Design and Optimization of PEDOT/Graphene Oxide and PEDOT/Reduced Graphene Oxide Electrodes to Improve the Performance of Microbial Fuel Cells, Accompanied by Comprehensive Electrochemical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Modified SS/PEDOT, SS/PEDOT/GO, and SS/PEDOT/rGO Electrodes
2.1.1. Synthesis of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)
2.1.2. Preparation of Stainless-Steel AISI 316 (SS) Electrodes as Support
2.1.3. Electrosynthesis of SS/PEDOT, SS/PEDOT/GO, and SS/PEDOT/rGO Electrodes
2.2. Characterization of SS/PEDOT, SS/PEDOT/GO, and SS/PEDOT/rGO Electrodes
2.2.1. Electrochemical Characterization
2.2.2. Morphological Characterization
2.2.3. Microbial Fuel Cell Configuration and Operation
3. Results
3.1. Analysis of Modified SS/PEDOT, SS/PEDOT/GO, and SS/PEDOT/rGO Electrodes
3.2. Electrochemical Characterization of the SS/PEDOT, SS/PEDOT/GO, and SS/PEDOT/rGO Electrodes
3.3. Morphological Characterization and Chemical Analyses of the SS/PEDOT, SS/PEDOT/GO, and SS/PEDOT/rGO Electrodes
3.4. Electrochemical Description of the SS/PEDOT, SS/PEDOT/GO, and SS/PEDOT/rGO Electrodes in the MFC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaqoob, A.A.; Mohamad Ibrahim, M.N.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, K.; Mei, H.; Qin, W. A Novel Algal–Algal Microbial Fuel Cell for Enhanced Chemical Oxygen Demand Removal. Water 2024, 16, 2798. [Google Scholar] [CrossRef]
- Hemdan, B.A.; El-Taweel, G.E.; Naha, S.; Goswami, P. Bacterial Community Structure of Electrogenic Biofilm Developed on Modified Graphite Anode in Microbial Fuel Cell. Sci. Rep. 2023, 13, 1255. [Google Scholar] [CrossRef] [PubMed]
- Kwofie, M.; Amanful, B.; Gamor, S.; Kaku, F. Comprehensive Analysis of Clean Energy Generation Mechanisms in Microbial Fuel Cells. Int. J. Energy Res. 2024, 2024, 5866657. [Google Scholar] [CrossRef]
- Kumar, A.; Gudiukaite, R.; Gricajeva, A.; Sadauskas, M.; Malunavicius, V.; Kamyab, H.; Sharma, S.; Sharma, T.; Pant, D.; Ghanei-Motlagh, M.; et al. Application of Potentiometric Sensors in Real Samples. Bioresour. Technol. 2020, 63, 10694–10725. [Google Scholar] [CrossRef]
- Aiyer, K.S. How Does Electron Transfer Occur in Microbial Fuel Cells? World J. Microbiol. Biotechnol. 2020, 36, 19. [Google Scholar] [CrossRef]
- Cai, T.; Meng, L.; Chen, G.; Xi, Y.; Jiang, N.; Song, J.; Zheng, S.; Liu, Y.; Zhen, G.; Huang, M. Application of Advanced Anodes in Microbial Fuel Cells for Power Generation: A Review. Chemosphere 2020, 248, 125985. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, S.; Jayaprakash, J. Application of Carbon-Polymer Based Composite Electrodes for Microbial Fuel Cells. Rev. Environ. Sci. Biotechnol. 2020, 19, 595–620. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rodríguez-Couto, S. Development and Modification of Materials to Build Cost-Effective Anodes for Microbial Fuel Cells (MFCs): An Overview. Biochem. Eng. J. 2020, 164, 107779. [Google Scholar] [CrossRef]
- Wei, J.; Liang, P.; Huang, X. Recent Progress in Electrodes for Microbial Fuel Cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, S.; Mosquera, M.E.G. Conducting Polymer-Based Nanohybrids for Fuel Cell Application. Polymers 2020, 12, 2993. [Google Scholar] [CrossRef] [PubMed]
- Mendez-López, M.; Ramos-Hernández, A.; Moreno-Serna, V.; Bonardd, S.; Ramírez, O.; Silva, H.; Inostroza-Rivera, R.; Diaz, D.D.; Leiva, A.; Saldías, C. A Facile Approach for Tuning Optical and Surface Properties of Novel Biobased Alginate/POTE Handleable Films via Solvent Vapor Exposure. Int. J. Biol. Macromol. 2021, 193, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-S.; Ko, S.-J.; Park, J.-S.; Kim, J.Y.; Song, H.-K. Redox-Active Charge Carriers of Conducting Polymers as a Tuner of Conductivity and Its Potential Window. Sci. Rep. 2013, 3, 2454. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, L.S.; Arlyapov, V.A.; Plekhanova, Y.V.; Tarasov, S.E.; Kharkova, A.S.; Saverina, E.A.; Reshetilov, A.N. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers 2023, 15, 3783. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, X.; Lei, Q. Conjugated Conductive Polymer Materials and Its Applications: A Mini-Review. Front. Chem. 2021, 9, 732132. [Google Scholar] [CrossRef]
- Guzman, J.J.L.; Pehlivaner Kara, M.O.; Frey, M.W.; Angenent, L.T. Performance of Electro-Spun Carbon Nanofiber Electrodes with Conductive Poly(3,4-Ethylenedioxythiophene) Coatings in Bioelectrochemical Systems. J. Power Sources 2017, 356, 331–337. [Google Scholar] [CrossRef]
- Hernández, L.A.; Riveros, G.; González, D.M.; Gacitua, M.; del Valle, M.A. PEDOT/Graphene/Nickel-Nanoparticles Composites as Electrodes for Microbial Fuel Cells. J. Mater. Sci. Mater. Electron. 2019, 30, 12001–12011. [Google Scholar] [CrossRef]
- Tarasov, S.; Plekhanova, Y.; Kashin, V.; Gotovtsev, P.; Signore, M.; Francioso, L.; Kolesov, V.; Reshetilov, A. Gluconobacter Oxydans-Based MFC with PEDOT:PSS/Graphene/Nafion Bioanode for Wastewater Treatment. Biosensors 2022, 12, 699. [Google Scholar] [CrossRef]
- Kang, Y.L.; Ibrahim, S.; Pichiah, S. Synergetic Effect of Conductive Polymer Poly(3,4-Ethylenedioxythiophene) with Different Structural Configuration of Anode for Microbial Fuel Cell Application. Bioresour. Technol. 2015, 189, 364–369. [Google Scholar] [CrossRef]
- Kang, Y.L.; Pichiah, S.; Ibrahim, S. Facile Reconstruction of Microbial Fuel Cell (MFC) Anode with Enhanced Exoelectrogens Selection for Intensified Electricity Generation. Int. J. Hydrogen Energy 2017, 42, 1661–1671. [Google Scholar] [CrossRef]
- Ma, Q.; Pu, K.-B.; Cai, W.-F.; Wang, Y.-H.; Chen, Q.-Y.; Li, F.-J. Characteristics of Poly(3,4-Ethylenedioxythiophene) Modified Stainless Steel as Anode in Air-Cathode Microbial Fuel Cells. Ind. Eng. Chem. Res. 2018, 57, 6633–6638. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Wen, Q.; Yang, Y. Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Bioanodes in Co-Doped Modified Microbial Fuel Cell Promote Sulfamethoxine Degradation with High Enrichment of Electroactive Bacteria and Extracellular Electron Transfer. Renew. Energy 2024, 232, 121091. [Google Scholar] [CrossRef]
- Tarasov, S.E.; Plekhanova, Y.V.; Bykov, A.G.; Kadison, K.V.; Medvedeva, A.S.; Reshetilov, A.N.; Arlyapov, V.A. Novel Conductive Polymer Composite PEDOT:PSS/Bovine Serum Albumin for Microbial Bioelectrochemical Devices. Sensors 2024, 24, 905. [Google Scholar] [CrossRef]
- Salar-Garcia, M.J.; Montilla, F.; Quijada, C.; Morallon, E.; Ieropoulos, I. Improving the Power Performance of Urine-Fed Microbial Fuel Cells Using PEDOT-PSS Modified Anodes. Appl. Energy 2020, 278, 115528. [Google Scholar] [CrossRef]
- Yuan, H.; He, Z. Graphene-Modified Electrodes for Enhancing the Performance of Microbial Fuel Cells. Nanoscale 2015, 7, 7022–7029. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Elsaid, K.; Rezk, H.; Abdelkareem, M.A. Recent Progress of Graphene Based Nanomaterials in Bioelectrochemical Systems. Sci. Total Environ. 2020, 749, 141225. [Google Scholar] [CrossRef]
- Pareek, A.; Shanthi Sravan, J.; Venkata Mohan, S. Graphene Modified Electrodes for Bioelectricity Generation in Mediator-Less Microbial Fuel Cell. J. Mater. Sci. 2019, 54, 11604–11617. [Google Scholar] [CrossRef]
- Starowicz, A.; Zieliński, M.; Rusanowska, P.; Dębowski, M. Microbial Fuel Cell Performance Boost through the Use of Graphene and Its Modifications—Review. Energies 2023, 16, 576. [Google Scholar] [CrossRef]
- P, A.; Naina Mohamed, S.; Singaravelu, D.L.; Brindhadevi, K.; Pugazhendhi, A. A Review on Graphene/Graphene Oxide Supported Electrodes for Microbial Fuel Cell Applications: Challenges and Prospects. Chemosphere 2022, 296, 133983. [Google Scholar] [CrossRef]
- Suominen, M.; Damlin, P.; Kvarnström, C. Electrolyte Effects on Formation and Properties of PEDOT-Graphene Oxide Composites. Electrochim. Acta 2019, 307, 214–223. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Sun, D.; Zhang, J.; Zhu, J. A Graphene/Poly(3,4-ethylenedioxythiophene) Hybrid as an Anode for High-Performance Microbial Fuel Cells. ChemPlusChem 2013, 78, 823–829. [Google Scholar] [CrossRef]
- Sohail, M.; Saleem, M.; Ullah, S.; Saeed, N.; Afridi, A.; Khan, M.; Arif, M. Modified and Improved Hummer’s Synthesis of Graphene Oxide for Capacitors Applications. Mod. Electron. Mater. 2017, 3, 110–116. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of Graphene Oxide via L-Ascorbic Acid. Chem. Commun. 2010, 46, 1112–1114. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Frontana-Uribe, B.A.; Ludwigs, S. Electrochemistry of Conducting Polymers—Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef]
- Luo, X.; Weaver, C.L.; Tan, S.; Cui, X.T. Pure Graphene Oxide Doped Conducting Polymer Nanocomposite for Bio-Interfacing. J. Mater. Chem. B 2013, 1, 1340. [Google Scholar] [CrossRef]
- Syed Zainol Abidin, S.N.J.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Poly(3,4-Ethylenedioxythiophene) Doped with Carbon Materials for High-Performance Supercapacitor: A Comparison Study. J. Nanomater. 2017, 2017, 798614. [Google Scholar] [CrossRef]
- Österholm, A.; Lindfors, T.; Kauppila, J.; Damlin, P.; Kvarnström, C. Electrochemical Incorporation of Graphene Oxide into Conducting Polymer Films. Electrochim. Acta 2012, 83, 463–470. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Zularisam, A.W. Exoelectrogens: Recent Advances in Molecular Drivers Involved in Extracellular Electron Transfer and Strategies Used to Improve It for Microbial Fuel Cell Applications. Renew. Sustain. Energy Rev. 2016, 56, 1322–1336. [Google Scholar] [CrossRef]
- Khan, A.; Sapakal, S.N.; Kadam, A. Comparative Analysis of Graphene Oxide (GO) Reduction Methods: Impact on Crystallographic, Morphological, and Optical Properties. Graphene 2D Mater. 2024, 9, 101–109. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
n-Doping/Undoping | |||
Electrode/electrolyte solution | LiClO4/CH3CN (mC) | LiClO4/H2O (mC) | KCl/H2O (mC) |
PEDOT | 0.161 | 0.180 | 0.179 |
PEDOT/GO | 0.210 | 0.289 | 0.246 |
PEDOT/rGO | 0.181 | 0.214 | 0.167 |
p-Doping/Undoping | |||
Electrode/electrolyte solution | LiClO4/CH3CN (mC) | LiClO4/H2O (mC) | KCl/H2O (mC) |
PEDOT | 0.139 | 0.277 | 0.040 |
PEDOT/GO | 0.276 | 0.366 | 0.073 |
PEDOT/rGO | 0.189 | 0.286 | 0.060 |
Electrode | Potential | Current | Power Density | Internal Resistance |
---|---|---|---|---|
(V) | (A) | (mW/cm2) | (Ω) | |
PEDOT | 0.593 | 0.029 | 34.394 | 0.448 |
PEDOT/GO | 3.190 | 0.159 | 1014.420 | 0.063 |
PEDOT/rGO | 2.516 | 0.126 | 632.019 | −0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arteaga-Arroyo, G.; Ramos-Hernández, A.; De Los Reyes-Rios, A.; Méndez-López, M.; Pastor-Sierra, K.; Insuasty, D.; Marquez, E.; Fals, J. Design and Optimization of PEDOT/Graphene Oxide and PEDOT/Reduced Graphene Oxide Electrodes to Improve the Performance of Microbial Fuel Cells, Accompanied by Comprehensive Electrochemical Analysis. Polymers 2024, 16, 3134. https://doi.org/10.3390/polym16223134
Arteaga-Arroyo G, Ramos-Hernández A, De Los Reyes-Rios A, Méndez-López M, Pastor-Sierra K, Insuasty D, Marquez E, Fals J. Design and Optimization of PEDOT/Graphene Oxide and PEDOT/Reduced Graphene Oxide Electrodes to Improve the Performance of Microbial Fuel Cells, Accompanied by Comprehensive Electrochemical Analysis. Polymers. 2024; 16(22):3134. https://doi.org/10.3390/polym16223134
Chicago/Turabian StyleArteaga-Arroyo, Gean, Andrea Ramos-Hernández, Aldeir De Los Reyes-Rios, Maximiliano Méndez-López, Karina Pastor-Sierra, Daniel Insuasty, Edgar Marquez, and Jayson Fals. 2024. "Design and Optimization of PEDOT/Graphene Oxide and PEDOT/Reduced Graphene Oxide Electrodes to Improve the Performance of Microbial Fuel Cells, Accompanied by Comprehensive Electrochemical Analysis" Polymers 16, no. 22: 3134. https://doi.org/10.3390/polym16223134
APA StyleArteaga-Arroyo, G., Ramos-Hernández, A., De Los Reyes-Rios, A., Méndez-López, M., Pastor-Sierra, K., Insuasty, D., Marquez, E., & Fals, J. (2024). Design and Optimization of PEDOT/Graphene Oxide and PEDOT/Reduced Graphene Oxide Electrodes to Improve the Performance of Microbial Fuel Cells, Accompanied by Comprehensive Electrochemical Analysis. Polymers, 16(22), 3134. https://doi.org/10.3390/polym16223134