The Effect of Laponite on the Structure, Mechanical and Thermal Properties of Poly(butylene Succinate)
Abstract
:1. Introduction
2. Materials, Methods and Characterization
2.1. Materials
2.2. Methods of Sample Preparation
2.3. Characterizations
3. Results and Discussion
3.1. Microscopic Observation
3.2. Thermal Analysis
3.3. Mechanical Properties
3.4. Mass Melt Flow Rate and Moisture Sorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shrivastava, A.; Dondapati, S. Biodegradable composites based on biopolymers and natural bast fibres: A review. Mater. Today Proc. 2021, 46, 1420–1428. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.A.; Hinrichsen, G.I. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276, 1–24. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer composites: A review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
- Armentano, I.; Puglia, D.; Luzi, F.; Arciola, C.R.; Morena, F.; Martino, S.; Torre, L. Nanocomposites based on biodegradable polymers. Materials 2018, 11, 795. [Google Scholar] [CrossRef]
- Pandey, J.K.; Kumar, A.P.; Misra, M.; Mohanty, A.K.; Drzal, L.T.; Palsingh, R. Recent advances in biodegradable nanocomposites. J. Nanosci. Nanotechnol. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Bari, S.S.; Chatterjee, A.; Mishra, S. Biodegradable polymer nanocomposites: An overview. Polym. Rev. 2016, 56, 287–328. [Google Scholar] [CrossRef]
- Yaghmaeiyan, N.; Mirzaei, M.; Delghavi, R. Montmorillonite clay: Introduction and evaluation of its applications in different organic syntheses as catalyst: A review. Results Chem. 2022, 4, 100549. [Google Scholar] [CrossRef]
- Krasinskyi, V.; Malinowski, R.; Bajer, K.; Rytlewski, P.; Miklaszewski, A. Study of montmorillonite modification technology using polyvinylpyrrolidone. Arab. J. Chem. 2023, 16, 105296. [Google Scholar] [CrossRef]
- Delavernhe, L.; Pilavtepe, M.; Emmerich, K. Cation exchange capacity of natural and synthetic hectorite. Appl. Clay Sci. 2018, 151, 175–180. [Google Scholar] [CrossRef]
- Vicente, I.; Salagre, P.; Cesteros, Y.; Guirado, F.; Medina, F.; Sueiras, J.E. Fast microwave synthesis of hectorite. Appl. Clay Sci. 2009, 43, 103–107. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.H.; Petit, S.; Zhang, H. Hectorite: Synthesis, modification, assembly and applications. Appl. Clay Sci. 2019, 177, 114–138. [Google Scholar] [CrossRef]
- Iwase, H.; Ogura, T.; Sakuma, H.; Tamura, K.; Fukushima, Y. Structural investigation of hectorite aqueous suspensions by dielectric microscopy and small-angle neutron scattering coupling with rheological measurement. Appl. Clay Sci. 2018, 157, 24–30. [Google Scholar] [CrossRef]
- Grigale-Sorocina, Z.; Birks, I. Hectorite and bentonite effect on water-based polymer coating rheology. Comptes Rendus Chim. 2019, 22, 169–174. [Google Scholar] [CrossRef]
- Jilili, Y.; Ma, Y.; Wang, Z.; Zhen, W. Effects of organic modified hectorite on performance, isothermal crystallization behavior and interface interaction of poly (lactic acid) film. Appl. Clay Sci. 2023, 244, 107118. [Google Scholar] [CrossRef]
- Pierozan, R.C.; Almikati, A.; Araujo, G.L.S.; Zornberg, J.G. Optical and physical properties of Laponite for use as clay surrogate in geotechnical models. Geotech. Test. J. 2022, 45, 79–100. [Google Scholar] [CrossRef]
- López-Angulo, D.; Bittante, A.M.Q.; Luciano, C.G.; Ayala-Valencia, G.; Flaker, C.H.; Djabourov, M.; do Amaral Sobral, P.J. Effect of Laponite® on the structure, thermal stability and barrier properties of nanocomposite gelatin films. Food Biosci. 2020, 35, 100596. [Google Scholar] [CrossRef]
- Jatav, S.; Joshi, Y.M. Chemical stability of Laponite in aqueous media. Appl. Clay Sci. 2014, 97, 72–77. [Google Scholar] [CrossRef]
- Ruzicka, B.; Zaccarelli, E. A fresh look at the Laponite phase diagram. Soft Matter 2011, 7, 1268–1286. [Google Scholar] [CrossRef]
- Christidis, G.E.; Aldana, C.; Chryssikos, G.D.; Gionis, V.; Kalo, H.; Stöter, M.; Breu, J.; Robert, J.L. The nature of laponite: Pure hectorite or a mixture of different trioctahedral phases? Minerals 2018, 8, 314. [Google Scholar] [CrossRef]
- Perotti, G.F.; Barud, H.S.; Messaddeq, Y.; Ribeiro, S.J.; Constantino, V.R. Bacterial cellulose–laponite clay nanocomposites. Polymer 2011, 52, 157–163. [Google Scholar] [CrossRef]
- Kiaee, G.; Dimitrakakis, N.; Sharifzadeh, S.; Kim, H.J.; Avery, R.K.; Moghaddam, K.M.; Haghniaz, R.; Yalcintas, E.P.; Barros, N.R.; Karamikamkar, S.; et al. Laponite-Based Nanomaterials for Drug Delivery. Adv. Healthc. Mater. 2022, 11, e2102054. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xu, P.; Gao, Y.; Gao, F.; Zhuang, X.; Zhang, H.; Dong, X. Hierarchically cross-linked Gelatin/Tannic acid/Laponite hybrid antimicrobial hydrogel for hemostatic dressings. Compos. Commun. 2023, 43, 101743. [Google Scholar] [CrossRef]
- Platnieks, O.; Gaidukovs, S.; Thakur, V.K.; Barkane, A.; Beluns, S. Bio-based poly(butylene succinate): Recent progress, challenges and future opportunities. Eur. Polym. J. 2021, 161, 110855. [Google Scholar] [CrossRef]
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A brief review of poly(butylene succinate) (PBS) and its main copolymers: Synthesis, blends, composites, biodegradability, and applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef]
- Tserki, V.; Matzinos, P.; Pavlidou, E.; Vachliotis, D.; Panayiotou, C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym. Degrad. Stab. 2006, 91, 367–376. [Google Scholar] [CrossRef]
- Tserki, V.; Matzinos, P.; Pavlidou, E.; Panayiotou, C. Biodegradable aliphatic polyesters. Part II. Synthesis and characterization of chain extended poly(butylene succinate-co-butylene adipate). Polym. Degrad. Stab. 2006, 91, 377–384. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Z.; Liu, Q.; Wang, Z.; Jin, J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J. Appl. Polym. Sci. 2003, 90, 982–990. [Google Scholar] [CrossRef]
- Jacquel, N.; Freyermouth, F.; Fenouillot, F.; Rousseau, A.; Pascault, J.P.; Fuertes, P.; Saint-Loup, R. Synthesis and properties of poly(butylene succinate): Efficiency of different transesterification catalysts. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 5301–5312. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.H. Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol. J. 2010, 5, 1149–1163. [Google Scholar] [CrossRef]
- Liu, G.C.; Zhang, W.Q.; Wang, X.L.; Wang, Y.Z. Synthesis and performances of poly(butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups. Chin. Chem. Lett. 2017, 28, 354–357. [Google Scholar] [CrossRef]
- Debuissy, T.; Pollet, E.; Avérous, L. Synthesis and characterization of biobased poly(butylene succinate-ran-butylene adipate). Analysis of the composition-dependent physicochemical properties. Eur. Polym. J. 2017, 87, 84–98. [Google Scholar] [CrossRef]
- Gowman, A.; Wang, T.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. Bio-poly(butylene succinate) and its composites with grape pomace: Mechanical performance and thermal properties. ACS Omega 2018, 3, 15205–15216. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.X.; Yuan, M.W.; Jiang, L.; Yuan, M.L.; Li, H.L. The preparation and property research on Laponite-poly(L-lactide) composite film. AMR 2013, 750, 1919–1923. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Yu, J.; Chen, D. Preparation and characterization of nano-laponite/PLGA composite scaffolds for urethra tissue engineering. Mol. Biotechnol. 2020, 62, 192–199. [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Zhou, G.; Yuan, M.; Qin, Y. Biodegradable poly(lactic-acid)/poly(trimethylene-carbonate)/laponite composite film: Development and application to the packaging of mushrooms (Agaricus bisporus). Polym. Adv. Technol. 2015, 26, 1600–1607. [Google Scholar] [CrossRef]
- Sharma, C.; Manepalli, P.H.; Thatte, A.; Thomas, S.; Kalarikkal, N.; Alavi, S. Biodegradable starch/PVOH/laponite RD-based bionanocomposite films coated with graphene oxide: Preparation and performance characterization for food packaging applications. Colloid Polym. Sci. 2017, 295, 1695–1708. [Google Scholar] [CrossRef]
- Nair, B.P.; Sindhu, M.; Nair, P.D. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf. B 2016, 143, 423–430. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Sotenko, M.; Cruz-Izquierdo, A.; Rymansaib, Z.; Iravani, P.; Kirwan, K.; Scott, J.L. Preparation of printable and biodegradable cellulose-laponite composite for electronic device application. J. Polym. Environ. 2021, 29, 17–27. [Google Scholar] [CrossRef]
- Gonzaga, V.D.A.; Poli, A.L.; Gabriel, J.S.; Tezuka, D.Y.; Valdes, T.A.; Leitão, A.; Rodero, C.F.; Bauab, T.M.; Chorilli, M.; Schmitt, C.C. Chitosan-laponite nanocomposite scaffolds for wound dressing application. J. Biomed. Mater. Res. Part B 2020, 108, 1388–1397. [Google Scholar] [CrossRef]
- Das, S.S.; Hussain, K.; Singh, S.; Hussain, A.; Faruk, A.; Tebyetekerwa, M. Laponite-based nanomaterials for biomedical applications: A review. Curr. Pharm. Des. 2019, 25, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Thomas, J.K. Study of surface properties of clay laponite using pyrene as a photophysical probe molecule. Langmuir 1991, 7, 2808–2816. [Google Scholar] [CrossRef]
- Zhao, L.; Rong, L.; Xu, J.; Lian, J.; Wang, L.; Sun, H. Sorption of five organic compounds by polar and nonpolar microplastics. Chemosphere 2020, 257, 127206. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; He, Y.; Zhu, B.; Shin, K.M.; Inoue, Y. Nucleation mechanism of α-cyclodextrin-enhanced crystallization of some semicrystalline aliphatic polymers. Macromolecules 2005, 38, 7736–7744. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J.N. Multiple melting behaviour of poly(ethylene terephthalate). Polymer 2003, 44, 623–633. [Google Scholar] [CrossRef]
- Makhatha, M.E.; Sinha Ray, S.; Hato, J.; Luyt, A.S. Thermal and thermomechanical properties of poly(butylene succinate) nanocomposites. J. Nanosci. Nanotechnol. 2008, 8, 1679–1689. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Li, L. Multiple melting behavior of poly (butylene succinate). Eur. Polym. J. 2007, 43, 3163–3170. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Zhang, S.; Ma, L.; Shi, G.; Yang, L. Crystallization and melting behavior of poly(butylene succinate)/silicon nitride composites: The influence of filler’s phase structure. Thermochim. Acta 2016, 627, 68–76. [Google Scholar] [CrossRef]
- Liang, Z.; Pan, P.; Zhu, B.; Dong, T.; Inoue, Y. Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J. Appl. Polym. Sci. 2010, 115, 3559–3567. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Zhang, X.; Zhang, J.; Yu, J.; Zhang, J. Poly(propylene carbonate)/clay nanocomposites with enhanced mechanical property, thermal stability and oxygen barrier property. Compos. Commun. 2020, 22, 100520. [Google Scholar] [CrossRef]
- Li, H.L.; Zhou, G.X.; Shan, Y.K.; Yuan, M.L. The mechanical properties and hydrophilicity of poly(L-lactide)/Laponite composite film. Adv. Mater. Res. 2013, 706, 340–343. [Google Scholar] [CrossRef]
- Valencia, G.A.; Djabourov, M.; Carn, F.; Sobral, P.J.D.A. Novel insights on swelling and dehydration of laponite. Colloid Interface Sci. Commun. 2018, 23, 1–5. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Z.; Yun, J.; Yang, H.; Xu, Z.L. Preparation of Laponite hydrogel in different shapes for selective dye adsorption and filtration separation. Appl. Clay Sci. 2021, 201, 105936. [Google Scholar] [CrossRef]
Sample | Tcc [°C] | ΔHcc [J/g] | Tm [°C] | ΔHm * [J/g] | Tc [°C] | ΔHc [J/g] | |
---|---|---|---|---|---|---|---|
Peak 1 | Peak 2 | ||||||
PBS | 87.80 | 71.27 | 104.28 | 114.86 | 71.26 | - | - |
PBS/LAP 99/1 | 86.59 | 69.54 | 104.73 | 115.01 | 69.21 | - | - |
PBS/LAP 97/3 | 83.47 | 66.31 | 102.40 | 114.22 | 66.21 | 105.94 | 0.26 |
PBS/LAP 95/5 | 81.20 | 58.29 | 96.79 | 114.31 | 59.27 | 104.83 | 0.95 |
PBS/LAP 93/7 | 80.44 | 63.86 | 95.91 | 114.24 | 64.84 | 104.28 | 1.30 |
Sample | M [Nm] | P [kW] | TD [°C] |
---|---|---|---|
PBS | 11–12 | 0.35–0.36 | 169–170 |
PBS/LAP 99/1 | 11–12 | 0.36–0.37 | 169–170 |
PBS/LAP 97/3 | 12–13 | 0.37–0.38 | 169–170 |
PBS/LAP 95/5 | 12–13 | 0.37–0.39 | 170–171 |
PBS/LAP 93/7 | 13–14 | 0.38–0.40 | 170–171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, R.; Krasinskyi, V.; Moraczewski, K.; Raszkowska-Kaczor, A.; Grytsenko, O.; Moravskyi, V.; Miklaszewski, A. The Effect of Laponite on the Structure, Mechanical and Thermal Properties of Poly(butylene Succinate). Polymers 2024, 16, 3186. https://doi.org/10.3390/polym16223186
Malinowski R, Krasinskyi V, Moraczewski K, Raszkowska-Kaczor A, Grytsenko O, Moravskyi V, Miklaszewski A. The Effect of Laponite on the Structure, Mechanical and Thermal Properties of Poly(butylene Succinate). Polymers. 2024; 16(22):3186. https://doi.org/10.3390/polym16223186
Chicago/Turabian StyleMalinowski, Rafał, Volodymyr Krasinskyi, Krzysztof Moraczewski, Aneta Raszkowska-Kaczor, Oleksandr Grytsenko, Volodymyr Moravskyi, and Andrzej Miklaszewski. 2024. "The Effect of Laponite on the Structure, Mechanical and Thermal Properties of Poly(butylene Succinate)" Polymers 16, no. 22: 3186. https://doi.org/10.3390/polym16223186
APA StyleMalinowski, R., Krasinskyi, V., Moraczewski, K., Raszkowska-Kaczor, A., Grytsenko, O., Moravskyi, V., & Miklaszewski, A. (2024). The Effect of Laponite on the Structure, Mechanical and Thermal Properties of Poly(butylene Succinate). Polymers, 16(22), 3186. https://doi.org/10.3390/polym16223186