Formation of Superhydrophobic Coatings Based on Dispersion Compositions of Hexyl Methacrylate Copolymers with Glycidyl Methacrylate and Silica Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Copolymers
2.3. Preparation of Emulsion Formulations
2.4. Formation of Coatings
2.5. Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Y.; Zhang, H.; Shao, Y.; Zhang, H.; Zhu, J. Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. Coatings 2021, 11, 116. [Google Scholar] [CrossRef]
- Sharma, K.; Hooda, A.; Goyat, M.S.; Rai, R.; Mittal, A. A Review on Challenges, Recent Progress and Applications of Silica Nanoparticles Based Superhydrophobic Coatings. Ceram. Int. 2022, 48, 5922–5938. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Qian, H.; Li, X. Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions. J. Coat. Technol. Res. 2016, 13, 11–29. [Google Scholar] [CrossRef]
- Ren, T.; He, J. Substrate-Versatile Approach to Robust Antireflective and Superhydrophobic Coatings with Excellent Self-Cleaning Property in Varied Environments. ACS Appl. Mater. Interfaces 2017, 9, 34367–34376. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Guo, Z. Superhydrophobic Materials Used for Anti-Icing Theory, Application, and Development. iScience 2021, 24, 103357. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Jiao, Y.; Sun, Z.; Yang, X.; Cheng, Z.; Bai, Q.; Zhang, Y.; Wang, K.; Shao, L. Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano 2021, 15, 3500–3508. [Google Scholar] [CrossRef]
- Miljkovic, N.; Wang, E.N. Condensation Heat Transfer on Superhydrophobic Surfaces. MRS Bull. 2013, 38, 397–406. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of Robust Superhydrophobic Surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef]
- Pan, S.; Guo, R.; Björnmalm, M.; Richardson, J.J.; Li, L.; Peng, C.; Bertleff-Zieschang, N.; Xu, W.; Jiang, J.; Caruso, F. Coatings Super-Repellent to Ultralow Surface Tension Liquids. Nat. Mater. 2018, 17, 1040–1047. [Google Scholar] [CrossRef]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A Review on Fundamentals, Constraints and Fabrication Techniques of Superhydrophobic Coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface Roughness and Contact Angle. J. Phys. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Rosario, R.; Gust, D.; Garcia, A.A.; Hayes, M.; Taraci, J.L.; Clement, T.; Dailey, J.W.; Picraux, S.T. Lotus Effect Amplifies Light-Induced Contact Angle Switching. J. Phys. Chem. B 2004, 108, 12640–12642. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Large Contact Angles of Plant and Animal Surfaces. Nature 1945, 155, 21–22. [Google Scholar] [CrossRef]
- Wu, X.H.; Liew, Y.K.; Mai, C.-W.; Then, Y.Y. Potential of Superhydrophobic Surface for Blood-Contacting Medical Devices. Int. J. Mol. Sci. 2021, 22, 3341. [Google Scholar] [CrossRef] [PubMed]
- Boinovich, L.B.; Emelyanenko, A.M. Hydrophobic Materials and Coatings: Principles of Design, Properties and Applications. Russ. Chem. Rev. 2008, 77, 583–600. [Google Scholar] [CrossRef]
- Ye, H.; Zhu, L.; Li, W.; Liu, H.; Chen, H. Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 858–867. [Google Scholar] [CrossRef]
- Yang, H.; Pi, P.; Yang, Z.; Lu, Z.; Chen, R. Design of a Superhydrophobic and Superoleophilic Film Using Cured Fluoropolymer@silica Hybrid. Appl. Surf. Sci. 2016, 388, 268–273. [Google Scholar] [CrossRef]
- Erbil, H.Y. Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives. Langmuir 2020, 36, 2493–2509. [Google Scholar] [CrossRef]
- Slepickova Kasalkova, N.; Slepicka, P.; Kolska, Z.; Svorcik, V. Wettability and Other Surface Properties of Modified Polymers. In Wetting and Wettability; Aliofkhazraei, M., Ed.; InTech: London, UK, 2015; ISBN 978-953-51-2215-9. [Google Scholar]
- Fujinami, A.; Matsunaka, D.; Shibutani, Y. Water Wettability/Non-Wettability of Polymer Materials by Molecular Orbital Studies. Polymer 2009, 50, 716–720. [Google Scholar] [CrossRef]
- Toledano, R.; Mandler, D. Electrochemical Codeposition of Thin Gold Nanoparticles/Sol−Gel Nanocomposite Films. Chem. Mater. 2010, 22, 3943–3951. [Google Scholar] [CrossRef]
- Gupta, N.; Kavya, M.V.; Singh, Y.R.G.; Jyothi, J.; Barshilia, H.C. Superhydrophobicity on Transparent Fluorinated Ethylene Propylene Films with Nano-Protrusion Morphology by Ar + O2 Plasma Etching: Study of the Degradation in Hydrophobicity after Exposure to the Environment. J. Appl. Phys. 2013, 114, 164307. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, M.; Zhang, Z.; Lu, J.; Xu, K.; Zhu, H.; Wu, Y.; Wang, B.; Lei, W. A Review on Applications of Functional Superhydrophobic Surfaces Prepared by Laser Biomimetic Manufacturing. J. Mater. Sci. 2023, 58, 3421–3459. [Google Scholar] [CrossRef]
- Xu, Q.F.; Wang, J.N.; Sanderson, K.D. Organic−Inorganic Composite Nanocoatings with Superhydrophobicity, Good Transparency, and Thermal Stability. ACS Nano 2010, 4, 2201–2209. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Guo, Z. Recent Advances in the Fabrication of Superhydrophobic Surfaces. Chem. Lett. 2016, 45, 1134–1149. [Google Scholar] [CrossRef]
- Lu, P.; Yun, H.; Zhang, W.; Tu, D.; Hu, C.; Cherdchim, B. A Facile Method of Superhydrophobic Coating on Rubberwood to Improve Its Anti-Mildew Performance. BioRes 2019, 14, 7111–7121. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, S.; Wang, S.; Qing, Y.; Yan, N.; Wang, Q.; Meng, T. A Facile and Novel Emulsion for Efficient and Convenient Fabrication of Durable Superhydrophobic Materials. Chem. Eng. J. 2017, 328, 186–196. [Google Scholar] [CrossRef]
- Yuan, Z.; Bin, J.; Wang, X.; Wang, M.; Huang, J.; Peng, C.; Xing, S.; Xiao, J.; Zeng, J.; Xiao, X.; et al. Preparation of a Polydimethylsiloxane (PDMS)/CaCO3 Based Superhydrophobic Coating. Surf. Coat. Technol. 2014, 254, 97–103. [Google Scholar] [CrossRef]
- Ren, G.; Song, Y.; Li, X.; Wang, B.; Zhou, Y.; Wang, Y.; Ge, B.; Zhu, X. A Simple Way to an Ultra-Robust Superhydrophobic Fabric with Mechanical Stability, UV Durability, and UV Shielding Property. J. Colloid. Interface Sci. 2018, 522, 57–62. [Google Scholar] [CrossRef]
- Qing, Y.; Yang, C.; Sun, Y.; Zheng, Y.; Wang, X.; Shang, Y.; Wang, L.; Liu, C. Facile Fabrication of Superhydrophobic Surfaces with Corrosion Resistance by Nanocomposite Coating of TiO2 and Polydimethylsiloxane. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 471–477. [Google Scholar] [CrossRef]
- Seyedmehdi, S.A.; Ebrahimi, M. The Impact of Hardener Concentration, Curing Temperature, Thickness and Alumina Trihydrate (ATH) on Superhydrophobic Modified-Polyurethane Coatings for Insulators. Prog. Org. Coat. 2018, 124, 99–103. [Google Scholar] [CrossRef]
- Li, K.; Zeng, X.; Lai, X.; Chai, S. Study on the Anti-Abrasion Resistance of Superhydrophobic Coatings Based on Fluorine-Containing Acrylates with Different Tg and SiO2. RSC Adv. 2017, 7, 47738–47745. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Cao, L.; Meng, W.; Ma, X.; Li, X.; Zheng, J.; Liu, X. No-organic Solvent, No-fluorinated Waterborne Superhydrophobic Coatings Based on SiO2 and IBTS. J. Appl. Polym. Sci. 2024, 141, e55537. [Google Scholar] [CrossRef]
- Ferrari, F.; Orlando, A.; Ricci, Z.; Ronco, C. Persistent Pollutants: Focus on Perfluorinated Compounds and Kidney. Curr. Opin. Crit. Care 2019, 25, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Tang, G.; Yuan, B.; Yan, Z.; Ma, L.; Huang, X. One-Step Fabrication of Robust Superhydrophobic Coatings with Corrosion Resistance by a Self-Curing Epoxy-Resin-Based Adhesive. Surf. Coat. Technol. 2019, 380, 125086. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, H.; Latthe, S.S.; Kim, M.; Al-Deyab, S.; Yoon, S.S. A Highly Transparent Self-Cleaning Superhydrophobic Surface by Organosilane-Coated Alumina Particles Deposited via Electrospraying. J. Mater. Chem. A 2015, 3, 11403–11410. [Google Scholar] [CrossRef]
- Xue, F.; Shi, X.; Bai, W.; Li, J.; Li, Y.; Zhu, S.; Liu, Y.; Feng, L. Enhanced Durability and Versatile Superhydrophobic Coatings via Facile One-Step Spraying Technique. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128411. [Google Scholar] [CrossRef]
- Roshan, S.; Sarabi, A.A.; Jafari, R.; Momen, G. One-Step Fabrication of Superhydrophobic Nanocomposite with Superior Anticorrosion Performance. Prog. Org. Coat. 2022, 169, 106918. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, N.; Yu, X.; Yang, C.; Chu, H. Preparation of Superhydrophobic Coatings with Excellent Mechanical and Chemical Stability by One-Step Spraying Method with Selected Fluorine-Free Modifiers. Appl. Surf. Sci. 2024, 642, 158635. [Google Scholar] [CrossRef]
- Bryuzgin, E.V.; Klimov, V.V.; Repin, S.A.; Navrotskiy, A.V.; Novakov, I.A. Aluminum Surface Modification with Fluoroalkyl Methacrylate-Based Copolymers to Attain Superhydrophobic Properties. Appl. Surf. Sci. 2017, 419, 454–459. [Google Scholar] [CrossRef]
- Grigor’eva, Y.D.; Kolyaganova, O.V.; Klimov, V.V.; Bryuzgin, E.V.; Navrotskii, A.V.; Novakov, I.A. Influence of Composition of Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates on the Free Energy and Lyophilic Properties of the Coatings. Polym. Sci. Ser. B 2024, 66, 245–256. [Google Scholar] [CrossRef]
- Klimov, V.V.; Bryuzgin, E.V.; Le, M.D.; Zelenova, E.A.; Nguyen, T.H.; Navrotskii, A.V.; Nishide, H.; Novakov, I.A. An Investigation of the Hydrophobic Property Stability of Grafted Polymeric Coatings on a Cellulose Material Surface. Polym. Sci. Ser. D 2016, 9, 364–367. [Google Scholar] [CrossRef]
- Köthe, M.; Müller, M.; Simon, F.; Komber, H.; Jacobasch, H.-J.; Adler, H.-J. Examination of Poly(Butadiene Epoxide)-Coatings on Inorganic Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 1999, 154, 75–85. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Dotan, A.; Dodiuk, H.; Kenig, S. Superhydrophobic Coatings and Their Durability. Mater. Manuf. Process. 2016, 31, 1143–1155. [Google Scholar] [CrossRef]
- Bayer, I.S. Superhydrophobic Coatings from Ecofriendly Materials and Processes: A Review. Adv. Mater. Inter. 2020, 7, 2000095. [Google Scholar] [CrossRef]
- Bryuzgin, E.; Bryuzgina, E.; Yartseva, V.; Belina, K.; Makevnina, O.; Kolyaganova, O.; Klimov, V.; Navrotskiy, A.; Novakov, I. Biodegradation Control of Chitosan Materials By Surface Modification With Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates. Fibers Polym. 2022, 23, 2502–2510. [Google Scholar] [CrossRef]
- Kolyaganova, O.V.; Klimov, V.V.; Bryuzgin, E.V.; Le, M.D.; Kharlamov, V.O.; Bryuzgina, E.B.; Navrotsky, A.V.; Novakov, I.A. Modification of Wood with Copolymers Based on Glycidyl Methacrylate and Alkyl Methacrylates for Imparting Superhydrophobic Properties. J. Appl. Polym. Sci. 2022, 139, 51636. [Google Scholar] [CrossRef]
- Sedlaček, M.; Podgornik, B.; Vižintin, J. Planning Surface Texturing for Reduced Friction in Lubricated Sliding Using Surface Roughness Parameters Skewness and Kurtosis. Proc. Inst. Mech. Eng. Part. J J. Eng. Tribol. 2012, 226, 661–667. [Google Scholar] [CrossRef]
No. | Concentration of Copolymer in the Organic Phase, wt.% | Mass Content of the Components in the Mixture, % | Filler/Polymer Binder Mass Fraction Ratio, Wf/Wp | |||
---|---|---|---|---|---|---|
Poly(HMA-co-GMA) | Aerosil | Organic Solvent | Water | |||
1 | 5% | 2.4 | 0 | 44.9 | 52.8 | 0 |
2 | 2.3 | 0.9 | 44.4 | 52.3 | 0.4 | |
3 | 2.3 | 1.9 | 44 | 51.8 | 0.8 | |
4 | 2.3 | 2.8 | 43.6 | 51.3 | 1.2 | |
5 | 2.3 | 3.6 | 43.2 | 50.9 | 1.6 | |
6 | 2.3 | 4.5 | 42.8 | 50.4 | 2 | |
7 | 10% | 4.9 | 0 | 43.7 | 51.4 | 0 |
8 | 4.8 | 1.9 | 42.9 | 50.4 | 0.4 | |
9 | 4.7 | 3.7 | 42.1 | 49.5 | 0.8 | |
10 | 4.6 | 5.5 | 41.3 | 48.6 | 1.2 | |
11 | 4.5 | 7.2 | 40.6 | 47.7 | 1.6 | |
12 | 4.4 | 8.9 | 39.8 | 46.9 | 2 | |
13 | 15% | 7.5 | 0 | 42.5 | 50 | 0 |
14 | 7.3 | 2.9 | 41.3 | 48.5 | 0.4 | |
15 | 7.1 | 5.7 | 40.1 | 47.2 | 0.8 | |
16 | 6.9 | 8.3 | 39 | 45.9 | 1.2 | |
17 | 6.7 | 10.7 | 37.9 | 44.6 | 1.6 | |
18 | 6.5 | 13 | 37 | 43.5 | 2 | |
19 | 20% | 10.3 | 0 | 41.2 | 48.5 | 0 |
20 | 9.9 | 4 | 39.6 | 46.6 | 0.4 | |
21 | 9.5 | 7.6 | 38.1 | 44.8 | 0.8 | |
22 | 9.2 | 11 | 36.7 | 43.1 | 1.2 | |
23 | 8.8 | 14.2 | 35.4 | 41.6 | 1.6 | |
24 | 8.5 | 17.1 | 34.2 | 40.2 | 2 |
No. | Filler/Polymer Binder Mass Fraction Ratio, Wf/Wp | Concentration, at.% | ||||
---|---|---|---|---|---|---|
C | O | Na | Si | Ca | ||
7 | 0 | 78.42 | 20.23 | 0.33 | 1.03 | - |
8 | 0.4 | 51.27 | 34.37 | 2.26 | 11.23 | 0.87 |
9 | 0.8 | 54.31 | 32.23 | 0.83 | 12.22 | 0.41 |
10 | 1.2 | 46.54 | 37.45 | 1.41 | 14.09 | 0.52 |
11 | 1.6 | 42.28 | 40.66 | 0.21 | 16.68 | 0.17 |
12 | 2 | 41.92 | 39.82 | 0.62 | 17.36 | 0.29 |
№ | Substrate | Polymer Binder | Filler | Modifying Composition | Filler Mass Content, wt.% | Application Method | CA, Degree | Ref. |
---|---|---|---|---|---|---|---|---|
1 | Wood | Polystyrene | SiO2 | Emulsion in acetone | 1.6 | Immersion in emulsion | 155.6 | [26] |
2 | Wood | 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane | SiO2 | Emulsion in ethanol | -- | Spraying, immersion in emulsion, brush application | 153.1 152.8 152.6 | [27] |
3 | Glass | Polydimethylsiloxane | CaCO3 | Solution | 14.3 25 33.3 36.8 | Surface spreading | 120 153 160 140 | [28] |
4 | Polyester fabric | Polydimethylsiloxane | ZnO | Solution | -- | Immersion in solution | 156 | [29] |
5 | Copper | (Heptadecafluoro-1,1,1,2,2,2-tetradecyl)trimethoxysilane (FAS)/stearic acid (STA)/polydimethylsiloxane (PDMS) | TiO | Suspension | -- | Immersion in suspension | 162 | [30] |
6 | Steel | Polyurethane | Aerosil R-972 | Solution | 8 | Spraying | 157 | [31] |
7 | Steel | P(MMA-co-BA-co-DFMA-co-GMA) | SiO2 | Solution | -- | Spraying | 150 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimov, V.V.; Shilin, A.K.; Kusakovskiy, D.A.; Kolyaganova, O.V.; Kharlamov, V.O.; Rudnev, A.V.; Le, M.D.; Bryuzgin, E.V.; Navrotskii, A.V. Formation of Superhydrophobic Coatings Based on Dispersion Compositions of Hexyl Methacrylate Copolymers with Glycidyl Methacrylate and Silica Nanoparticles. Polymers 2024, 16, 3094. https://doi.org/10.3390/polym16213094
Klimov VV, Shilin AK, Kusakovskiy DA, Kolyaganova OV, Kharlamov VO, Rudnev AV, Le MD, Bryuzgin EV, Navrotskii AV. Formation of Superhydrophobic Coatings Based on Dispersion Compositions of Hexyl Methacrylate Copolymers with Glycidyl Methacrylate and Silica Nanoparticles. Polymers. 2024; 16(21):3094. https://doi.org/10.3390/polym16213094
Chicago/Turabian StyleKlimov, Viktor V., Alexey K. Shilin, Daniil A. Kusakovskiy, Olga V. Kolyaganova, Valentin O. Kharlamov, Alexander V. Rudnev, Manh D. Le, Evgeny V. Bryuzgin, and Alexander V. Navrotskii. 2024. "Formation of Superhydrophobic Coatings Based on Dispersion Compositions of Hexyl Methacrylate Copolymers with Glycidyl Methacrylate and Silica Nanoparticles" Polymers 16, no. 21: 3094. https://doi.org/10.3390/polym16213094
APA StyleKlimov, V. V., Shilin, A. K., Kusakovskiy, D. A., Kolyaganova, O. V., Kharlamov, V. O., Rudnev, A. V., Le, M. D., Bryuzgin, E. V., & Navrotskii, A. V. (2024). Formation of Superhydrophobic Coatings Based on Dispersion Compositions of Hexyl Methacrylate Copolymers with Glycidyl Methacrylate and Silica Nanoparticles. Polymers, 16(21), 3094. https://doi.org/10.3390/polym16213094