Development of Hybrid Implantable Local Release Systems Based on PLGA Nanoparticles with Applications in Bone Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. PLGA-CIP Formulation
2.2. Obtaining Implantable PLGA-CIP LRS
2.3. Fourier Transform Infrared (FTIR) Spectroscopy
2.4. Loading Efficiency
2.5. Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
2.6. Scanning Electron Microscopy (SEM) Analysis
2.7. In Vitro Release Profile
- -
- PLGA-CIP (1500 rpm);
- -
- PLGA-CIP:HA (w:w) 25:75;
- -
- PLGA-CIP:HA (w:w) 50:50;
- -
- PLGA-CIP:HA (w:w) 75:25;
- -
- CIP:HA (w:w) mechanical mixture;
In Vitro Release of Implantable PLGA-CIP LRS
2.8. Antibacterial Activity
2.9. PLGA-CIP Scaffolds
2.10. Implantable PLGA-CIP LRS
2.11. Statistical Analysis
3. Results
3.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.2. Loading Efficiency
3.3. Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
3.4. Morphological Aspects of PLGA-CIP
3.5. In Vitro CIP Release Profile
3.6. In Vitro CIP Release Profile of Implantable PLGA-CIP LRS
3.7. Antibacterial Activity
4. Discussion
4.1. FTIR Analysis
4.2. Loading Efficiency
4.3. Granulometric Distribution
4.4. Morphological Aspects of PLGA-CIP
4.5. In Vitro Release Profile
4.6. Antibacterial Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, M.; Xu, Z.; Song, Z.Q.; Li, J.X.; Tang, Z.W.; Xiao, S.; Wen, J. Diagnosis and treatment of chronic osteomyelitis based on nanomaterials. World J. Orthop. 2023, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Popescu, B.; Tevanov, I.; Carp, M.; Ulici, A. Acute hematogenous osteomyelitis in pediatric patients: Epidemiology and risk factors of a poor outcome. J. Int. Med. Res. 2020, 48, 300060520910889. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhuang, T.; Zou, C.; Liu, Y.; Sun, Q.; Li, M.; Zheng, W.; Zhao, C.; Wang, X. Analysis of Pathogen Distribution and Antimicrobial Resistance in Bone and Joint Infections Among Young Children. Clin. Lab. 2024, 70, 240333. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Tong, Y.; Cheng, J.; Abbas, Z.; Li, Z.; Wang, J.; Zhou, Y.; Si, D.; Zhang, R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int. J. Mol. Sci. 2022, 23, 1241. [Google Scholar] [CrossRef]
- Bolon, M.K. The newer fluoroquinolones. Infect. Dis. Clin. N. Am. 2009, 23, 1027. [Google Scholar] [CrossRef]
- Kobata, S.I.; Teixeira, L.E.M.; Fernandes, S.O.A.; Faraco, A.A.G.; Vidigal, P.V.T.; Araújo, I.D. Prevention of bone infection after open fracture using a chitosan with ciprofloxacin implant in animal model. Acta Cir. Bras. 2020, 35, e202000803. [Google Scholar] [CrossRef]
- Kim, B.N.; Kim, E.S.; Oh, M.D. Oral antibiotic treatment of staphylococcal bone and joint infections in adults. J. Antimicrob. Chemother. 2014, 69, 309. [Google Scholar] [CrossRef]
- Majalekar, P.P.; Shirote, P.J. Fluoroquinolones: Blessings or Curses. Curr. Drug Targets. 2020, 21, 1354. [Google Scholar] [CrossRef]
- Conterno, L.O.; da Silva Filho, C.R. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst. Rev. 2009, 8, CD004439. [Google Scholar] [CrossRef]
- Begg, E.J.; Robson, R.A.; Saunders, D.A.; Graham, G.G.; Buttimore, R.C.; Neill, A.M.; Town, G.I. The pharmacokinetics of oral fleroxacin and ciprofloxacin in plasma and sputum during acute and chronic dosing. Br J Clin Pharmacol. 2000, 49, 32. [Google Scholar] [CrossRef]
- Chukwuani, C.M.; Coker, H.A.; Oduola, A.M.; Sowunmi, A.; Ifudu, N.D. Bioavailability of ciprofloxacin and fleroxacin: Results of a preliminary investigation in healthy adult Nigerian male volunteers. Biol. Pharm. Bull. 2000, 23, 968. [Google Scholar] [CrossRef]
- Cortés-Penfield, N.W.; Kulkarni, P.A. The History of Antibiotic Treatment of Osteomyelitis. Open Forum Infect. Dis. 2019, 6, ofz181. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.; Stabeta, H.; Möller, J.G.; Schrolnberger, C.; Erovic, B.; Hollenstein, U.; Zeitlinger, M.; Eichler, H.G.; Müller, M. Target site concentrations of ciprofloxacin after single intravenous and oral doses. Antimicrob. Agents Chemother. 2002, 46, 3724. [Google Scholar] [CrossRef] [PubMed]
- Landersdorfer, C.B.; Kinzig, M.; Höhl, R.; Kempf, P.; Nation, R.L.; Sörgel, F. Physiologically Based Population Pharmacokinetic Modeling Approach for Ciprofloxacin in Bone of Patients Undergoing Orthopedic Surgery. ACS Pharmacol. Transl. Sci. 2020, 3, 444. [Google Scholar] [CrossRef] [PubMed]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128. [Google Scholar] [CrossRef]
- McNally, M.A.; Ferguson, J.Y.; Scarborough, M.; Ramsden, A.; Stubbs, D.A.; Atkins, B.L. Mid- to long-term results of single-stage surgery for patients with chronic osteomyelitis using a bioabsorbable gentamicin-loaded ceramic carrier. Bone Jt. J. 2022, 104, 1095. [Google Scholar] [CrossRef]
- Zapata, D.; Higgs, J.; Wittholt, H.; Chittimalli, K.; Brooks, A.E.; Mulinti, P. Nanotechnology in the Diagnosis and Treatment of Osteomyelitis. Pharmaceutics 2022, 14, 1563. [Google Scholar] [CrossRef]
- Senra, M.R.; Marques, M.D.F.V. Synthetic Polymeric Materials for Bone Replacement. J. Compos. Sci. 2020, 4, 191. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Z.; Liu, Y.; Yu, J.; Wang, X.; Tan, Z.; Ye, X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front. Cell Dev. Biol. 2021, 9, 665813. [Google Scholar] [CrossRef]
- Aslankoohi, N.; Mondal, D.; Rizkalla, A.S.; Mequanint, K. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers 2019, 11, 1437. [Google Scholar] [CrossRef]
- Nandi, S.K.; Bandyopadhyay, S.; Das, P.; Samanta, I.; Mukherjee, P.; Roy, S.; Kundu, B. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol. Adv. 2016, 34, 1305. [Google Scholar] [CrossRef] [PubMed]
- Rocha, C.V.; Gonçalves, V.; da Silva, M.C.; Bañobre-López, M.; Gallo, J. PLGA-Based Composites for Various Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 2034. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An Overview of Poly(Lactic-Co-Glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15, 3640. [Google Scholar] [CrossRef] [PubMed]
- Towner, R.A.; Dissanayake, R.; Ahmed, M. Clinical Advances in Triple Negative Breast Cancer Treatment: Focus on Poly (L-lactide-coglycolide) Nanoparticles. J. Pharmacol. Exp. Ther. 2024, 390, 53. [Google Scholar] [CrossRef]
- Gürsel, I.; Korkusuz, F.; Türesin, F.; Alaeddinoglu, N.G.; Hasirci, V. In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 2001, 22, 73. [Google Scholar] [CrossRef]
- Koort, J.K.; Makinen, T.J.; Suokas, E.; Veiranto, M.; Jalava, J.; Tormala, P.; Aro, H.T. Sustained release of ciprofloxacin from an osteoconductive poly(DL)-lactide implant. Acta Orthop. 2008, 79, 295. [Google Scholar] [CrossRef]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373. [Google Scholar] [CrossRef]
- Nicolaescu, O.-E.; Turcu-Stiolica, A.; Varut, R.-M.; Mocanu, A.-G.; Belu, I.; Sima, L.E.; Neamtu, J. Evaluation of Mesenchymal Stem Cells and Osteoblasts’ Adhesion and Proliferation in the Presence of HA-AL Biomaterials. Coatings 2019, 9, 782. [Google Scholar] [CrossRef]
- Urish, K.L.; Cassat, J.E. Staphylococcus aureus Osteomyelitis: Bone, Bugs, and Surgery. Infect. Immun. 2020, 88, e00932-19. [Google Scholar] [CrossRef]
- Sahoo, S.; Chakraborti, C.K.; Mishra, S.C. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension. J. Adv. Pharm. Technol. Res. 2011, 2, 195. [Google Scholar] [CrossRef]
- Pandey, S.; Pandey, P.; Tiwari, G.; Tiwari, R.; Rai, A.K. FTIR Spectroscopy: A Tool for Quantitative Analysis of Ciprofloxacin in Tablets. Indian. J. Pharm. Sci. 2012, 74, 86. [Google Scholar] [CrossRef]
- Settimo, L.; Bellman, K.; Knegtel, R.M. Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm. Res. 2014, 31, 1082. [Google Scholar] [CrossRef] [PubMed]
- Ionescu (Filip), O.; Ciocîlteu, M.V.; Manda, C.V.; Neacsu, I.A.; Ficai, A.; Amzoiu, E.; Turcu Stiolica, A.; Croitoru, O.; Neamtu, J. Bone—Graft Delivery Systems of Type PLGA-gentamicin and Collagen—Hydroxyapatite—Gentamicine. Mat. Plast. 2019, 56, 534. [Google Scholar] [CrossRef]
- Vella, J.; Busuttil, F.; Bartolo, N.S.; Sammut, C.; Ferrito, V.; Serracino-Inglott, A.; Azzopardi, L.M.; LaFerla, G. A simple HPLC-UV method for the determination of ciprofloxacin in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 989, 80. [Google Scholar] [CrossRef] [PubMed]
- Sasongko, L.; Pratiwi, G.K.; Leo, M.; Adiwidjaja, J. Simultaneous HPLC Assay of Gliclazide and Ciprofloxacin in Plasma and its Implementation for Pharmacokinetic Study in Rats. J. Chromatogr. Sci. 2021, 59, 338. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, A.G.; Belu, I.; Croitoru, O.; Ciocîlteu, M.V.; Manda, C.V.; Neamtu, J. Formulation and Characterization of Ciprofloxacin loaded PLGA Microspheres for Applications in Orthopedic Infections. Curr. Health Sci. J. 2017, 43, 306. [Google Scholar] [CrossRef] [PubMed]
- Mandzy, N.; Grulke, E.; Druffel, T. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol. 2005, 160, 121. [Google Scholar] [CrossRef]
- Smeets, R.; Kolk, A.; Gerressen, M.; Driemel, O.; Maciejewski, O.; Hermanns-Sachweh, O.; Riediger, D.; Stein, J.M. A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation. Head Face Med. 2009, 5, 13. [Google Scholar] [CrossRef]
- Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007, 28, 4600. [Google Scholar] [CrossRef]
- Botelho, C.M.; Brooks, R.A.; Best, S.M.; Lopes, M.A.; Santos, J.D.; Rushton, N.; Bonfield, W. Human osteoblast response to silicon-substituted hydroxyapatite. J. Biomed. Mater. Res. A. 2006, 79, 723. [Google Scholar] [CrossRef]
- Mo, X.; Zhang, D.; Liu, K.; Zhao, X.; Li, X.; Wang, W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 1291. [Google Scholar] [CrossRef] [PubMed]
- Mobarak, D.H.; Salah, S.; Elkheshen, S.A. Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: Optimization of technique and process variables. Pharm. Dev. Technol. 2014, 19, 891. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, A.G.; Stiolica, A.T.; Belu, I.; Ciocilteu, M.V.; Manda, V.C.; Nicolicescu, C.; Neamtu, J. Quality by Design for Ciprofloxacin Encapsulation in PLGA Factors assessment followed by screening and optimization. Rev. Chim. 2018, 69, 1332. [Google Scholar] [CrossRef]
- Ciocîlteu, M.V.; Scorei, I.R.; Rău, G.; Nicolicescu, C.; Biţă, A.; Ene, V.L.; Simionescu, A.; Turcu-Ştiolică, A.; Dinescu, V.C.; Neamţu, J.; et al. Zinc-Boron-PLGA biocomposite material: Preparation, structural characterization, and in vitro assessment. Rom. J. Morphol. Embryol. 2023, 64, 567. [Google Scholar] [CrossRef] [PubMed]
- Turcu-Știolică, A.; Ciocîlteu, M.V.; Podgoreanu, P.; Neacșu, I.; Ionescu (Filip), O.L.; Nicolicescu, C.; Neamțu, J.; Amzoiu, E.; Amzoiu, E.; Manda, C.V. PLGA-Gentamicin and PLGA-hydroxyapatite-gentamicin microspheres for medical applications. Pharm. Chem. J. 2022, 56, 645. [Google Scholar] [CrossRef]
- Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, Biodegradation and Biomedical Applications of Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid) Micro and Nanoparticles. J. Pharm. Investig. 2019, 49, 347. [Google Scholar] [CrossRef]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377. [Google Scholar] [CrossRef]
- Dereje, D.M.; Pontremoli, C.; García, A.; Galliano, S.; Colilla, M.; González, B.; Vallet-Regí, M.; Izquierdo-Barba, I.; Barbero, N. Poly Lactic-co-Glycolic Acid (PLGA) Loaded with a Squaraine Dye as Photosensitizer for Antimicrobial Photodynamic Therapy. Polymers 2024, 16, 1962. [Google Scholar] [CrossRef]
- Hakim, L.K.; Yazdanian, M.; Alam, M.; Abbasi, K.; Tebyaniyan, H.; Tahmasebi, E.; Khayatan, D.; Seifalian, A.; Ranjbar, R.; Yazdanian, A. Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity. Evid.-Based Complement. Altern. Med. 2021, 2021, 9011226. [Google Scholar] [CrossRef]
- Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int. J. Pharm. 2011, 415, 34. [Google Scholar] [CrossRef]
- Zhdanov, V.P. Release of molecules from nanocarriers. Phys. Chem. Chem. Phys. 2023, 25, 28955–28964. [Google Scholar] [CrossRef] [PubMed]
- Fosca, M.; Rau, J.V.; Uskoković, V. Factors influencing the drug release from calcium phosphate cements. Bioact. Mater. 2021, 7, 341. [Google Scholar] [CrossRef] [PubMed]
- Mulazzi, M.; Campodoni, E.; Bassi, G.; Montesi, M.; Panseri, S.; Bonvicini, F.; Gentilomi, G.A.; Tampieri, A.; Sandri, M. Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics 2021, 13, 1090. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, L.T.; Varut, R.M.; Nicolaescu, O.; Bubulica, M.; Belu, I. In vitro release studies of alendronate from HA-AL composite deposited on titanium metal substrate. J. Sci. Arts 2019, 2, 443. [Google Scholar]
- Heredia, N.S.; Vizuete, K.; Flores-Calero, M.; Pazmiño, V.K.; Pilaquinga, F.; Kumar, B.; Debut, A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS ONE. 2022, 17, e0264825. [Google Scholar] [CrossRef]
- Ciocîlteu, M.V.; Mocanu, A.G.; Mocanu, A.; Ducu, C.; Nicolaescu, O.E.; Manda, V.C.; Turcu-Stiolica, A.; Nicolicescu, C.; Melinte, R.; Balasoiu, M.; et al. Hydroxyapatite-ciprofloxacin delivery system: Synthesis, characterisation and antibacterial activity. Acta Pharm. 2018, 68, 129. [Google Scholar] [CrossRef]
- Torshabi, M.; Nojehdehian, H.; Tabatabaei, F.S. In vitro behavior of poly-lactic-co-glycolic acid microspheres containing minocycline, metronidazole, and ciprofloxacin. J. Investig. Clin. Dent. 2016, 8, e12201. [Google Scholar] [CrossRef]
- Thomas, N.; Thorn, C.; Richter, K.; Thierry, B.; Prestidge, C. Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms. J. Pharm. Pharm. Sci. 2016, 105, 3115. [Google Scholar] [CrossRef]
Target | 1% Dispersion of PLGA-CIP in 99% (5 mL) n-Hexane, Homogenized Using an Ultrasonic Bath |
---|---|
Laser energy | 250 mJ@Hz |
Chamber energy | 100 mJ @Hz |
Laser spot | 34 mm2 |
Laser fluence | 0.3 J/cm2 |
Target-substrate distance | 5 cm |
Pressure | 1.5 × 10−2 mbar |
Target rotation speed | 50 Hz |
Substrate rotation speed | 30 Hz |
Number of pulses | 97890 |
Substrate type | 7 × Ti |
Observations | Titanium disks were weighed before and after deposition. After deposition, the discs were stored in a refrigerator at 4 degrees Celsius for further use |
Sample | Staphylococcus aureus | Methicillin-Resistant Staphylococcus aureus | |
---|---|---|---|
DZI (mm) | Control sample (CIP and HA) | 39 *** | 27 *** |
PLGA-CIP nanoparticle scaffolds (1500 rpm) | 32 *** | 24 *** | |
Implantable PLGA-CIP LRS | 22 *** | 13 * | |
CIP deposited on Ti disks | 27 *** | 17 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciocîlteu, M.V.; Mocanu, A.G.; Biță, A.; Manda, C.V.; Nicolicescu, C.; Rău, G.; Belu, I.; Pîrvu, A.S.; Balasoiu, M.; Nănescu, V.; et al. Development of Hybrid Implantable Local Release Systems Based on PLGA Nanoparticles with Applications in Bone Diseases. Polymers 2024, 16, 3064. https://doi.org/10.3390/polym16213064
Ciocîlteu MV, Mocanu AG, Biță A, Manda CV, Nicolicescu C, Rău G, Belu I, Pîrvu AS, Balasoiu M, Nănescu V, et al. Development of Hybrid Implantable Local Release Systems Based on PLGA Nanoparticles with Applications in Bone Diseases. Polymers. 2024; 16(21):3064. https://doi.org/10.3390/polym16213064
Chicago/Turabian StyleCiocîlteu, Maria Viorica, Andreea Gabriela Mocanu, Andrei Biță, Costel Valentin Manda, Claudiu Nicolicescu, Gabriela Rău, Ionela Belu, Andreea Silvia Pîrvu, Maria Balasoiu, Valentin Nănescu, and et al. 2024. "Development of Hybrid Implantable Local Release Systems Based on PLGA Nanoparticles with Applications in Bone Diseases" Polymers 16, no. 21: 3064. https://doi.org/10.3390/polym16213064
APA StyleCiocîlteu, M. V., Mocanu, A. G., Biță, A., Manda, C. V., Nicolicescu, C., Rău, G., Belu, I., Pîrvu, A. S., Balasoiu, M., Nănescu, V., & Nicolaescu, O. E. (2024). Development of Hybrid Implantable Local Release Systems Based on PLGA Nanoparticles with Applications in Bone Diseases. Polymers, 16(21), 3064. https://doi.org/10.3390/polym16213064