Pectin Edible Films Filled with Ilex paraguariensis Concentrate Extract and Its Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ilex paraguariensis (IP) Extract
2.3. Characterization of Ilex paraguariensis Extract
2.3.1. Color Parameters
2.3.2. Total Phenolic Content and Caffeine Content
2.3.3. Flavonoid Content, Chlorophyll Content, and Antioxidant Activity
2.3.4. Gas Chromatography
2.4. Definition of Experimental Planning
- For the F test, the value of Calculated F divided by Tabulated F (FC/FT) for regression should be greater than one so that the mathematical model is satisfactory and predictive, and the FC/FT for misadjustment should be less than one, thus there are no significant selection errors in the analyses. Tabulated F was defined by Rodrigues and Iemma’s book (percentage points of F distribution, 5%) [33].
- The estimated effect indicates how much each factor influences the responses studied. The higher its value, the greater the influence. A positive effect indicates that it goes from a minimum to a maximum variable value and a maximum response. The negative effect indicates the opposite.
2.5. Production of Edible Films
2.6. Characterization of Edible Films
2.6.1. Thickness, Water Vapor Permeability (WVP), and Solubility in Water
2.6.2. Color Parameters, Fluorescence, Photodegradation, and UV/Vis Light Barrier Property
2.6.3. Thermogravimetry (TGA)
2.7. Statistical Analysis
3. Results
3.1. Ilex paraguariensis Extract
3.2. Films
3.2.1. Thickness, Water Vapor Permeability, and Solubility in Water
- FT = film thickness (mm);
- E = concentration of extract added to film (g);
- S = concentration of sorbitol added to film (g).
3.2.2. Color Parameters
- L = film brightness;
- a* = response from a* (green to red variation);
- b* = b* response (range from blue to yellow);
- E = extract concentration added to the film;
- S = concentration of sorbitol added to the film.
3.2.3. Total Phenolic Content
- CFS = solutions of phenolic compounds (mg GAE g−1);
- CFF = films of phenolic compounds solutions (mg GAE g−1);
- E = extract added to film (g);
- S = sorbitol added to film (g).
3.2.4. Fluorescence and Photodegradation of Films
3.2.5. Thermogravimetry (TGA)
4. Discussion
4.1. Ilex paraguariensis Extract
4.2. Films
4.2.1. Thickness, Water Vapor Permeability, and Solubility in Water
4.2.2. Color Parameters
4.2.3. Phenolic Compound
4.2.4. Fluorescence and Photodegradation of Films
4.2.5. Thermogravimetry (TGA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chandimali, N.; Bak, S.-G.; Hyun Park, E.; Lim, H.-J.; Won, Y.-S.; Kim, B.; Lee, S.-J. Bioactive peptides derived from duck products and by-products as functional food ingredients. J. Funct. Foods 2024, 113, 105953. [Google Scholar] [CrossRef]
- Kheto, A.; Bist, Y.; Awana, A.; Kaur, S.; Kumar, Y.; Sehrawat, R. Utilization of inulin as a functional ingredient in food: Processing, physicochemical characteristics, food applications, and future research directions. Food Chem. Adv. 2023, 3, 100443. [Google Scholar] [CrossRef]
- Sgroi, F.; Sciortino, C.; Baviera-Puig, A.; Modica, F. Analyzing consumer trends in functional foods: A cluster analysis approach. J. Agric. Food Res. 2024, 15, 101041. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Hagenmaier, R.; Bai, J. Edible Coatings and Films to Improve Food Quality; CRC Press: Boca Raton, FL, USA, 2011; p. 460. [Google Scholar]
- Koirala, P.; Nirmal, N.P.; Woraprayote, W.; Visessanguan, W.; Bhandari, Y.; Karim, N.U.; Nor-Khaizura, M.A.R.; Saricaoğlu, F.T. Nano-engineered edible films and coatings for seafood products. Food Packag. Shelf Life 2023, 38, 101135. [Google Scholar] [CrossRef]
- Lopez-Polo, J.; Muñoz-Shugulí, C.; Patiño Vidal, M.; Patiño Vidal, C. Electrospun edible films and coatings: Development, functionality and food applications. Trends Food Sci. Technol. 2024, 143, 104253. [Google Scholar] [CrossRef]
- Pluta-Kubica, A.; Jamróz, E.; Kawecka, A.; Juszczak, L.; Krzyściak, P. Active edible furcellaran/whey protein films with yerba mate and white tea extracts: Preparation, characterization and its application to fresh soft rennet-curd cheese. Int. J. Biol. Macromol. 2020, 155, 1307–1316. [Google Scholar] [CrossRef]
- Moslemi, M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr. Polym. 2021, 254, 117324. [Google Scholar] [CrossRef] [PubMed]
- Espitia, P.J.P.; Du, W.-X.; Avena-Bustillos, R.d.J.; Soares, N.d.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Orqueda, M.E.; Zampini, I.C.; Torres, S.; Isla, M.I. Functional Characterization and Toxicity of Pectin from Red Chilto Fruit Waste (Peels). Plants 2023, 12, 2603. [Google Scholar] [CrossRef]
- Bigucci, F.; Luppi, B.; Cerchiara, T.; Sorrenti, M.; Bettinetti, G.; Rodriguez, L.; Zecchi, V. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2008, 35, 435–441. [Google Scholar] [CrossRef]
- Bigucci, F.; Luppi, B.; Monaco, L.; Cerchiara, T.; Zecchi, V. Pectin-based microspheres for colon-specific delivery of vancomycin. J. Pharm. Pharmacol. 2009, 61, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Ščetar, M.; Galić, K. Edible coatings minimize fat uptake in deep fat fried products: A review. Food Hydrocoll. 2017, 71, 225–235. [Google Scholar] [CrossRef]
- Guo, M.; Yadav, M.P.; Jin, T.Z. Antimicrobial edible coatings and films from micro-emulsions and their food applications. Int. J. Food Microbiol. 2017, 263, 9–16. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Chapter 52—Combinational Edible Antimicrobial Films and Coatings. In Antimicrobial Food Packaging, Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 633–646. [Google Scholar]
- Rout, S.S.; Pradhan, K.C. A review on antimicrobial nano-based edible packaging: Sustainable applications and emerging trends in food industry. Food Control. 2024, 163, 110470. [Google Scholar] [CrossRef]
- Vásconez, M.B.; Flores, S.K.; Campos, C.A.; Alvarado, J.; Gerschenson, L.N. Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res. Int. 2009, 42, 762–769. [Google Scholar] [CrossRef]
- Ganiari, S.; Choulitoudi, E.; Oreopoulou, V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci. Technol. 2017, 68, 70–82. [Google Scholar] [CrossRef]
- Mondal, K.; Bhattacharjee, S.K.; Mudenur, C.; Ghosh, T.; Goud, V.V.; Katiyar, V. Development of antioxidant-rich edible active films and coatings incorporated with de-oiled ethanolic green algae extract: A candidate for prolonging the shelf life of fresh produce††Electronic supplementary information (ESI) available: Supporting figures and tables. RSC Adv. 2022, 12, 13295–13313. [Google Scholar] [CrossRef]
- Shivangi, S.; Dorairaj, D.; Negi, P.S.; Shetty, N.P. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll. 2021, 121, 107046. [Google Scholar] [CrossRef]
- Singaram, A.J.V.; Guruchandran, S.; Ganesan, N.D. Review on functionalized pectin films for active food packaging. Packag. Technol. Sci. 2024, 37, 237–262. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Alhadhrami, A.S.; Shah, Y.A.; Kotta, S.; Iqbal, J.; Anwer, M.K.; Nair, A.K.; Koca, E.; Aydemir, L.Y. Physical, Chemical, Barrier, and Antioxidant Properties of Pectin/Collagen Hydrogel-Based Films Enriched with Melissa officinalis. Gels 2023, 9, 511. [Google Scholar] [CrossRef]
- Przygodda, F.; Martins, Z.N.; Castaldelli, A.P.A.; Minella, T.V.; Vieira, L.P.; Cantelli, K.; Fronza, J.; Padoin, M.J. Effect of erva-mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) on serum cholesterol, triacylglycerides and glucose in Wistar rats fed a diet supplemented with fat and sugar. Rev. Bras. De Farmacogn. 2010, 20, 956–961. [Google Scholar] [CrossRef]
- Boaventura, B.C.; Di Pietro, P.F.; Stefanuto, A.; Klein, G.A.; de Morais, E.C.; de Andrade, F.; Wazlawik, E.; da Silva, E.L. Association of mate tea (Ilex paraguariensis) intake and dietary intervention and effects on oxidative stress biomarkers of dyslipidemic subjects. Nutrition 2012, 28, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, A.; Schmitt, V.; Danguy, L.B.; Mazur, C.E. Ilex Paraguariensis: Composto bioativos e propriedades nutricionais na saúde. RBONE Rev. Bras. De Obesidade Nutr. E Emagrecimento 2015, 9, 213–222. [Google Scholar]
- Burris, K.P.; Harte, F.M.; Michael Davidson, P.; Neal Stewart, C., Jr.; Zivanovic, S. Composition and Bioactive Properties of Yerba Mate (llex paraguariensis A. St.-Hil.): A Review. J. Chil. J. Agric. Res. 2012, 72, 268–275. [Google Scholar] [CrossRef]
- Ribani, R.H. Compostos Fenólicos em Erva-Mate e Frutas; Campinas State University: Campinas, Brazil, 2006. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: New York, NY, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Fattahi, S.; Zabihi, E.; Abedian, Z.; Pourbagher, R.; Motevalizadeh Ardekani, A.; Mostafazadeh, A.; Akhavan-Niaki, H. Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and In Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines. Int. J. Mol. Cell. Med. 2014, 3, 102–107. [Google Scholar]
- Ngcobo, S.; Bada, S.O.; Ukpong, A.M.; Risenga, I. Optimal chlorophyll extraction conditions and postharvest stability in Moringa (M. Oleifera) leaves. J. Food Meas. Charact. 2024, 18, 1611–1626. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Rufino, M.D.S.M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.D.G.; Pérez-Jimenez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH Introdução; Embrapa Agroindústria Tropical: Fortaleza, Brazil, 2007. [Google Scholar]
- Rodrigues, M.I.; Iemma, A.F. Planejamento de Experimentos e Otimização de Processos; Casa do Pão: São Paulo, Brazil, 2014. [Google Scholar]
- Martelli, S.; Moore, G.; Laurindo, J. Mechanical Properties, Water Vapor Permeability and Water Affinity of Feather Keratin Films Plasticized with Sorbitol. J. Polym. Environ. 2006, 14, 215–222. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Buontempo, R.C.; Bilck, A.P.; Innocentini Mei, L.H. The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT 2018, 87, 293–300. [Google Scholar] [CrossRef]
- Bueno, F.G.; Machareth, M.A.D.; Panizzon, G.P.; Lopes, G.C.; Mello, J.C.P.; Leite-Mello, E.V.S. Development of a UV/Vis spectrophotometric method for analysis of total polyphenols from Caesalpinia peltophoroides Benth. Química Nova 2012, 35, 822–826. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.A.; Ilyas, R.A.; Sapuan, S.M. Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers 2023, 15, 63. [Google Scholar] [CrossRef]
- Carvalho, L.A. Thermal, mechanical properties and stability of citrus pectin and sodium poly (4-styrenesulfonate) films. In Course Conclusion Work; Federal University of Santa Catarina: Florianópolis, Brazil, 2005. [Google Scholar]
- Coelho, G.C. Erva Mate Oxidases (Ilex Paraguariensis st. Hill): Extraction, Thermal Stability and Influence of Microwave Exposure; Universidade Regional Integrada do Alto Uruguai e das Missões: Missões, Brazil, 2005. [Google Scholar]
- Mendes, R.M.d.O. Caracterização e Avaliação da Erva-Mate (Ilex Paraguariensis St. Hil.), Beneficiada no Estado de Santa Catarina; Federal University of Santa Catarina: Florianópolis, Brazil, 2005. [Google Scholar]
- Battiston, C.; Rosa, C.; Barro, N.; Mignoni, M. Physical-Chemical Characterization and Antioxidant Activity of White Chocolate with Yerba Mate Extract. Rev. Virtual De Química 2016, 8, 1878–1888. [Google Scholar] [CrossRef]
- Frizon, C.N.T.; Oliveira, G.A.; Perussello, C.A.; Peralta-Zamora, P.G.; Camlofski, A.M.O.; Rossa, Ü.B.; Hoffmann-Ribani, R. Determination of total phenolic compounds in yerba mate (Ilex paraguariensis) combining near infrared spectroscopy (NIR) and multivariate analysis. LWT Food Sci. Technol. 2015, 60, 795–801. [Google Scholar] [CrossRef]
- Ballard, C.R.; Maróstica, M.R. Chapter 10—Health Benefits of Flavonoids. In Bioactive Compounds, Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 185–201. [Google Scholar]
- Ferrera, T.S.; Heldwein, A.; Santos, C.O.; Somavilla, J.C.; Sautter, C. Substâncias fenólicas, flavonoides e capacidade antioxidante em erveiras sob diferentes coberturas do solo e sombreamentos. Rev. Bras. De Plantas Med. 2016, 18, 588–596. [Google Scholar] [CrossRef]
- Serafim, R.A. Quantification of Phenolic Compounds and Evaluation of Antioxidant Action of Erva Mate Aqueous Extracts (Ilex paraguariensis); Universidade Tecnológica Federal do Paraná—UTFPR: Londrina, Brazil, 2013. [Google Scholar]
- Zanella Pinto, V.; Pilatti Riccio, D.; Costa, E.; Micheletto, Y.; Quast, E.; Santos, G. Phytochemical composition of extracts from yerba mate chimarrão. SN Appl. Sci. 2021, 3, 353. [Google Scholar] [CrossRef]
- Feihrmann, A.C.; Coutinho, F.H.; dos Santos, I.C.; de Marins, A.R.; de Campos, T.A.F.; da Silva, N.M.; Duarte, V.A.; Matiucci, M.A.; de Souza, M.L.R.; Gomes, R.G. Effect of replacing a synthetic antioxidant for natural extract of yerba mate (Ilex paraguariensis) on the physicochemical characteristics, sensory properties, and gastrointestinal digestion in vitro of burgers. Food Chem. Adv. 2022, 1, 100130. [Google Scholar] [CrossRef]
- Vieira, M.A.; Maraschin, M.; Pagliosa, C.M.; Podestá, R.; de Simas, K.N.; Rockenbach, I.I.; Amboni, R.D.; Amante, E.R. Phenolic acids and methylxanthines composition and antioxidant properties of mate (Ilex paraguariensis) residue. J. Food Sci. 2010, 75, C280–C285. [Google Scholar] [CrossRef]
- Vieiraa, M.A.; Maraschinb, M.; Pagliosac, C.M.; Podestád, R.; Amboni, R.D.M.C. Analysis of Phenolic Compounds, Methylxanthins and Antioxidant Activity of Erva-Mate (Ilex paraguariensis A. St. Hil.) Residue: A New Potential Source of Antioxidants. In Proceedings of the 2nd International Workshop–Advances in Cleaner Production, São Paulo, Brazil, 20–22 May 2009; pp. 1–11. [Google Scholar]
- Braghini, F.; Carli, C.G.d.; Bonsaglia, B.; Junior, J.F.d.S.S.; Oliveira, D.F.d.; Tramujas, J.; Tonial, I.B. Physicochemical composition of mate, before and after mate simulation. Agropecuária Gaúcha 2014, 20, 7–15. [Google Scholar]
- Coelho, G.; Rachwal, M.; Schnorrenberger, E.; Schenkel, E. Effect of shading on survival, morphology and chemistry of erva-mate. In Congresso Sul-Americano Da Erva Mate, 2; Reuniao Tecnica Da Erva Mate, 3., 2000, Encantado: Porto Alegre, Brazil, 2000; pp. 396–399. [Google Scholar]
- Lanfer-Marquez, U.M. O papel da clorofila na alimentação humana: Uma revisão. Rev. Bras. De Ciências Farm. 2003, 39, 227–242. [Google Scholar] [CrossRef]
- Rech, C.R.; Brabes, K.C.S.; Silva, B.E.B.; Martines, M.A.U.; Silveira, T.F.S.; Alberton, J.; Amadeu, C.A.A.; Caon, T.; Arruda, E.J.; Martelli, S.M. Antimicrobial and Physical–Mechanical Properties of Polyhydroxybutyrate Edible Films Containing Essential Oil Mixtures. J. Polym. Environ. 2021, 29, 1202–1211. [Google Scholar] [CrossRef]
- Zvezdanović, J.; Cvetić, T.; Veljović-Jovanović, S.; Marković, D. Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies. Radiat. Phys. Chem. 2009, 78, 25–32. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H.S.; Marcotte, M. Moisture Sorption Behavior, and Effect of Moisture Content and Sorbitol on Thermo-Mechanical and Barrier Properties of Pectin Based Edible Films. Int. J. Food Eng. 2007, 3. [Google Scholar] [CrossRef]
- Krochta, J.M.; Mulder-Johnston, C.D. Edible and Biodegradable Polymer Films: Challenges and Opportunities; CABI: Wallingford, UK, 1997. [Google Scholar]
- Martelli, S.M.; Moore, G.; Silva Paes, S.; Gandolfo, C.; Laurindo, J.B. Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT Food Sci. Technol. 2006, 39, 292–301. [Google Scholar] [CrossRef]
- Moore, G.; Martelli, S.; Andreo, P.; Gandolfo, C.; Machado, R.; Bolzan, A.; Laurindo, J. Obtenção de Biofilmes a partir de Queratina de Penas de Frango. Rev. Matéria 2005, 10, 8–13. [Google Scholar]
- Moore, G.R.P.; Martelli, S.M.; Gandolfo, C.A.; Pires, A.T.N.; Laurindo, J.B. Queratina de penas de frango: Extração, caracterização e obtenção de filmes. Food Sci. Technol. 2006, 26, 421–427. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.; García, M.; Martino, M.N.; Zaritzky, N. Antiplasticizing effect of glycerol and sorbitol on the properties of cassava starch Films. Braz. J. Food Technol. 2008, 11, 194–200. [Google Scholar]
- Bierhalz, A.C.K. Confecção e Caracterização de Biofilmes Ativos à Base de Pectina btm e de Pectina btm/Alginato Reticulados Com Cálcio; Universidade Estadual de Campinas: Campinas, Brazil, 2010. [Google Scholar]
- Shih, F.F. Edible films from rice protein concentrate and pullulan. Ceral Chem. 1996, 73, 406–409. [Google Scholar]
- Farias, N.S.d.; Silva, B.; de Oliveira Costa, A.C.; Müller, C.M.O. Alginate based antioxidant films with yerba mate (Ilex paraguariensis St. Hil.): Characterization and kinetics of phenolic compounds release. Food Packag. Shelf Life 2021, 28, 100548. [Google Scholar] [CrossRef]
- Rezzani, G.; Salvay, A.; Peltzer, M. Yerba Mate and Water Kefir Grain Films for Food Preservation and Freshness Indicators. In Food and Bioprocess Technology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–14. [Google Scholar] [CrossRef]
- Andrade, J.R.; Raphael, E.; Pawlicka, A. Preparation and characterization of polymeric electrolyte based on Pectin. In International Symposium on Polymer Electrolytes; Universidade do Minho: Braga, Portugal, 2008. [Google Scholar]
- Arrieta, M.P.; Peponi, L.; López, D.; Fernández-García, M. Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Ind. Crops Prod. 2018, 111, 317–328. [Google Scholar] [CrossRef]
Test | Coded Variables | Real Value Variables | ||
---|---|---|---|---|
X1 | X2 | X1 (%) | X2 (%) | |
1 | −1.00 | −1.00 | 1.45 | 11.45 |
2 | +1.00 | −1.00 | 8.55 | 11.45 |
3 | −1.00 | +1.00 | 1.45 | 18.55 |
4 | +1.00 | +1.00 | 8.55 | 18.55 |
5 | −1.41 | 0.00 | 0.00 | 15.00 |
6 | +1.41 | 0.00 | 10.00 | 15.00 |
7 | 0.00 | −1.41 | 5.00 | 10.00 |
8 | 0.00 | +1.41 | 5.00 | 20.00 |
9 | 0.00 | 0.00 | 5.00 | 15.00 |
10 | 0.00 | 0.00 | 5.00 | 15.00 |
11 | 0.00 | 0.00 | 5.00 | 15.00 |
12 | 0.00 | 0.00 | 5.00 | 15.00 |
Analyses | Extract | Films |
---|---|---|
Total phenolic content | X | X |
Caffeine content | X | |
Flavonoid content | X | |
Chlorophyll content | X | |
Antioxidant potential | X | |
High-performance liquid chromatography (HPLC) | X | |
Packaging and measurement of thickness | X | |
Water vapor permeability (WVP) | X | |
Solubility in water | X | |
Colorimetric | X | X |
Fluorescence and photodegradation | X | X * |
UV/Vis light barrier property | X | X * |
Fourier-transform Infrared spectroscopy (FTIR) | X * | |
Thermogravimetry (TGA) | X * | |
Differential exploratory colorimetry (DSC) | X * |
Parameters | Ilex paraguariensis | Extract |
---|---|---|
L | 49.8 ± 0.8 a | 45.0 ± 0.7 b |
a* | −0.2 ± 0.2 b | 4.3 ± 0.3 a |
b* | 22.4 ± 0.8 a | 22.2 ± 0.4 a |
ΔE | - | 6.4 ± 0.6 |
Analyses | Ilex paraguariensis | Extract | |
---|---|---|---|
Phenolic compounds (mg GAE g−1) | 77.74 ± 0.68 b | 205.72 ± 0.69 a | |
Caffeine (g 100 g−1) | 4.77 ± 0.88 b | 25.91 ± 4.71 a | |
Flavonoids (mg QE g−1) | 44.43 ± 2.64 b | 201.94 ± 37.83 a | |
DPPH (IC50: mg mL−1) | 2.74 ± 0.01 a | 0.81 ± 0.00 b | |
ABTS (μM Trolox g−1) | 148.47 ± 1.76 b | 287.18 ± 0.00 a | |
Chlorophyll (mg mL−1) | Type a | 5.58 ± 0.00 a | 4.04 ± 0.00 b |
Type b | 5.07 ± 0.00 a | 5.08 ± 0.00 a | |
Total | 10.65 ± 0.00 a | 9.12 ± 0.00 b |
Test | Extract (%) | Sorbitol (%) | Thickness (mm) | Color | Total Phenolic Content (mg GAE g−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | ΔE | Solutions | Films | |||||
1 | 1.45 | 11.45 | 0.067 ± 0.01 | 3.35 ± 0.08 | 88.09 ± 1.11 | −0.48 ± 0.04 | 10.77 ± 1.80 | 0.41 ± 0.77 | 1.95 ± 0.36 | 1.27 ± 0.25 |
2 | 8.55 | 11.45 | 0.087 ± 0.00 | 3.46 ± 0.09 | 84.99 ± 1.21 | −1.26 ± 0.04 | 16.68 ± 0.99 | 6.53 ± 1.18 | 7.41 ± 0.57 | 6.77 ± 0.22 |
3 | 1.45 | 18.55 | 0.088± 0.00 | 5.78 ± 0.21 | 88.39 ± 0.95 | −0.55 ± 0.04 | 9.93 ± 1.26 | 1.18 ± 0.59 | 2.20 ± 0.23 | 1.46 ± 0.27 |
4 | 8.55 | 18.55 | 0.095± 0.01 | 5.19 ± 0.13 | 86.16 ± 0.11 | −1.36 ± 0.01 | 16.15 ± 0.23 | 5.54 ± 0.21 | 8.79 ± 0.37 | 7.60 ± 0.88 |
5 | 0.00 | 15.00 | 0.087 ± 0.00 | 4.60 ± 0.66 | 88.31 ± 0.34 | −0.57 ± 0.01 | 11.10 ± 0.49 | 0.00 ± 0.01 | 0.00 ± 0.08 | 0.00 ± 0.12 |
6 | 10.00 | 15.00 | 0.084 ± 0.01 | 4.66 ± 0.02 | 82.62 ± 1.47 | −1.12 ± 0.30 | 20.92 ± 1.47 | 11.36 ± 1.41 | 10.94 ± 0.57 | 8.65 ± 0.07 |
7 | 5.00 | 10.00 | 0.064 ± 0.01 | 3.51 ± 0.17 | 87.13 ± 0.65 | −1.00 ± 0.03 | 14.01 ± 1.18 | 3.17 ± 0.45 | 4.94 ± 0.16 | 4.59 ± 0.14 |
8 | 5.00 | 20.00 | 0.082 ± 0.00 | 5.27 ± 0.03 | 85.75 ± 0.44 | −0.99 ± 0.03 | 16.02 ± 0.40 | 5.56 ± 0.45 | 5.89 ± 0.49 | 3.05 ± 0.12 |
9 | 5.00 | 15.00 | 0.090 ± 0.01 | 3.99 ± 0.01 | 86.03 ± 1.03 | −0.97 ± 0.08 | 15.60 ± 1.45 | 5.06 ± 1.42 | 6.49 ± 0.47 | 4.40 ± 0.21 |
10 | 5.00 | 15.00 | 0.096 ± 0.01 | 4.05 ± 0.26 | 87.16 ± 0.75 | −1.08 ± 0.01 | 14.09 ± 0.88 | 3.24 ± 0.86 | 5.49 ± 0.47 | 4.54 ± 0.21 |
11 | 5.00 | 15.00 | 0.087 ± 0.00 | 4.19 ± 0.15 | 87.03 ± 1.27 | −1.03 ± 0.03 | 14.05 ± 1.57 | 3.24 ± 0.28 | 5.99 ± 0.23 | 4.71 ± 0.16 |
12 | 5.00 | 15.00 | 0.101 ± 0.01 | 3.33 ± 0.53 | 88.13 ± 0.38 | −1.00 ± 0.01 | 12.56 ± 0.83 | 1.54 ± 0.63 | 4.65 ± 0.42 | 4.16 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadeu, C.A.A.; Silva, F.B.; Souza, C.J.F.; Koschevic, M.T.; Schoeninger, V.; Falcão, E.A.; Garcia, V.A.D.S.; Cardoso, C.A.L.; Martelli, S.M. Pectin Edible Films Filled with Ilex paraguariensis Concentrate Extract and Its Characterization. Polymers 2024, 16, 3158. https://doi.org/10.3390/polym16223158
Amadeu CAA, Silva FB, Souza CJF, Koschevic MT, Schoeninger V, Falcão EA, Garcia VADS, Cardoso CAL, Martelli SM. Pectin Edible Films Filled with Ilex paraguariensis Concentrate Extract and Its Characterization. Polymers. 2024; 16(22):3158. https://doi.org/10.3390/polym16223158
Chicago/Turabian StyleAmadeu, Carolina Aparecida Antunes, Francielli Brondani Silva, Clitor Júnior Fernandes Souza, Marivane Turim Koschevic, Vanderleia Schoeninger, Evaristo Alexandre Falcão, Vitor Augusto Dos Santos Garcia, Claudia Andrea Lima Cardoso, and Silvia Maria Martelli. 2024. "Pectin Edible Films Filled with Ilex paraguariensis Concentrate Extract and Its Characterization" Polymers 16, no. 22: 3158. https://doi.org/10.3390/polym16223158
APA StyleAmadeu, C. A. A., Silva, F. B., Souza, C. J. F., Koschevic, M. T., Schoeninger, V., Falcão, E. A., Garcia, V. A. D. S., Cardoso, C. A. L., & Martelli, S. M. (2024). Pectin Edible Films Filled with Ilex paraguariensis Concentrate Extract and Its Characterization. Polymers, 16(22), 3158. https://doi.org/10.3390/polym16223158