B.; Wang, Y.; He, J.; Bai, J.; Zhu, T.; Yuan, Y. Superhydrophobic Epoxy/Fluorosilicone/PTFE Coatings Prepared by One-Step Spraying for Enhanced Anti-Icing Performance. Coatings 2023, 13, 569. [Google Scholar] [CrossRef]
- Wu, J.-F.; Wang, B.-B.; Deng, J.-W.; Xu, Z.-M.; Zhao, Q. Experimental and Mechanism Studies on High CaCO3 Fouling Inhibition of PTFE Coating with Enhanced Stability and Anti-Corrosion. J. Ind. Eng. Chem. 2024, 134, 65–74. [Google Scholar] [CrossRef]
- Thieme, M.; Streller, F.; Simon, F.; Frenzel, R.; White, A.J. Superhydrophobic Aluminium-Based Surfaces: Wetting and Wear Properties of Different CVD-Generated Coating Types. Appl. Surf. Sci. 2013, 283, 1041–1050. [Google Scholar] [CrossRef]
- Ng, C.-H.; Rao, J.; Nicholls, J. The Role of PVD Sputtered PTFE and Al2O3 Thin Films in the Development of Damage Tolerant Coating Systems. J. Mater. Res. Technol. 2020, 9, 675–686. [Google Scholar] [CrossRef]
- Jafari, R.; Menini, R.; Farzaneh, M. Superhydrophobic and Icephobic Surfaces Prepared by RF-Sputtered Polytetrafluoroethylene Coatings. Appl. Surf. Sci. 2010, 257, 1540–1543. [Google Scholar] [CrossRef]
- Lu, C.; Feng, X.; Yang, J.; Jia, J.; Yi, G.; Xie, E.; Sun, Y. Influence of Surface Microstructure on Tribological Properties of PEO-PTFE Coating Formed on Aluminum Alloy. Surf. Coatings Technol. 2019, 364, 127–134. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Egorkin, V.S.; Vyalyi, I.E.; Mashtalyar, D.V.; Nadaraia, K.V.; Ryabov, D.K.; Buznik, V.M. Formation and Properties of Composite Coatings on Aluminum Alloys. Russ. J. Inorg. Chem. 2017, 62, 1–11. [Google Scholar] [CrossRef]
- Egorkin, V.S.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Vyaliy, I.E.; Gnedenkov, A.S.; Chizhikov, R.G. Increasing Thickness and Protective Properties of PEO-Coatings on Aluminum Alloy. Surf. Coatings Technol. 2018, 334, 29–42. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, Y.; Li, J.; Liu, J.; Wang, X.; Yu, F.; Wang, T.; Gao, K.; Zhang, Z. Preparation and Characterization of Cross-Linked Waterborne Acrylic /PTFE Composite Coating with Good Hydrophobicity and Anticorrosion Properties. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 653, 129872. [Google Scholar] [CrossRef]
- Tsvetnikov, A.K. Thermogradient Method of Synthesis of Nano-and Microdispersed Fluorocarbon Materials. Properties and Application. Bull. FEBRAS 2009, 2, 18–22. [Google Scholar]
- Radwan, A.B.; Mohamed, A.M.A.; Abdullah, A.M.; Al-Maadeed, M.A. Corrosion Protection of Electrospun PVDF–ZnO Superhydrophobic Coating. Surf. Coatings Technol. 2016, 289, 136–143. [Google Scholar] [CrossRef]
- Shakourian, M.; Rahemi Ardekani, S.; Bayat, A.; Saievar-Iranizad, E.; Deferme, W. Ultrasonic Atomization Based Fabrication of Superhydrophobic and Corrosion-Resistant Hydrolyzed MTMS/PVDF Coatings. JCIS Open 2022, 7, 100059. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Kononenko, Y.I.; Sinebryukhov, S.L.; Filonina, V.S.; Vyaliy, I.E.; Nomerovskii, A.D.; Ustinov, A.Y.; Gnedenkov, S.V. The Effect of Smart PEO-Coatings Impregnated with Corrosion Inhibitors on the Protective Properties of AlMg3 Aluminum Alloy. Materials 2023, 16, 2215. [Google Scholar] [CrossRef]
- AlGhamdi, J.M.; Alqahtani, H.A.; Dalhat Mu’azu, N.; Zubair, M.; Haladu, S.A.; Saood Manzar, M. Revolutionizing Corrosion Protection in Seawater Using Innovative Layered Double Hydroxide/Polyvinylidene Fluoride LDH@PVDF Composite Coatings. Arab. J. Chem. 2024, 17, 105775. [Google Scholar] [CrossRef]
- Chiong, S.J.; Goh, P.S.; Ismail, A.F. Novel Hydrophobic PVDF/APTES-GO Nanocomposite for Natural Gas Pipelines Coating. J. Nat. Gas Sci. Eng. 2017, 42, 190–202. [Google Scholar] [CrossRef]
- Egorkin, V.S.; Mashtalyar, D.V.; Gnedenkov, A.S.; Filonina, V.S.; Vyaliy, I.E.; Nadaraia, K.V.; Imshinetskiy, I.M.; Belov, E.A.; Izotov, N.V.; Sinebryukhov, S.L.; et al. Icephobic Performance of Combined Fluorine-containing Composite Layers on Al-mg-mn–Si Alloy Surface. Polymers 2021, 13, 3827. [Google Scholar] [CrossRef]
- Vyaliy, I.E.; Egorkin, V.S.; Izotov, N.V.; Kharchenko, U.V.; Minaev, A.N.; Sinebryukhov, S.L.; Gnedenkov, S.V. Changes in Barrier Properties of Protective Composite Coatings on Aluminum Alloy during Climatic Testing. St. Petersbg. State Polytech. Univ. J. Phys. Math. 2022, 15, 253–258. [Google Scholar] [CrossRef]
- Wu, C.; Bell, J.P.; Davis, G.D. Enhancement of Corrosion Resistance of Protective Coatings Formed by Spontaneous Surface Polymerization. Int. J. Adhes. Adhes. 2003, 23, 499–506. [Google Scholar] [CrossRef]
- Arrabal, R.; Mota, J.M.; Criado, A.; Pardo, A.; Mohedano, M.; Matykina, E. Assessment of Duplex Coating Combining Plasma Electrolytic Oxidation and Polymer Layer on AZ31 Magnesium Alloy. Surf. Coatings Technol. 2012, 206, 4692–4703. [Google Scholar] [CrossRef]
- Ma, M.M.; Wen, Y.Q.; Shang, W.; Li, J.P. Preparation and Corrosion Resistance of Micro-Arc Oxidation/Self-Assembly Composite Film on 6061 Aluminum Alloy. Int. J. Electrochem. Sci. 2019, 14, 10731–10743. [Google Scholar] [CrossRef]
- Han, X.; Li, N.; Wu, B.; Li, D.; Pan, Q.; Wang, R. Microstructural Characterization and Corrosion Resistance Evaluation of Chromate-Phosphate/Water-Soluble Resin Composite Conversion Coating on Al Surfaces. Prog. Org. Coat. 2022, 173, 107205. [Google Scholar] [CrossRef]
- Adeleke, S.A.; Caldona, E.B. Durable Ceramic-Reinforced Fluoropolymer Nanocomposite Corrosion Protective Coatings. Ceram. Int. 2024, 50, 33356–33370. [Google Scholar] [CrossRef]
- Hegde, M.; Warraich, M.Q.M.; Bashir, W.; Kavanagh, Y.; Duffy, B.; Tobin, E.F. The Effect of Curing on the Properties of 3-Methacryloxypropyltrimethoxysilane Based Sol-Gel Coatings Developed for Protective Applications in Water-Based Environments. Surf. Coat. Technol. 2024, 479, 130442. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Nadaraia, K.V.; Gnedenkov, A.S.; Bouznik, V.M. Composite Fluoropolymer Coatings on the MA8 Magnesium Alloy Surface. Corros. Sci. 2016, 111, 175–185. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Zou, Y.; Wu, Y.; Chen, G.; Ouyang, J.; Jia, D.; Zhou, Y. A Self-Adjusting PTFE/TiO2 Hydrophobic Double-Layer Coating for Corrosion Resistance and Electrical Insulation. Chem. Eng. J. 2020, 402, 126116. [Google Scholar] [CrossRef]
- Zeng, D.; Liu, Z.; Bai, S.; Zhao, J. Preparation and Characterization of a Silane Sealed PEO Coating on Aluminum Alloy. Coatings 2021, 11, 549. [Google Scholar] [CrossRef]
- ISO 9227:2022; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. Edition 5, ISO: Geneva, Switzerland, 2022.
- Egorkin, V.S.; Medvedev, I.M.; Sinebryukhov, S.L.; Vyaliy, I.E.; Gnedenkov, A.S.; Nadaraia, K.V.; Izotov, N.V.; Mashtalyar, D.V.; Gnedenkov, S.V. Atmospheric and Marine Corrosion of PEO and Composite Coatings Obtained on Al-Cu-Mg Aluminum Alloy. Materials 2020, 13, 2739. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Sample | Treatment Condition | |||
---|---|---|---|---|
Plasma Electrolytic Oxidation | Dip-Coating | |||
Dispersive Phase (SPTFE) | Dispersive Media | PVDF:SPTFE Ratio | ||
Uncoated | – | – | – | – |
PEO | + | – | – | – |
PEO/PVDF | + | + | 6% PVDF solution in N-methyl-2-pyrrolidone | – |
PVDF:SPTFE 1:1 | + | + | 1:1 | |
PVDF:SPTFE 1:2 | + | + | 1:2 | |
PVDF:SPTFE 1:3 | + | + | 1:3 | |
PVDF:SPTFE 1:4 | + | + | 1:4 | |
PVDF:SPTFE 1:5 | + | + | 1:5 | |
PVDF:SPTFE 1:10 | + | + | 1:10 |
Sample | EC [V vs. Ag/AgCl] | IC [A∙cm−2] | Rp [Ω∙cm2] |
---|---|---|---|
Uncoated | −0.67 | 1.1 × 10−6 | 2.4 × 104 |
PEO | −0.87 | 8.4 × 10−8 | 1.9 × 105 |
PEO/PVDF | –0.82 | 8.1 × 10−11 | 1.3 × 109 |
PVDF:SPTFE 1:1 | −0.53 | 7.2 × 10−11 | 2.7 × 109 |
PVDF:SPTFE 1:3 | −0.57 | 1.5 × 10−11 | 1.7 × 1010 |
PVDF:SPTFE 1:5 | −0.59 | 7.5 × 10−12 | 3.9 × 1010 |
PVDF:SPTFE 1:10 | −0.53 | 3.9 × 10−10 | 8.7 × 108 |
Sample | CPE1 | R1 [Ω∙cm2] | CPE2 | R2 [Ω∙cm2] | |Z|f = 0.01 Hz [Ω∙cm2] | ||
---|---|---|---|---|---|---|---|
Q1 [Ω−1∙cm−2 sn] | n1 | Q2 [Ω−1∙cm−2 sn] | n2 | ||||
Uncoated | 9.21 × 10−6 | 0.91 | 3.11 × 104 | − | − | − | 2.9 × 104 |
PEO | 6.08 × 10−8 | 0.88 | 2.48 × 104 | 6.72 × 10−7 | 0.72 | 8.61 × 106 | 5.6 × 106 |
PEO/PVDF | 6.19 × 10−10 | 0.89 | 1.14 × 109 | 4.14 × 10−9 | 0.64 | 2.35 × 109 | 1.9 × 109 |
PVDF:SPTFE 1:1 | 1.68 × 10−10 | 0.97 | 3.19 × 108 | 5.00 × 10−10 | 0.56 | 3.30 × 109 | 3.0 × 109 |
PVDF:SPTFE 1:3 | 7.31 × 10−11 | 0.98 | 3.53 × 108 | 1.13 × 10−10 | 0.56 | 6.29 × 109 | 5.9 × 109 |
PVDF:SPTFE 1:5 | 5.34 × 10−11 | 0.95 | 4.88 × 109 | 5.21 × 10−11 | 0.68 | 1.65 × 1010 | 2.0 × 1010 |
PVDF:SPTFE 1:10 | 1.92 × 10−11 | 0.98 | 7.14 × 109 | 2.18 × 10−11 | 0.60 | 7.78 × 1010 | 5.4 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorkin, V.S.; Vyaliy, I.E.; Gnedenkov, A.S.; Kharchenko, U.V.; Sinebryukhov, S.L.; Gnedenkov, S.V. Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Polymers 2024, 16, 2945. https://doi.org/10.3390/polym16202945
Egorkin VS, Vyaliy IE, Gnedenkov AS, Kharchenko UV, Sinebryukhov SL, Gnedenkov SV. Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Polymers. 2024; 16(20):2945. https://doi.org/10.3390/polym16202945
Chicago/Turabian StyleEgorkin, Vladimir S., Igor E. Vyaliy, Andrey S. Gnedenkov, Ulyana V. Kharchenko, Sergey L. Sinebryukhov, and Sergey V. Gnedenkov. 2024. "Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension" Polymers 16, no. 20: 2945. https://doi.org/10.3390/polym16202945
APA StyleEgorkin, V. S., Vyaliy, I. E., Gnedenkov, A. S., Kharchenko, U. V., Sinebryukhov, S. L., & Gnedenkov, S. V. (2024). Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Polymers, 16(20), 2945. https://doi.org/10.3390/polym16202945