Development and Application of High-Internal-Phase Water-in-Oil Emulsions Using Amphiphilic Nanoparticle-Based Emulsifiers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of SiO2–NH2–DAC NPs
2.3. Structure Characterization
2.4. Preparation and Evaluation of the Emulsions
2.5. Oil Displacement Ability in Heterogeneous Core
3. Results and Discussion
3.1. Results of Structural Characterization
3.2. Emulsifying Capacity of SiO2–NH2–DAC NPs
3.3. pH Sensitivity of SiO2–NH2–DAC NPs
3.4. Core Flooding Experiments of SiO2–NH2–DAC NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.-B.; Zhang, J.; Liu, X.-G.; Zhou, H.-T. Pore structure features of reservoirs at late high water-cut stage, Lamadian Oilfield, Daqing, China. Pet. Explor. Dev. 2008, 35, 215–219. [Google Scholar] [CrossRef]
- Sun, K.; Liu, H.; Wang, Y.; Ge, L.; Gao, J.; Du, W. Novel Method for Inverted Five-Spot Reservoir Simulation at High Water-Cut Stage Based on Time-Varying Relative Permeability Curves. ACS Omega 2020, 5, 13312–13323. [Google Scholar] [CrossRef] [PubMed]
- Zivar, D.; Pourafshary, P.; Moradpour, N. Capillary desaturation curve: Does low salinity surfactant flooding significantly reduce the residual oil saturation? J. Pet. Explor. Prod. 2021, 11, 783–794. [Google Scholar] [CrossRef]
- Sang, Q.; Li, Y.; Yu, L.; Li, Z.; Dong, M. Enhanced oil recovery by branched-preformed particle gel injection in parallel-sandpack models. Fuel 2014, 136, 295–306. [Google Scholar] [CrossRef]
- Zhu, D.; Hou, J.; Chen, Y.; Zhao, S.; Bai, B. In Situ Surface Decorated Polymer Microsphere Technology for Enhanced Oil Recovery in High-Temperature Petroleum Reservoirs. Energy Fuels 2018, 32, 3312–3321. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Xu, Z.; Sun, Y.; Wu, Y.; Dai, C. Biomimetic functional hydrogel particles with enhanced adhesion characteristics for applications in fracture conformance control. J. Ind. Eng. Chem. 2022, 106, 482–491. [Google Scholar] [CrossRef]
- Dai, C.; Qing, Y.; Qilin, G.; Fulin, Z. Study and Application of In-depth Water Control Technology for Production Wells. Pet. Sci. Technol. 2011, 29, 2568–2577. [Google Scholar] [CrossRef]
- Seddiqi, K.N.; Abe, K.; Hao, H.; Mahdi, Z.; Liu, H.; Hou, J. Optimization and Performance Evaluation of a Foam Plugging Profile Control Well Selection System. ACS Omega 2023, 8, 10342–10354. [Google Scholar] [CrossRef]
- Bi, Y.Q.; Yu, L.; Huang, L.X.; Ma, T.; Xiu, J.L.; Yi, L.N. Microscopic profile control mechanism and potential application of the biopolymer-producing strain FY-07 for microbial enhanced oil recovery. Pet. Sci. Technol. 2016, 34, 1952–1957. [Google Scholar] [CrossRef]
- Caili, D.; Qing, Y.; Fulin, Z. In-depth Profile Control Technologies in China—A Review of the State of the Art. Pet. Sci. Technol. 2010, 28, 1307–1315. [Google Scholar] [CrossRef]
- Lv, B.; Sun, P.; Wu, Y.; Yang, Z.; Liu, P.; Wang, C.; Liu, Q. Study and Application of Oily Sludge Profile Control Technology in Heavy Oil Reservoir. Energies 2023, 16, 5064. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, X.; Zhang, D.; Li, J. Laboratory Experimental Optimization of Gel Flooding Parameters to Enhance Oil Recovery during Field Applications. ACS Omega 2021, 6, 14968–14976. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-L.; He, X.-B.; Cheng, Y.-X.; Jiang, G.-C.; Liu, Z.-Y.; Wang, S.-B.; Qiu, S.-X.; Wang, J.-H.; Tian, W.-G. Eco-friendly aqueous foam stabilized by cellulose microfibers with great salt tolerance and high temperature resistance. Pet. Sci. 2023, 20, 2499–2511. [Google Scholar] [CrossRef]
- Wei, P.; Pu, W.; Sun, L.; Wang, B. Research on nitrogen foam for enhancing oil recovery in harsh reservoirs. J. Pet. Sci. Eng. 2017, 157, 27–38. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, H.; Xu, L.; Li, K.; Yu, L.; San, Q.; Li, Y.; Dong, M. The Synergistic Effect of Branched-Preformed Particle Gel and Hydrolyzed Polyacrylamide on Further-Enhanced Oil Recovery after Polymer Flooding. Energy Fuels 2017, 31, 7904–7910. [Google Scholar] [CrossRef]
- Rellegadla, S.; Bairwa, H.K.; Kumari, M.R.; Prajapat, G.; Nimesh, S.; Pareek, N.; Jain, S.; Agrawal, A. An Effective Approach for Enhanced Oil Recovery Using Nickel Nanoparticles Assisted Polymer Flooding. Energy Fuels 2018, 32, 11212–11221. [Google Scholar] [CrossRef]
- Druetta, P.; Picchioni, F. Polymer and nanoparticles flooding as a new method for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2019, 177, 479–495. [Google Scholar] [CrossRef]
- Zhao, S.; Pu, W. Investigation into the effect of polymer microspheres (PMs) on oil-water relative permeability and oil-in-water emulsion stability for enhanced oil recovery. J. Dispers. Sci. Technol. 2020, 42, 1695–1702. [Google Scholar] [CrossRef]
- Zou, J.; Yue, X.; Dong, J.; Shao, M.; Wang, L.; Gu, J.; An, W. Novel in-depth profile control agent based on in-situ polymeric microspheres in low permeability reservoir. J. Dispers. Sci. Technol. 2020, 41, 1254–1264. [Google Scholar] [CrossRef]
- Cao, W.; Xie, K.; Lu, X.; Liu, Y.; Zhang, Y. Effect of profile-control oil-displacement agent on increasing oil recovery and its mechanism. Fuel 2019, 237, 1151–1160. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, D.; Li, Y.; He, J.; Zhang, C. A review of crude oil emulsification and multiphase flows in chemical flooding. Energy Sci. Eng. 2023, 11, 1484–1500. [Google Scholar] [CrossRef]
- Liu, W.; Sun, Z.; Li, N.; Qi, Z.; Wang, Z.; Wang, Z. Binary droplet interactions in shear water-in-oil emulsion: A molecular dynamics study. J. Mol. Liq. 2022, 363, 119823. [Google Scholar] [CrossRef]
- Pang, S.; Pu, W.; Jiang, F.; Gao, H.; Wang, Y.; Chen, Y.; Wei, P. Effect of water content on features of W/O emulsion during water flooding in heavy oil reservoir: Bulk properties and mobility control characteristics. J. Pet. Sci. Eng. 2021, 207, 109075. [Google Scholar] [CrossRef]
- Jiang, F.; Gao, D.; Feng, X.; Pan, J.; Pu, W. W/O high internal phase emulsions (HIPEs) stabilized by a piperazinyl based emulsifier. Soft Matter 2021, 17, 9859–9865. [Google Scholar] [CrossRef] [PubMed]
- Arab, D.; Kantzas, A.; Bryant, S.L. Nanoparticle stabilized oil in water emulsions: A critical review. J. Pet. Sci. Eng. 2018, 163, 217–242. [Google Scholar] [CrossRef]
- Masalova, I.; Kharatyan, E.; Tshilumbu, N.N. Effect of the type of the oil phase on stability of highly concentrated water-in-oil emulsions. Colloid J. 2013, 75, 579–585. [Google Scholar] [CrossRef]
- Sun, X.; Yang, D.; Zhang, H.; Zeng, H.; Tang, T. Unraveling the Interaction of Water-in-Oil Emulsion Droplets via Molecular Simulations and Surface Force Measurements. J. Phys. Chem. B 2021, 125, 7556–7567. [Google Scholar] [CrossRef]
- Gao, J.; Tong, Z.; Bu, X.; Bilal, M.; Hu, Y.; Ni, C.; Xie, G. Effect of water-in-oil and oil-in-water with Span 80 on coal flotation. Fuel 2023, 337, 127145. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, Y.; Zhao, B.; Wu, C.; Li, J.; Chu, C.; Liu, K.; Ding, Y. Collecting behaviors of high internal phase (HIP) emulsion in flotation of ultrafine high-ash content coal slime. Int. J. Coal Prep. Util. 2022, 42, 2635–2655. [Google Scholar] [CrossRef]
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends Food Sci. Technol. 2020, 104, 49–59. [Google Scholar] [CrossRef]
- Bago Rodriguez, A.M.; Binks, B.P. High internal phase Pickering emulsions. Curr. Opin. Colloid Interface Sci. 2022, 57, 101556. [Google Scholar] [CrossRef]
- Guan, X.; Ngai, T. pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles. Langmuir 2021, 37, 2843–2854. [Google Scholar] [CrossRef] [PubMed]
- Mehebub Rahaman, S.; Chakraborty, M.; Mandal, T.; Khatun, N.; Patra, A.; Chakravarty, M.; Saha, B. Engineering the reverse micellar-templated Co(OH)2 nanospheres based Pickering emulsion and unveiling the mechanism of ambiguous phase separation. J. Mol. Liq. 2024, 413, 125904. [Google Scholar] [CrossRef]
- Lindner, M.; Bäumler, M.; Stäbler, A. Inter-Correlation among the Hydrophilic–Lipophilic Balance, Surfactant System, Viscosity, Particle Size, and Stability of Candelilla Wax-Based Dispersions. Coatings 2018, 8, 469. [Google Scholar] [CrossRef]
- Chen, J.; He, L.; Luo, X.; Zhang, C. Foaming of crude oil: Effect of acidic components and saturation gas. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 432–438. [Google Scholar] [CrossRef]
- Shuttleworth, P.S.; Díez-Pascual, A.M.; Marco, C.; Ellis, G. Flexible Bionanocomposites from Epoxidized Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes. J. Phys. Chem. B 2017, 121, 2454–2467. [Google Scholar] [CrossRef]
- Marhamati, M.; Ranjbar, G.; Rezaie, M. Effects of emulsifiers on the physicochemical stability of Oil-in-water Nanoemulsions: A critical review. J. Mol. Liq. 2021, 340, 117218. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, F.; Ding, Y.; Zhang, S.; Gao, C.; Liu, P.; Yang, M. Double Phase Inversion of Pickering Emulsion Induced by Magnesium Hydroxide Nanosheets Adsorbed with Sodium Dodecyl Sulfate. Langmuir 2021, 37, 4082–4090. [Google Scholar] [CrossRef]
- Koochakzadeh, A.; Teimouri, A.; Tohidi, E.; Ashrafizadeh, M.; Enzmann, F.; Kersten, M.; Sadeghnejad, S. Review on using pH-sensitive microgels as enhanced oil recovery and water shutoff agents: Concepts, recent developments, and future challenges. Geoenergy Sci. Eng. 2023, 223, 211477. [Google Scholar] [CrossRef]
- Rahaman, S.M.; Joshi, D.; Patra, A.; Mandal, T.; Khatun, N.; Dhibar, S.; Saha, R.; Mandal, A.; Kumar, D.; Saha, B. A pH switchable Pickering emulsion stabilised by controlled non-conventional lanthanum sulfide nanoparticles, in situ hydrophobized with a cationic surfactant. New J. Chem. 2024, 48, 4063–4076. [Google Scholar] [CrossRef]
- Chi, M.; Hu, J.; Wang, X.; He, R.; Wang, Z.; Li, S.; Hu, S.; Sun, S. Preparation and application of pH-Responsive and high salt-tolerant silica-based amphiphilic Janus nanosheets for enhanced heavy oil recovery. Geoenergy Sci. Eng. 2023, 230, 212210. [Google Scholar] [CrossRef]
- Hua, X.; Bevan, M.A.; Frechette, J. Reversible Partitioning of Nanoparticles at an Oil–Water Interface. Langmuir 2016, 32, 11341–11352. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Dai, H.; Ma, L.; Fu, Y.; Yu, Y.; Zhou, H.; Guo, T.; Zhu, H.; Wang, H.; Zhang, Y. Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: Influence of the nanoparticles concentration. Colloids Surf. B Biointerfaces 2020, 196, 111294. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Jiang, Y. The mediated rheological properties of emulsions stabilized by thread-like mesoporous silica nanoparticles in combination with CTAB. Soft Matter 2022, 18, 7782–7793. [Google Scholar] [CrossRef]
- Etemad, S.; Kantzas, A.; Bryant, S. Efficient nanoparticle transport via CO2 foam to stabilize oil in water emulsions. Fuel 2020, 276, 118063. [Google Scholar] [CrossRef]
- Kumar, G.; Mani, E.; Sangwai, J.S. Impact of surface-modified silica nanoparticle and surfactant on the stability and rheology of oil-in-water Pickering and surfactant-stabilized emulsions under high-pressure and high-temperature. J. Mol. Liq. 2023, 379, 121620. [Google Scholar] [CrossRef]
- Chen, x.; Xie, X.t.; Li, Y.; Chen, S. Investigation of the synergistic effect of alumina nanofluids and surfactant on oil recovery–Interfacial tension, emulsion stability and viscosity reduction of heavy oil. Pet. Sci. Technol. 2018, 36, 1131–1136. [Google Scholar] [CrossRef]
- Mandal, T.; Rahaman, S.M.; Saha, B.; Khatun, N.; Patra, A.; Mukherjee, A.; Nandi, M.; Dhak, D.; Roy, S.; Saha, B. Comprehensive evaluation of non-conventional lanthanum phosphate nanospheres inside water-in-oil microemulsion scaffolds and their utilization in the assessment of surfactant-free TiO2-based Pickering emulsion formulations. New J. Chem. 2024, 48, 10112–10125. [Google Scholar] [CrossRef]
Density (g/cm3) | Acid Value (mg KOH/g) | Viscosity (mPa·s) |
---|---|---|
0.917 | 3.1 | 151 |
Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | Cl− (mg/L) | HCO3− (mg/L) | SO42− (mg/L) | Salinity (mg/L) |
---|---|---|---|---|---|---|---|
10,052.08 | 105.96 | 366.88 | 1172.08 | 17,588.09 | 153.25 | 2691 | 32,129.33 |
pH | 2.9 | 7.1 | 9.7 |
Average Size (nm) | 29.9 | 125.6 | 146.1 |
Zeta Potential (mV) | 47.21 | 23.01 | 12.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Wang, X.; Zhang, J.; Liu, Y.; Liu, C.; Huang, B.; Yang, Y. Development and Application of High-Internal-Phase Water-in-Oil Emulsions Using Amphiphilic Nanoparticle-Based Emulsifiers. Polymers 2024, 16, 3148. https://doi.org/10.3390/polym16223148
Zhao C, Wang X, Zhang J, Liu Y, Liu C, Huang B, Yang Y. Development and Application of High-Internal-Phase Water-in-Oil Emulsions Using Amphiphilic Nanoparticle-Based Emulsifiers. Polymers. 2024; 16(22):3148. https://doi.org/10.3390/polym16223148
Chicago/Turabian StyleZhao, Chunhua, Xiujun Wang, Jian Zhang, Yigang Liu, Changlong Liu, Bo Huang, and Yang Yang. 2024. "Development and Application of High-Internal-Phase Water-in-Oil Emulsions Using Amphiphilic Nanoparticle-Based Emulsifiers" Polymers 16, no. 22: 3148. https://doi.org/10.3390/polym16223148
APA StyleZhao, C., Wang, X., Zhang, J., Liu, Y., Liu, C., Huang, B., & Yang, Y. (2024). Development and Application of High-Internal-Phase Water-in-Oil Emulsions Using Amphiphilic Nanoparticle-Based Emulsifiers. Polymers, 16(22), 3148. https://doi.org/10.3390/polym16223148