Antibacterial, Transparency, and Mechanical Properties of Cationic Radical Initiator Triggered Polystyrene Sheets Obtained by Thermal Blending
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ADIP-PS
2.3. Characterization of Synthesized ADIP-PSs
2.4. Preparation of PS Sheets
2.5. Characterization of PS Sheets
2.5.1. Transmittance Evaluation
2.5.2. Tensile Tests
2.5.3. Contact Angle Measurements
2.6. Antibacterial Activity Evaluation
2.7. Live/Dead Assay Method
2.8. Confirmation of Cationic Groups on the Surface
3. Results
3.1. Synthesis of ADIP-PS with Various Molecular Weights
3.2. Transparency and Tensile Strength
3.3. Antibacterial Activity of GPPS Blended with ADIP-PS
3.4. Cationic Groups on the Surface of PS Sheets
3.5. Comparison of Antibacterial Activity of PS Sheets with Different Molecular Weights
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ku, P.L. Polystyrene and Styrene Copolymers. I. Their Manufacture and Application. Adv. Polym. Technol. 1988, 8, 177–196. [Google Scholar] [CrossRef]
- Wünsch, J.R. Polystyrene: Synthesis, Production and Applications; RAPRA Technology Ltd.: Shawbury, UK, 2000. [Google Scholar]
- Guzman-Puyol, S.; Benítez, J.J.; Heredia-Guerrero, J.A. Transparency of Polymeric Food Packaging Materials. Food Res. Int. 2022, 161, 111792. [Google Scholar] [CrossRef] [PubMed]
- Chalco-Sandoval, W.; Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Development of Polystyrene-Based Films with Temperature Buffering Capacity for Smart Food Packaging. J. Food Eng. 2015, 164, 55–62. [Google Scholar] [CrossRef]
- Bucknall, C.B.; Smith, R.R. Stress-Whitening in High-Impact Polystyrenes. Polymer 1965, 6, 437–446. [Google Scholar] [CrossRef]
- Schmitt, J.A. Mechanism of Reinforcement in Rubber-modified Polystyrene Systems Studied by Use of a Miniature Dart Drop Test. J. Appl. Polym. Sci. 1968, 12, 533–546. [Google Scholar] [CrossRef]
- Ishihara, N.; Seimiya, T.; Kuramoto, M.; Uoi, M. Crystalline Syndiotactic Polystyrene. Macromolecules 1986, 19, 2464–2465. [Google Scholar] [CrossRef]
- Schellenberg, J. Syndiotactic Polystyrene: Synthesis, Characterization, Processing, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–453. [Google Scholar]
- OECD. Global Plastics Outlook—Plastics Use by Polymer; OECD Environment Statistics: Paris, France, 2022. [Google Scholar]
- Messiha, H.L.; Scrutton, N.S.; Leys, D. High-Titer Bio-Styrene Production Afforded by Whole-Cell Cascade Biotransformation. ChemCatChem 2023, 15, e202201102. [Google Scholar] [CrossRef]
- Noda, S.; Fujiwara, R.; Mori, Y.; Dainin, M.; Shirai, T.; Kondo, A. Styrene Production in Genetically Engineered Escherichia Coli in a Two-Phase Culture. BioTech 2024, 13, 2. [Google Scholar] [CrossRef]
- McKenna, R.; Thompson, B.; Pugh, S.; Nielsen, D.R. Rational and Combinatorial Approaches Toengineering Styrene Production by Saccharomyces Cerevisiae. Microb. Cell Fact. 2014, 13, 123. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Corrigendum to “Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation with Biocidal Agents”. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef]
- Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, A.J.; Chivu, A.; De Fatima Pina, M. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int. J. Mol. Sci. 2019, 20, 2747. [Google Scholar] [CrossRef] [PubMed]
- Zander, Z.; Newton, D.; Scaglione, H.; Reiber, A.; Agarwal, P. Microbial Susceptibility of Various Polymers and Evaluation of Thermoplastic Elastomers with Antimicrobial Additives. Polym. Eng. Sci. 2021, 61, 3029–3036. [Google Scholar] [CrossRef]
- Ji, W.; Li, X.; Chen, S.; Ren, L. Transmission of SARS-CoV-2 via Fomite, Especially Cold Chain, Should Not Be Ignored. Proc. Natl. Acad. Sci. USA 2021, 118, e2026093118. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Jin, W.; Chen, Q.; Cai, Y.; Zhu, Q.; Zhang, W. Antibacterial Activity of Silver Nanoparticles with Different Morphologies as Well as Their Possible Antibacterial Mechanism. Appl. Phys. A Mater. Sci. Process. 2016, 122, 874. [Google Scholar] [CrossRef]
- Jun, B.H.; Byun, J.W.; Kim, J.Y.; Kang, H.; Park, H.J.; Yoon, J.; Lee, Y.S. Facile Method of Preparing Silver-Embedded Polymer Beads and Their Antibacterial Effect. J. Mater. Sci. 2010, 45, 3106–3108. [Google Scholar] [CrossRef]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef]
- Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver Nanoparticles: Behaviour and Effects in the Aquatic Environment. Environ. Int. 2011, 37, 517–531. [Google Scholar] [CrossRef]
- Jaswal, T.; Gupta, J. A Review on the Toxicity of Silver Nanoparticles on Human Health. Mater. Today Proc. 2021, 81, 859–863. [Google Scholar] [CrossRef]
- Mude, H.; Maroju, P.A.; Balapure, A.; Ganesan, R.; Ray Dutta, J. Quaternized Polydopamine Coatings for Anchoring Molecularly Dispersed Broad-Spectrum Antimicrobial Silver Salts. ACS Appl. Bio Mater. 2021, 4, 8396–8406. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Kostruba, A.; Harhay, K.; Donchak, V.; Ohar, H.; Savaryn, V.; Kulyk, B.; Ripak, L.; Nastishin, Y.A. Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: Synthesis, structure and characterization of grafted layer. Appl. Surf. Sci. 2015, 347, 299–306. [Google Scholar] [CrossRef]
- Kanbara, T.; Arase, M.; Tanaka, M.; Yamaguchi, A.; Tagami, K.; Yajima, T. Amine-catalyzed synthesis of fluorine-containing polymers through halogen bonding. Chem. Asian J. 2023, 18, e202300035. [Google Scholar] [CrossRef] [PubMed]
- Jitsuhiro, A.; Maeda, T.; Ogawa, A.; Yamada, S.; Konoeda, Y.; Maruyama, H.; Endo, F.; Kitagawa, M.; Tanimoto, K.; Hotta, A.; et al. Contact-Killing Antibacterial Polystyrene Polymerized Using a Quaternized Cationic Initiator. ACS Omega 2024, 9, 9803–9812. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Tsuji, T.; Kawamoto, K.; Okano, K.; Fukatsu, E.; Noro, T.; Ikado, K.; Yamada, S.; Shibata, Y.; Hayashi, T.; et al. A Cell-Targeted Non-Cytotoxic Fluorescent Nanogel Thermometer Created with an Imidazolium-Containing Cationic Radical Initiator. Angew. Chem. Int. Ed. 2018, 57, 5413–5417. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Tsuji, T.; Koizumi, H.; Takai, M. Strong cationic radical initiator-based design of a thermoresponsive hydrogel showing drastic volume transition. Macromol. Chem. Phys. 2020, 221, 1900507. [Google Scholar] [CrossRef]
- Hammond, G.S.; Neuman, R.C. The mechanism of decomposition of azo compounds. III. Cage effects with positively charged geminate radical pairs. J. Am. Chem. Soc. 1963, 85, 1501–1508. [Google Scholar] [CrossRef]
- Kurdikar, D.L.; Peppas, N.A. Method of determination of initiator efficiency: Application to UV polymerizations using 2, 2-dimethoxy-2-phenylacetophenone. Macromolecules 1994, 27, 733–738. [Google Scholar] [CrossRef]
- Moad, G.; Solomon, D.H.; Johns, S.R.; Willing, R.I. Fate of the Initiator in the Azobis(Isobutyronitrile)-Initiated Polymerization of Styrene. Macromolecules 1984, 17, 1094–1099. [Google Scholar] [CrossRef]
- Bevington, J.C.; Huckerby, T.N. Studies of End-Groups in Polystyrene Using 1H NMR. Eur. Polym. J. 2006, 42, 1433–1436. [Google Scholar] [CrossRef]
- ISO 527-2:2012; Plastics—Determination of Tensile Properties. Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Nonporous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2011.
- Neto, B.A.D.; Mota, A.A.R.; Gatto, C.C.; Machado, G.; Fasciotti, M.; De Oliveira, H.C.B.; Ferreira, D.A.C.; Bianchi, O.; Eberlin, M.N. Solid, Solution and Gas Phase Interactions of an Imidazolium-Based Task-Specific Ionic Liquid Derived from Natural Kojic Acid. J. Braz. Chem. Soc. 2014, 25, 2280–2294. [Google Scholar] [CrossRef]
- Foden, E.; Morrow, D.R.; Sauer, J.A. The Effect of Molecular Weight on the Fatigue Behavior of Polystyrene. J. Appl. Polym. Sci. 1972, 16, 519–526. [Google Scholar] [CrossRef]
- Termonia, Y.; Meakin, P.; Smith, P. Theoretical Study of the Influence of the Molecular Weight on the Maximum Tensile Strength of Polymer Fibers. Macromolecules 1985, 18, 2246–2252. [Google Scholar] [CrossRef]
- Hansen, K.K.; Nielsen, C.J.; Hvilsted, S. Low molecular weight block copolymers as plasticizers for polystyrene. J. Appl. Polym. Sci. 2005, 95, 981–991. [Google Scholar] [CrossRef]
- Zhou, D.; Fu, P.; Gao, T.; Xu, Z.K.; Wan, L.S. Polystyrenes with both hydrophilic and hydrophobic moieties: Synthesis and self-assembly behaviors. Soft Matter 2023, 19, 4916–4925. [Google Scholar] [CrossRef] [PubMed]
- Chiao, Y.H.; Sengupta, A.; Chen, S.T.; Hung, W.S.; Lai, J.Y.; Upadhyaya, L.; Qian, X.; Wickramasinghe, S.R. Novel Thin-Film Composite Forward Osmosis Membrane Using Polyethylenimine and Its Impact on Membrane Performance. Sep. Sci. Technol. 2020, 55, 590–600. [Google Scholar] [CrossRef]
- Chang, C.C.; Kolewe, K.W.; Li, Y.; Kosif, I.; Freeman, B.D.; Carter, K.R.; Schiffman, J.D.; Emrick, T. Underwater Superoleophobic Surfaces Prepared from Polymer Zwitterion/Dopamine Composite Coatings. Adv. Mater. Interfaces 2016, 3, 1500521. [Google Scholar] [CrossRef]
- Volova, T.G.; Golubev, A.I.; Nemtsev, I.V.; Lukyanenko, A.V.; Dudaev, A.E.; Shishatskaya, E.I. Laser Processing of Polymer Films Fabricated from Phases Differing in Their Monomer Composition. Polymers 2021, 13, 1553. [Google Scholar] [CrossRef]
- Chanda, M. Compatibilization Phenomenon in Polymer Science and Technology: Chemical Aspects. Adv. Ind. Eng. Polym. Res. 2024, 7, 363–372. [Google Scholar] [CrossRef]
- El-Sayed, A.A.; Khalil, A.M.; El-Shahat, M.; Khaireldin, N.Y.; Rabie, S.T. Antimicrobial Activity of PVC-Pyrazolone-Silver Nanocomposites. J. Macromol. Sci. Part A Pure Appl. Chem. 2016, 53, 346–353. [Google Scholar] [CrossRef]
- Worsley, A.; Vassileva, K.; Tsui, J.; Song, W.; Good, L. Polyhexamethylene Biguanide:Polyurethane Blend Nanofibrous Membranes Forwound Infection Control. Polymers 2019, 11, 915. [Google Scholar] [CrossRef]
- Muñoz-Tebar, N.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers 2023, 15, 396. [Google Scholar] [CrossRef]
- Youssef, A.M.; Abou-Yousef, H.; El-Sayed, S.M.; Kamel, S. Mechanical and Antibacterial Properties of Novel High Performance Chitosan/Nanocomposite Films. Int. J. Biol. Macromol. 2015, 76, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Salas-Gomez, V.; Alvarado, A.A.; Baykara, H. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films. Polymers 2022, 14, 2266. [Google Scholar] [CrossRef] [PubMed]
- Lipatov, Y.S. On the Structure of Boundary Layers of Polymers on Solid Surfaces. Polym. Sci. Technol. 1980, 12 B, 601–627. [Google Scholar]
- Tanaka, K.; Kajiyama, T.; Takahara, A.; Tasaki, S. A Novel Method to Examine Surface Composition in Mixtures of Chemically Identical Two Polymers with Different Molecular Weights. Macromolecules 2002, 35, 4702–4706. [Google Scholar] [CrossRef]
- Russell, T.P. X-Ray and Neutron Reflectivity for the Investigation of Polymers. Mater. Sci. Rep. 1990, 5, 171–271. [Google Scholar] [CrossRef]
- Cosgrove, T. Polymers at Surfaces and Interfaces R.A.L. Jones, R.W. Richards; Cambridge University Press, Cambridge, ISBN 0 521 47965 7 Paperback. Int. J. Adhes. Adhes. 2001, 21, 173. [Google Scholar] [CrossRef]
- Kajiyama, T.; Tanaka, K.; Takahara, A. Analysis of Surface Mobility in Polystyrene Films with Monodisperse and Bimodal Molecular Weights by Lateral Force Microscopy. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 639–647. [Google Scholar] [CrossRef]
- Pipertzis, A.; Hossain, M.D.; Monteiro, M.J.; Floudas, G. Segmental Dynamics in Multicyclic Polystyrenes. Macromolecules 2018, 51, 1488–1497. [Google Scholar] [CrossRef]
- Schaub, T.F.; Kellogg, G.J.; Mayes, A.M.; Kulasekere, R.; Ankner, J.F.; Kaiser, H. Surface Modification via Chain End Segregation in Polymer Blends. Macromolecules 1996, 29, 3982–3990. [Google Scholar] [CrossRef]
- Lipatov, Y.S. Polymer Blends and Interpenetrating Polymer Networks at the Interface with Solids. Prog. Polym. Sci. 2002, 27, 1721–1801. [Google Scholar] [CrossRef]
Sample | Reaction Temperature (°C) | Reaction Time (h) |
---|---|---|
AD-15K | 40 | 24 |
AD-23K | 40 | 48 |
AD-40K | 60 | 24 |
Sample | Mn a | Mw a | Mw/Mn | Yield (%) | N Content (wt%) | ADIP Residue Content (mol%) |
---|---|---|---|---|---|---|
AD-15K | 15,000 | 54,000 | 3.6 | 40 | 0.83 | 4.3 |
AD-23K | 23,000 | 120,000 | 5.3 | 56 | 0.66 | 3.4 |
AD-40K | 40,000 | 310,000 | 7.7 | 33 | 0.55 | 2.8 |
Sample | Thickness (mm) |
---|---|
Neat PS | 1.92 |
PS | 1.91 |
5%_AD-23K | 1.89 |
10%_AD-23K | 1.89 |
25%_AD-23K | 1.86 |
100%_AD-23K | Not formed |
Sample | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|
Neat PS | 37.4 | 2.6 | 2108 |
PS | 37.8 | 2.5 | 2100 |
5%_AD-23K | 32.8 | 2.5 | 1979 |
10%_AD-23K | 33.7 | 2.2 | 1886 |
Sample | Contact Angle (°) |
---|---|
PS | 88 ± 0.8 |
5%_AD-23K | 73 ± 1.5 |
10%_AD-23K | 66 ± 5.0 |
25%_AD-23K | 63 ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruyama, H.; Kishi, A.; Konoeda, Y.; Ito, H.; Tsuji, T. Antibacterial, Transparency, and Mechanical Properties of Cationic Radical Initiator Triggered Polystyrene Sheets Obtained by Thermal Blending. Polymers 2024, 16, 3167. https://doi.org/10.3390/polym16223167
Maruyama H, Kishi A, Konoeda Y, Ito H, Tsuji T. Antibacterial, Transparency, and Mechanical Properties of Cationic Radical Initiator Triggered Polystyrene Sheets Obtained by Thermal Blending. Polymers. 2024; 16(22):3167. https://doi.org/10.3390/polym16223167
Chicago/Turabian StyleMaruyama, Hiroki, Akihiro Kishi, Yuki Konoeda, Hiroshi Ito, and Toshikazu Tsuji. 2024. "Antibacterial, Transparency, and Mechanical Properties of Cationic Radical Initiator Triggered Polystyrene Sheets Obtained by Thermal Blending" Polymers 16, no. 22: 3167. https://doi.org/10.3390/polym16223167
APA StyleMaruyama, H., Kishi, A., Konoeda, Y., Ito, H., & Tsuji, T. (2024). Antibacterial, Transparency, and Mechanical Properties of Cationic Radical Initiator Triggered Polystyrene Sheets Obtained by Thermal Blending. Polymers, 16(22), 3167. https://doi.org/10.3390/polym16223167