Predicting the Linear Low-Density Polyethylene Content of Custom Polypropylene Blends and Post-Consumer Materials Using Rheological Measurements
Abstract
:1. Introduction
- (1)
- DSC is a suitable method for approximating the quantity of cross-contamination in virgin blends and post-consumer recyclates processed under quasi-industrial conditions.
- (2)
- In-depth micro- and nanometer-scale characterization of PE in PP, including contaminant size and distribution, can be performed using Raman spectroscopy and AFM.
- (3)
- The mass fraction of linear low-density PE in PP (both virgin blends and recyclates) can be quantified with a new approach that combines plate–plate rheometry measurements of zero-shear viscosity and the cross-over point (COP) with mathematical models based on the opposing trends of process-related degradation in PP and PE.
2. Materials and Methods
2.1. Materials and Sample Manufacturing and Preparation
2.1.1. Sample Manufacturing: Using Extruder “MX” to Produce Strips from Manually Pre-Mixed Granules
Material Grade | Melt Peak Temperature/°C | Melt Flow Rate ISO 1133 [23]/ g/10 min (2.16 kg) |
---|---|---|
501P | 165.24 | 0.8 |
525P | 163.98 | 3.0 |
HDMO810 | 162.94 | 10 |
Mosten MA350 | 162.20 | 50 |
525P + 50 wt% Mosten MA350 | 162.47 | - |
Q1018H | 122.40 | 1.0 |
Material | Fractions Added wt% PP|wt% LLDPE | Material Grade | Company |
---|---|---|---|
Virgin PP/ Virgin PP Blends | 100%|0% | 501P | Sabic (Riad, Saudi Arabia) |
525P | Sabic | ||
HD810MO | Borealis (Linz, Austria) | ||
525P + 5 wt% Mosten MA350 | Sabic; Unipetrol (Prag, Czech Republic) | ||
525P + 10 wt% Mosten MA350 | Sabic; Unipetrol | ||
525P + 50 wt% Mosten MA350 | Sabic; Unipetrol | ||
Virgin LLDPE | 0%|100% | Q1018H | Lotrène (Doha, Qatar) |
Virgin PP + Virgin LLDPE | 100%|0% | 525P | Sabic |
95%|5% | 525P + Q1018H | Sabic; Lotrène | |
90%|10% | |||
80%|20% | |||
75%|25% | |||
70%|30% | |||
Post-Consumer Rec. PP A–C | 100%|0% | A | Recycler A |
B | Recycler B | ||
C-1 | Recycler C | ||
C-2 | Recycler C | ||
C-3 | Recycler C |
2.1.2. Sample Manufacturing: Using Extruder “LX” to Produce Strips from Granules Pre-Mixed by an Automated Dosing System
Material | Fractions Added wt% PP|wt% LLDPE | Material Grade | Company | |
---|---|---|---|---|
Virgin PP + Virgin LLDPE | 100%|0% | 525P | Sabic | |
99%|1% | 525P + Q1018H | Sabic; Lotrène | ||
98%|2% | ||||
97%|3% | ||||
96%|4% | ||||
94%|6% | ||||
92%|8% | ||||
90%|10% | ||||
85%|15% |
2.1.3. Sample Preparation for Raman Spectroscopy and AFM
2.2. Methods and Experiments
2.2.1. Rheometry
2.2.2. Differential Scanning Calorimetry
2.2.3. Atomic Force Microscopy
2.2.4. Raman Spectroscopy
2.2.5. Experiments
3. Results
3.1. PP-LLDPE Content Investigation by DSC
3.2. Complementary AFM and Raman Spectroscopy Measurements
3.3. Dynamic Mechanical Rheometric Testing of Blends and Recyclates and Assessment of LLDPE Present in PP
4. Discussion
4.1. DSC Detection Hypothesis
4.2. AFM Detection
4.3. Raman Spectroscopy Detection
4.4. Determination of LLDPE in PP Using Rheometric Oscillatory Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaineder, D.; Krziwanek, T.; Teichert, G.; Hild, S. Rheometric plate-plate characterization of isotactic polypropylene: Influence of sample preparation on molecular degrada-tion in rheometry. In Proceedings of the Polymer Meeting 15, Bratislava, Slovakia, 4–7 September 2023. [Google Scholar]
- Plastics Europe. Polyolefins. Available online: https://plasticseurope.org/plastics-explained/a-large-family/polyolefins-2/ (accessed on 24 June 2024).
- European Parliament. Plastic Waste and Recycling in the EU: Facts and Figures. Available online: https://www.europarl.europa.eu/topics/en/article/20181212STO21610/plastic-waste-and-recycling-in-the-eu-facts-and-figures (accessed on 24 June 2024).
- Chodák, I.; Janigová, I.; Romanov, A. Crosslinked polyethylene/polypropene blends, 1. Formation of insoluble parts, crystallization and melting. Makromol. Chem. 1991, 192, 2791–2799. [Google Scholar] [CrossRef]
- Larsen, Å.G.; Olafsen, K.; Alcock, B. Determining the PE fraction in recycled PP. Polym. Test. 2021, 96, 107058. [Google Scholar] [CrossRef]
- Mezger, T.G. Das Rheologie Handbuch; Vincentz Network: Hannover, Germany, 2019; ISBN 9783748600121. [Google Scholar]
- Domininghaus, H.; Elsner, P.; Eyerer, P.; Hirth, T. Kunststoffe; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-16172-8. [Google Scholar]
- Roosen, M.; Mys, N.; Kusenberg, M.; Billen, P.; Dumoulin, A.; Dewulf, J.; van Geem, K.M.; Ragaert, K.; de Meester, S. Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling. Environ. Sci. Technol. 2020, 54, 13282–13293. [Google Scholar] [CrossRef] [PubMed]
- Karaagac, E.; Jones, M.P.; Koch, T.; Archodoulaki, V.-M. Polypropylene Contamination in Post-Consumer Polyolefin Waste: Characterisation, Consequences and Compatibilisation. Polymers 2021, 13, 2618. [Google Scholar] [CrossRef] [PubMed]
- Camacho, W.; Karlsson, S. NIR, DSC, and FTIR as quantitative methods for compositional analysis of blends of polymers obtained from recycled mixed plastic waste. Polym. Eng. Sci. 2001, 41, 1626–1635. [Google Scholar] [CrossRef]
- Scoppio, A.; Cavallo, D.; Müller, A.J.; Tranchida, D. Temperature modulated DSC for composition analysis of recycled polyolefin blends. Polym. Test. 2022, 113, 107656. [Google Scholar] [CrossRef]
- Frick, A.; Stern, C. DSC-Prüfung in der Anwendung; Carl Hanser Verlag: München, Germany, 2006; ISBN 978-3-446-40563-9. [Google Scholar]
- Bashirgonbadi, A.; Ureel, Y.; Delva, L.; Fiorio, R.; van Geem, K.M.; Ragaert, K. Accurate determination of polyethylene (PE) and polypropylene (PP) content in polyolefin blends using machine learning-assisted differential scanning calorimetry (DSC) analysis. Polym. Test. 2024, 131, 108353. [Google Scholar] [CrossRef]
- Karlsson, S. Recycled Polyolefins. Material Properties and Means for Quality Determination. In Long Term Properties of Polyolefins; Albertsson, A.-C., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 201–230. ISBN 978-3-540-40769-0. [Google Scholar]
- Khabbaz, H.S.; Demets, R.; Gahleitner, M.; Duscher, B.; Stam, R.; Dimitrova, A.; Fiorio, R.; Gijsman, P.; Ragaert, K.; Gooneie, A. Rheological insights into the degradation behavior of PP/HDPE blends. Polym. Degrad. Stab. 2024, 225, 110819. [Google Scholar] [CrossRef]
- Wang, P.; Zhan, K.; Wang, X.; Peng, Y.; Liu, S. Comparison of NIR and Raman spectrometries as quantitative methods to monitor polyethylene content in recycled polypropylene. Polym. Test. 2023, 119, 107938. [Google Scholar] [CrossRef]
- Limper, A. Verfahrenstechnik der Thermoplastextrusion; Hanser: München, Germany, 2013; ISBN 9783446417441. [Google Scholar]
- SABIC PP 525P. Available online: https://omnexus.specialchem.com/product/t-sabic-sabic-pp-525p (accessed on 5 June 2024).
- Lotrène® Q1018 Series Data Sheet. Available online: https://www.b2bpolmers.com/TDS/Qatofin_Lotrene_Q1018N.pdf (accessed on 5 June 2024).
- Sabic. Available online: https://www.sabic.com/en/products/polymers/polypropylene-pp/sabic-pp (accessed on 16 June 2024).
- Borealis HD810MO. Available online: https://www.borealisgroup.com/products/product-catalogue/bormed-hd810mo (accessed on 16 June 2024).
- Unipetrol Mosten MA350. Available online: https://www.pp-mosten.com/Mosten/media/content/PDF_DE/TDS-MA-350-DE.pdf (accessed on 16 June 2024).
- DIN EN ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method (ISO 1133-1:2022). Beuth Verlag GmbH: Berlin, Germany, 2012.
- Gahleitner, T. (Teufelberger GmbH, Wels, Austria); Personal Communication, 2023.
- Carreau, P.J.; de Kee, D.; Chhabra, R.P. Rheology of Polymeric Systems: Principles and Applications, 2nd ed.; Hanser: Munich, Germany, 2021; ISBN 978-1-56990-722-1. [Google Scholar]
- Askeland, D.R.; Wright, W.J. The Science and Engineering of Materials, 7th ed.; Cengage Learning: Boston, MA, USA, 2016; ISBN 978-1305076761. [Google Scholar]
- van Drongelen, M.; Roozemond, P.C.; Troisi, E.M.; Doufas, A.K.; Peters, G. Characterization of the primary and secondary crystallization kinetics of a linear low-density polyethylene in quiescent- and flow-conditions. Polymer 2015, 76, 254–270. [Google Scholar] [CrossRef]
- Furukawa, T.; Sato, H.; Kita, Y.; Matsukawa, K.; Yamaguchi, H.; Ochiai, S.; Siesler, H.W.; Ozaki, Y. Molecular Structure, Crystallinity and Morphology of Polyethylene/Polypropylene Blends Studied by Raman Mapping, Scanning Electron Microscopy, Wide Angle X-Ray Diffraction, and Differential Scanning Calorimetry. Polym. J. 2006, 38, 1127–1136. [Google Scholar] [CrossRef]
- Gorrasi, G.; Pucciariello, R.; Villani, V.; Vittoria, V.; Belviso, S. Miscibility in crystalline polymer blends: Isotactic polypropylene and linear low-density polyethylene. J. Appl. Polym. Sci. 2003, 90, 3338–3346. [Google Scholar] [CrossRef]
- Haugstad, G. Atomic Force Microscopy: Exploring Basic Modes and Advanced Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-0-470-63882-8. [Google Scholar]
- Oxford Instruments. Raman Knowledge Base. Available online: https://raman.oxinst.com/learning/view/article/raman-knowledge-base (accessed on 5 June 2024).
- Rudolph, N.; Osswald, T. Polymer Rheology; Carl Hanser Verlag: München, Germany, 2015; ISBN 978-1-56990-523-4. [Google Scholar]
- Saikrishnan, S.; Jubinville, D.; Tzoganakis, C.; Mekonnen, T.H. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polym. Degrad. Stab. 2020, 182, 109390. [Google Scholar] [CrossRef]
- Paajanen, A.; Vaari, J.; Verho, T. Crystallization of cross-linked polyethylene by molecular dynamics simulation. Polymer 2019, 171, 80–86. [Google Scholar] [CrossRef]
Material/ Method | Fractions Added wt% PP|wt% LLDPE | Material Grade | Rheometry | DSC | Raman Spectroscopy | AFM |
---|---|---|---|---|---|---|
Virgin PP | 100%|0% | 501P | ✔ | |||
100%|0% | 525P | ✔ | ||||
100%|0% | HD810MO | ✔ | ||||
100%|0% | 525P + 5 wt% MA350 | ✔ | ||||
100%|0% | 525P + 10 wt% MA350 | ✔ | ||||
100%|0% | 525P + 50 wt% MA350 | ✔ | ||||
Virgin PP + Virgin LLDPE | 100%|0% | 525P | ✔ | ✔ | ✔ | ✔ |
95%|5% | 525P + Q1018H | ✔ | ✔ | ✔ | ✔ | |
90%|10% | 525P + Q1018H | ✔ | ✔ | ✔ | ✔ | |
80%|20% | 525P + Q1018H | ✔ | ✔ | ✔ | ||
75%|25% | 525P + Q1018H | ✔ | ✔ | ✔ | ✔ | |
70%|30% | 525P + Q1018H | ✔ | ✔ | ✔ | ||
Virgin LLDPE 1-3 | 100%|0% | Q1018H | ✔ | ✔ | ✔ | |
Post-Consumer PP Recyclate A | 100%|0% | ✔ | ✔ | ✔ | ✔ | |
Post-Consumer PP Recyclate B | 100%|0% | ✔ | ✔ | ✔ | ||
Post-Consumer PP Recyclate C 1–3 | 100%|0% | ✔ | ✔ |
Material/ Method | Fractions Added wt% PP|wt% LLDPE | Rheometry | AFM | Raman Spectroscopy | DSC |
---|---|---|---|---|---|
Virgin PP + LLDPE | 100%|0% | ✔ | ✔ | ||
99%|1% | ✔ | ✔ | |||
98%|2% | ✔ | ✔ | |||
97%|3% | ✔ | ✔ | |||
96%|4% | ✔ | ✔ | |||
94%|6% | ✔ | ✔ | |||
92%|8% | ✔ | ✔ | |||
90%|10% | ✔ | ✔ | |||
85%|15% | ✔ | ✔ |
Material/ Method | Fractions Added wt% PP|wt% LLDPE | for Model Selection | Lin. Model: wt% (LLD)PE Content | P.-L-. Model: wt% (LLD)PE Content |
---|---|---|---|---|
Post-Consumer PP Recyclate A | 100%|0% | −0.997 | 1.24 | 5.43 |
Post-Consumer PP Recyclate B | 100%|0% | −0.976 | 3.05 | 5.86 |
Post-Consumer PP Recyclate C-1 | 100%|0% | −0.837 | 15.04 | 10.16 |
Post-Consumer PP Recyclate C-2 | 100%|0% | −0.835 | 15.21 | 10.25 |
Post-Consumer PP Recyclate C-3 | 100%|0% | −0.831 | 15.56 | 10.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaineder, D.; Marschik, C.; Trofin, I.; Hild, S. Predicting the Linear Low-Density Polyethylene Content of Custom Polypropylene Blends and Post-Consumer Materials Using Rheological Measurements. Polymers 2024, 16, 3169. https://doi.org/10.3390/polym16223169
Kaineder D, Marschik C, Trofin I, Hild S. Predicting the Linear Low-Density Polyethylene Content of Custom Polypropylene Blends and Post-Consumer Materials Using Rheological Measurements. Polymers. 2024; 16(22):3169. https://doi.org/10.3390/polym16223169
Chicago/Turabian StyleKaineder, Dominik, Christian Marschik, Ingrid Trofin, and Sabine Hild. 2024. "Predicting the Linear Low-Density Polyethylene Content of Custom Polypropylene Blends and Post-Consumer Materials Using Rheological Measurements" Polymers 16, no. 22: 3169. https://doi.org/10.3390/polym16223169
APA StyleKaineder, D., Marschik, C., Trofin, I., & Hild, S. (2024). Predicting the Linear Low-Density Polyethylene Content of Custom Polypropylene Blends and Post-Consumer Materials Using Rheological Measurements. Polymers, 16(22), 3169. https://doi.org/10.3390/polym16223169