State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects
Abstract
:1. Introduction
1.1. Harm of Cracks to Cement-Based Materials
1.2. Traditional Repair Methods
1.3. Self-Repairing Methods
2. Self-Repairing Technology
2.1. Intrinsic Self-Repairing
2.2. Microbial Self-Repairing Technology
2.3. Shape-Memory Alloy
2.4. Osmotic Crystallization
2.5. Hollow Fiber Technology
2.6. Microcapsule Self-Repairing Technology
- (1)
- Spray drying
- (2)
- Interfacial polymerization
- (3)
- In situ polymerization
- (4)
- Melting dispersion condensation method
2.7. Comparison and Analysis of Advantages and Disadvantages of Self-Repairing Technologies
3. Self-Repairing Performance Test Method
3.1. Characterization of Microencapsulation Properties and Analysis of Influencing Factors
- Optical microscope
- 2.
- Scanning electron microscope
- 3.
- Fourier Transform Infrared Spectroscopy (FTIR)
- 4.
- Raman spectra
3.2. Restoration of Macroscopic Characteristics of Cement-Based Materials Using Microcapsules
- Mechanical properties
- 2.
- Permeability
- 3.
- Ultrasonic testing
4. Prospects and Summaries
Author Contributions
Funding
Conflicts of Interest
References
- Aamar, D.; Ali, M.M.; Muhammad, U.S. Past and present techniques of self-healing in cementitious materials: A critical review on efficiency of implemented treatments. J. Mater. Res. Technol. 2020, 9, 6883–6899. [Google Scholar]
- Bo, L.; Mingli, W.; Wei, D.; Lu, J.; Hongjun, L.; Luoxin, W.; Jinhui, L.; Danying, Z.; Qingjun, D. The Application of Self-Healing Microcapsule Technology in the Field of Cement-Based Materials: A Review and Prospect. Polymers 2023, 15, 2718. [Google Scholar] [CrossRef] [PubMed]
- Litina, C.; Al-Tabbaa, A. First generation microcapsule-based self-healing cementitious construction repair materials. Constr. Build. Mater. 2020, 255, 119389. [Google Scholar] [CrossRef]
- Yang, Z.; Hollar, J.; He, X.; Shi, X. A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cem. Concr. Compos. 2011, 33, 506–512. [Google Scholar] [CrossRef]
- Yuan, L.; Gu, A.; Liang, G. Preparation and properties of poly(urea–formaldehyde) microcapsules filled with epoxy resins. Mater. Chem. Phys. 2008, 110, 417–425. [Google Scholar] [CrossRef]
- Cappellesso, V.; di Summa, D.; Pourhaji, P.; Prabhu Kannikachalam, N.; Dabral, K.; Ferrara, L.; Cruz Alonso, M.; Camacho, E.; Gruyaert, E.; De Belie, N. A review of the efficiency of self-healing concrete technologies for durable and sustainable concrete under realistic conditions. Int. Mater. Rev. 2023, 68, 556–603. [Google Scholar] [CrossRef]
- Albuhairi, D.; Di Sarno, L. Low-Carbon Self-Healing Concrete: State-of-the-Art, Challenges and Opportunities. Buildings 2022, 12, 1196. [Google Scholar] [CrossRef]
- Jaf, D.K.; Abdulrahman, P.I. A Review on Self-Healing Concrete. Adv. Mater. Res. 2023, 1175, 139–148. [Google Scholar] [CrossRef]
- Luhar, S.; Gourav, S. A Review Paper on Self Healing Concrete. J. Civ. Eng. Res. 2015, 5, 53–58. [Google Scholar]
- Gojević, A.; Netinger Grubeša, I.; Marković, B.; Juradin, S.; Crnoja, A. Autonomous Self-Healing Methods as a Potential Technique for the Improvement of Concrete’s Durability. Materials 2023, 16, 7391. [Google Scholar] [CrossRef]
- Amran, M.; Onaizi, A.M.; Fediuk, R.; Vatin, N.I.; Muhammad Rashid, R.S.; Abdelgader, H.; Ozbakkaloglu, T. Self-Healing Concrete as a Prospective Construction Material: A Review. Materials 2022, 15, 3214. [Google Scholar] [CrossRef] [PubMed]
- Marsavina, L.; Audenaert, K.; Schutter, G.D.; Faur, N.; Marsavina, D. Experimental and numerical determination of the chloride penetration in cracked concrete. Constr. Build. Mater. 2007, 23, 264–274. [Google Scholar] [CrossRef]
- Bazant, Z.P. Fracture Mechanics of Concrete Structure. In Proceedings of the First International Conference FraMCosl, Breckenridge, CO, USA, 1–5 June 1992. [Google Scholar]
- Homma, D.; Mihashi, H.; Nishiwaki, T. Self-Healing Capability of Fibre Reinforced Cementitious Composites. J. Adv. Concr. Technol. 2009, 7, 217–228. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Liu, J. Performance of polyurethane-coated concrete in sewer environment. Cem. Concr. Res. 2004, 35, 1754–1763. [Google Scholar] [CrossRef]
- Almusallam, A.A.; Khan, F.M.; Dulaijan, S.U.; Al-Amoudi, O.S.B. Effectiveness of surface coatings in improving concrete durability. Cem. Concr. Compos. 2003, 25, 473–481. [Google Scholar] [CrossRef]
- Robery, P.; Shaw, M.J. Materials for the repair and protection of concrete. Constr. Build. Mater. 1997, 11, 275–281. [Google Scholar] [CrossRef]
- Mačiulaitis, R.; Vaičiene, M.; Žurauskiene, R. The effect of concrete composition and aggregates properties on performance of concrete. J. Civ. Eng. Manag. 2009, 15, 317–324. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, F.; Zhang, X.; Zhou, Y.; Hu, B.; Song, H. Modified cement-sodium silicate material and grouting technology for repairing underground concrete structure cracks. Arab. J. Geosci. 2019, 12, 680. [Google Scholar] [CrossRef]
- Bin, Z.; Yuanfu, Z.; Xuefu, Z.; Zijian, W.; Wei, Y.; Yixuan, B. Experimental Study on Grouting Diffusion Law of the Different Crack Widths in Tunnel Lining. KSCE J. Civ. Eng. 2023, 27, 1789–1799. [Google Scholar]
- Indhumathi, S.; Dinesh, A.; Moorthi, P. Diverse perspectives on self healing ability of Engineered Cement Composite—All-inclusive insight. Constr. Build. Mater. 2022, 323, 126473. [Google Scholar]
- Wu, M.; Johannesson, B.; Geiker, M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 2011, 28, 571–583. [Google Scholar] [CrossRef]
- Edvardsen, C. Water permeability and self-healing of through cracks in concrete. DAfStb Bull 1996, 455. [Google Scholar]
- Reinhardt, H.W.; Jonkers, H.; Van Tittelboom, K.; Snoeck, D.; De Belie, N.; De Muynck, W.; Verstraete, W.; Wang, J.; Mechtcherine, V. Recovery against Environmental Action. In Self-Healing Phenomena in Cement-Based Materials: State-of-the-Art Report of RILEM Technical Committee 221-SHC: Self-Healing Phenomena in Cement-Based Materials; de Rooij, M., Van Tittelboom, K., De Belie, N., Schlangen, E., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 65–117. [Google Scholar]
- Jianguo, C.; Yuling, Z.; Weilian, D.; Mengxiang, L.; Yifan, W.; Chunling, Z.; Mingsheng, S.; Binghan, X. Influence of Polycarboxylate Superplasticizer on the Properties of Cement-Fly Ash Cementitious Materials and Concrete. Sustainability 2022, 14, 13440. [Google Scholar] [CrossRef]
- Gollapudi, U.; Knutson, C.; Bang, S.; Islam, M. Permeability, porosity and capillarity. Laser 1995, 268, 276–279. [Google Scholar]
- Hill, D.D.; Sleep, B.E. Effects of biofilm growth on flow and transport through a glass parallel plate fracture. J. Contam. Hydrol. 2002, 56, 227–246. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Rodriguez-Gallego, M.; Ben Chekroun, K.; Gonzalez-Muñoz Maria, T. Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization. Appl. Environ. Microbiol. 2003, 69, 2182–2193. [Google Scholar] [CrossRef]
- Jonkers, H.M. Self healing concrete: A biological approach. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science; Springer: Berlin/Heidelberg, Germany, 2007; pp. 195–204. [Google Scholar]
- Qabany, A.A.; Soga, K.; Santamarina, C. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. J. Geotech. Geoenviron. Eng. 2012, 138, 992–1001. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A.D. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Constr. Build. Mater. 2019, 225, 67–75. [Google Scholar] [CrossRef]
- Qian, C.; Chen, H.; Ren, L.; Luo, M. Self-healing of Early Age Cracks in Cement-based Materials by Mineralization of Carbonic Anhydrase Microorganism. Front. Microbiol. 2015, 6, 1225. [Google Scholar]
- Amiri, A.; Bundur, Z.B. Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Constr. Build. Mater. 2018, 165, 655–662. [Google Scholar] [CrossRef]
- Song, G.; Ma, N.; Li, H.N. Applications of shape memory alloys in civil structures. Eng. Struct. 2006, 28, 1266–1274. [Google Scholar] [CrossRef]
- Sakai, Y.; Kitagawa, Y.; Fukuta, T.; Iiba, M. Experimental Study on Enhancement of Self-Restoration of Concrete Beams Using SMA Wire. In Proceedings of the Smart Structures and Materials, San Diego, CA, USA, 2–6 March 2003; Volume 5057, pp. 178–186. [Google Scholar]
- Burton, D.S.; Gao, X.; Brinson, L.C. Finite element simulation of a self-healing shape memory alloy composite. Mech. Mater. 2005, 38, 525–537. [Google Scholar] [CrossRef]
- Dvorkin, L.; Lushnikova, N.; Bezusyak, O.; Sonebi, M.; Khatib, J. Hydration characteristics and structure formation of cement pastes containing metakaolin. In Proceedings of the MATEC Web of Conferences, Rabat, Morocco, 22–25 November 2017; p. 01013. [Google Scholar]
- Hodul, J.; Žižková, N.; Borg, R.P. The influence of crystalline admixtures on the properties and microstructure of mortar containing by-products. Buildings 2020, 10, 146. [Google Scholar] [CrossRef]
- Li, V.C.; Lim, Y.M.; Chan, Y.-W. Feasibility study of a passive smart self-healing cementitious composite. Compos. Part B Eng. 1998, 29, 819–827. [Google Scholar] [CrossRef]
- Pang, J.W.C.; Bond, I.P. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 2005, 65, 1791–1799. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Mihashi, H.; Kaneko, Y.; Nishiwaki, T.; Otsuka, K. Fundamental study on development of intelligent concrete characterized by self-healing capability for strength. Trans. Jpn. Concr. Inst. 2000, 22, 441–450. [Google Scholar]
- Pelletier, M.M.; Brown, R.; Shukla, A.; Bose, A. Self-healing concrete with a microencapsulated healing agent. Cem. Concr. Res 2011, 8, 1055. [Google Scholar]
- Dong, B.; Fang, G.; Ding, W.; Liu, Y.; Zhang, J.; Han, N.; Xing, F. Self-healing features in cementitious material with urea–formaldehyde/epoxy microcapsules. Constr. Build. Mater. 2016, 106, 608–617. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Zhao, N.; Jiang, Z. Preparation and properties of melamine urea-formaldehyde microcapsules for self-healing of cementitious materials. Materials 2016, 9, 152. [Google Scholar] [CrossRef]
- Mostavi, E.; Asadi, S.; Hassan, M.M.; Alansari, M. Evaluation of self-healing mechanisms in concrete with double-walled sodium silicate microcapsules. J. Mater. Civ. Eng. 2015, 27, 04015035. [Google Scholar] [CrossRef]
- Li, E.; Du, W.; Zhuang, R.; Ba, M.; Yuan, L.; Zhang, Q.; Zhang, Y. Preparation and characterization of electromagnetic-induced rupture microcapsules for self-repairing mortars. Materials 2022, 15, 3608. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Liu, B.; Feng, Z.; Liu, Q.; Wu, M.; Zuo, D. Influence of Electromagnetic Inductive Microcapsules on Self-Healing Ability of Limestone Calcined Clay Cement (LC3) Mortar. Polymers 2023, 15, 3081. [Google Scholar] [CrossRef] [PubMed]
- Blaiszik, B.; Sottos, N.; White, S. Nanocapsules for self-healing materials. Compos. Sci. Technol. 2008, 68, 978–986. [Google Scholar] [CrossRef]
- Fang, G.; Liu, Y.; Qin, S.; Ding, W.; Zhang, J.; Hong, S.; Xing, F.; Dong, B. Visualized tracing of crack self-healing features in cement/microcapsule system with X-ray microcomputed tomography. Constr. Build. Mater. 2018, 179, 336–347. [Google Scholar] [CrossRef]
- Xu, N.; Song, Z.; Guo, M.Z.; Jiang, L.; Chu, H.; Pei, C.; Yu, P.; Liu, Q.; Li, Z. Employing ultrasonic wave as a novel trigger of microcapsule self-healing cementitious materials. Cem. Concr. Compos. 2021, 118, 103951. [Google Scholar] [CrossRef]
- Du, W.; Yu, J.; Gu, Y.; Li, Y.; Han, X.; Liu, Q. Preparation and application of microcapsules containing toluene-di-isocyanate for self-healing of concrete. Constr. Build. Mater. 2019, 202, 762–769. [Google Scholar] [CrossRef]
- Du, W.; Yu, J.; He, B.; He, Y.; He, P.; Li, Y.; Liu, Q. Preparation and characterization of nano-SiO2/paraffin/PE wax composite shell microcapsules containing TDI for self-healing of cementitious materials. Constr. Build. Mater. 2020, 231, 117060. [Google Scholar] [CrossRef]
- Du, W.; Liu, Q.; Lin, R.; Yu, J. Influence of external environment on self-repairing ability of the cement-based materials containing paraffin/toluene-di-isocyanate microcapsules. Constr. Build. Mater. 2021, 281, 122584. [Google Scholar] [CrossRef]
- Du, W.; Liu, Q.; Lin, R. Effects of toluene-di-isocyanate microcapsules on the frost resistance and self-repairing capability of concrete under freeze-thaw cycles. J. Build. Eng. 2021, 44, 102880. [Google Scholar] [CrossRef]
- Du, W.; Lin, R.; Liu, Q. Investigation of isophorone diisocyanate microcapsules to improve self-healing properties and sulfate resistance of concrete. Constr. Build. Mater. 2021, 300, 124438. [Google Scholar] [CrossRef]
- Du, W.; Li, E.; Lin, R. Preparation and characterization of nano-CaCO3/ceresine wax composite shell microcapsules containing E-44 epoxy resin for self-healing of cement-based materials. Nanomaterials 2022, 12, 197. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Liu, B.; Zuo, D.; Wu, M.; Li, H.; Ba, M.; Liu, J.; Lin, R.; Liu, Q. Effect of microcapsules on the self-repairing ability of limestone calcined clay cement (LC3) mortar at different temperatures. Constr. Build. Mater. 2023, 400, 132718. [Google Scholar] [CrossRef]
- Du, W.; Liu, B.; Ding, Q.; Jiang, L.; Zuo, D.; Liu, Q.; Feng, Z. Research on Improving the Frost Resistance and Self-repair Performance of Limestone Calcined Clay Cement Concrete by Microcapsules. J. Build. Eng. 2024, 94, 109960. [Google Scholar] [CrossRef]
- Tan, N.P.B.; Keung, L.H.; Choi, W.H.; Lam, W.C.; Leung, H.N. Silica-based self-healing microcapsules for self-repair in concrete. J. Appl. Polym. Sci. 2016, 133, 43090. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Giannaros, P.; Palmer, D.; Kerr, A.; Al-Tabbaa, A. Polymeric microcapsules with switchable mechanical properties for self-healing concrete: Synthesis, characterisation and proof of concept. Smart Mater. Struct. 2017, 26, 045025. [Google Scholar] [CrossRef]
- Ying, Y.; Hu, M.; Han, J.; Yu, Y.; Xia, X.; Guo, J. Water-Adaptive Microcapsules with a Brittle–Ductile–Brittle Transition Based on an O/W/O Emulsion for the Self-Healing of Cementitious Materials. ACS Appl. Mater. Interfaces 2023, 15, 47497–47508. [Google Scholar] [CrossRef]
- Ribeiro de Souza, L.; Al-Tabbaa, A. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials. Lab A Chip 2021, 21, 4652–4659. [Google Scholar] [CrossRef]
- Lim, T.; Cheng, H.; Hu, J.; Lee, Y.; Kim, S.; Kim, J.; Jung, W. Development of 3D-Printed Self-Healing Capsules with a Separate Membrane and Investigation of Mechanical Properties for Improving Fracture Strength. Materials 2023, 16, 5687. [Google Scholar] [CrossRef]
- Jan, B. Drying shrinkage microcracking in cement-based material. Civ. Eng. Geosci. 2002, 47, 3. [Google Scholar]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Litorowicz, A. Identification and quantification of cracks in concrete by optical fluorescent microscopy. Cem. Concr. Res. 2006, 36, 1508–1515. [Google Scholar] [CrossRef]
- Hornain, H.; Marchand, J.; Ammouche, A.; Commène, J.; Moranville, M. Microscopic observation of cracks in concrete—A new sample preparation technique using dye impregnation. Cem. Concr. Res. 1996, 26, 573–583. [Google Scholar] [CrossRef]
- Didier, S.; Kim, V.T.; Stijn, S.; Peter, D.; Nele, D.B. Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J. Intell. Mater. Syst. Struct. 2014, 25, 13–24. [Google Scholar]
- Manoharan, T.; Laksmanan, D.; Mylsamy, K.; Sivakumar, P.; Sircar, A. Engineering properties of concrete with partial utilization of used foundry sand. Waste Manag. 2018, 71, 454–460. [Google Scholar] [CrossRef]
- Lv, L.; Yang, Z.; Chen, G.; Zhu, G.; Han, N.; Schlangen, E.; Xing, F. Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials. Constr. Build. Mater. 2016, 105, 487–495. [Google Scholar] [CrossRef]
- Tanvir, I.; Asif, A.; Sahadat, H.M.; Mohammad, F. Microstructure Analysis and Strength Characterization of Recycled Base and Sub-Base Materials Using Scanning Electron Microscope. Infrastructures 2020, 5, 70. [Google Scholar] [CrossRef]
- Mi, T.; Mao, J.; Cai, Y.; Luo, S.; Wang, X.; Xiao, M.; Zhu, H.; Yang, K.; Ren, J. Application of Raman spectroscopy for detecting the repairing behaviour of microcapsules in self-healing cementitious system. Constr. Build. Mater. 2023, 387, 131637. [Google Scholar] [CrossRef]
- Dong, B.; Fang, G.; Wang, Y.; Liu, Y.; Hong, S.; Zhang, J.; Lin, S.; Xing, F. Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system. Cem. Concr. Compos. 2017, 78, 84–96. [Google Scholar] [CrossRef]
- Du, W.; Liu, Q.; Lin, R.; Su, X. Preparation and characterization of microcrystalline wax/epoxy resin microcapsules for self-healing of cementitious materials. Materials 2021, 14, 1725. [Google Scholar] [CrossRef]
- Tolypina, N.M.; Hahaleva, E.N.; Danilov, D.Y.; Chashin, D.Y. The effect of micro-fillers on the effectiveness of superplasticizers and the strength of low-cement concretes. Bull. Belgorod State Technol. Univ. Named After. V. G. Shukhov 2023, 7, 8–15. [Google Scholar] [CrossRef]
- Qingling, L. Chloride Binding and Its Effects on Microstructure of Cement-based Materials. J. Chin. Ceram. Soc. 2013, 41, 187–198. [Google Scholar]
- Kendall, K.; Sherliker, F.R. Colloidal reinforcement: The influence of bound polymer. Br. Polym. J. 1980, 12, 85–88. [Google Scholar] [CrossRef]
- Dargazany, R.; Itskov, M. Micro-mechanical study of interactions between polymers and filler aggregates. PAMM 2011, 11, 363–364. [Google Scholar] [CrossRef]
- Akhnoukh, A.K. The use of micro and nano-sized particles in increasing concrete durability. Part. Sci. Technol. 2020, 38, 529–534. [Google Scholar] [CrossRef]
- Ryan, E.; Burdette, E.; Ankabrandt, R.; Nidiffer, R.; Buchanan, B. Comparison of Two Methods to Assess the Resistance of Concrete to Chloride Ion Penetration. J. Mater. Civ. Eng. 2014, 26, 698–704. [Google Scholar] [CrossRef]
- Yoon, I.S.; Schlangen, E. Long/Short Term Experimental Study on Chloride Penetration in Cracked Concrete. Key Eng. Mater. 2010, 417–418, 765–768. [Google Scholar] [CrossRef]
Preparation Methods | Shell Material | Healing Agent | Reported Major Findings | References |
---|---|---|---|---|
Glass tube encapsulation method | Gelatin | Acrylic resin | The reduced presence of the healing agent within the capsules leads to diminished healing efficacy. | [42] |
Interfacial self-assembly and sol–gel reactions | Silica gel | Methylmethacrylate | A decrease in permeability leads to an enhancement of the self-healing capability in mortar. | [4] |
In situ polymerization | Polyurethane | Sodium Silicate | The addition of microcapsules not only enhances the flexural strength but also markedly suppresses corrosion, as observed. | [43] |
In situ polymerization | Urea-formaldehyde | Epoxy resin | Microcapsules characterized by excellent surface texture, appropriate dimensions, robustness, and notable thermal stability are manufactured, yielding high rates of crack repair and effectively countering chloride ingress. | [44] |
In situ polymerization | Melamine urea formaldehyde | Epoxy resin | Various factors affect the preparation of microcapsules, i.e., stirring rate, pH, core-wall ratio, and temperature. | [45] |
In situ polymerization | Polyurethane/urea formaldehyde | Sodium Silicate | Microcapsules with a double-walled structure of PU/UF exhibit enhanced durability when compared to their single-walled counterparts. | [46] |
Melting dispersion condensation method | Fe3O4 nano-particles/polyethylene wax | epoxy resin | Electromagnetic-induced rupture microcapsules effectively enhance the self-repairing ability of cement-based materials. | [47] |
Melting dispersion condensation method | Polyethylene wax/ferrous powder | IPDI | Electromagnetic inductive microcapsules enhance the mechanical properties and self-repairing ability of LC3 mortar. | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Wu, M.; Du, F.; Chen, D.; Xiao, L.; Chen, W.; Du, W.; Ding, Q. State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects. Polymers 2024, 16, 3165. https://doi.org/10.3390/polym16223165
Jiang L, Wu M, Du F, Chen D, Xiao L, Chen W, Du W, Ding Q. State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects. Polymers. 2024; 16(22):3165. https://doi.org/10.3390/polym16223165
Chicago/Turabian StyleJiang, Lu, Mingli Wu, Fei Du, Dongdong Chen, Lihua Xiao, Wei Chen, Wei Du, and Qingjun Ding. 2024. "State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects" Polymers 16, no. 22: 3165. https://doi.org/10.3390/polym16223165
APA StyleJiang, L., Wu, M., Du, F., Chen, D., Xiao, L., Chen, W., Du, W., & Ding, Q. (2024). State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects. Polymers, 16(22), 3165. https://doi.org/10.3390/polym16223165