Expanded Polystyrene/Tyre Crumbs Composites as Promising Aggregates in Mortar and Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material Details and Compositions Made
2.2. Fabrication Methods
2.2.1. Melt Blending
2.2.2. Solvent Blending
2.2.3. Mortar and Concrete Mixtures
2.3. Characterisation
3. Results
3.1. Workability
3.2. Bulk Density and Porosity
3.3. Water Absorption
3.4. Compressive Strength
3.5. Flexural Strength
4. Discussion
- GTR possessed very low interface interactions with civil aggregate and raw materials due to availability in the volcanized form. Many researchers used acid/chemical treatments to increase the interface interactions but ended up decreasing the GTR strength.
- EPS shows a brittle nature, which affects the mortar/concrete compressive strength. Moreover, the high porosity of EPS increased the porosity, which resulted in lower compressive/flexural strength of mortar/concrete samples.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolden, J.; Abu-Lebdeh, T.; Fini, E. Utilization of Recycled and Waste Materials in Various Construction Applications. Am. J. Environ. Sci. 2013, 9, 14–24. [Google Scholar] [CrossRef]
- Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A. Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 2013, 38, 872–878. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Adesina, A. Plastic wastes to construction products: Status, limitations and future perspective. Case Stud. Constr. Mater. 2020, 12, e00330. [Google Scholar] [CrossRef]
- Hao, H.; Bi, K.; Chen, W.; Pham, T.M.; Li, J. Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Eng. Struct. 2023, 277, 115477. [Google Scholar] [CrossRef]
- Huseien, G.F.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Hussein, A.A. Geopolymer mortars as sustainable repair material: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 80, 54–74. [Google Scholar] [CrossRef]
- Liew, K.M.; Akbar, A. The recent progress of recycled steel fiber reinforced concrete. Constr. Build. Mater. 2020, 232, 117232. [Google Scholar] [CrossRef]
- Ban, Y.; Zhi, W.; Fei, M.; Liu, W.; Yu, D.; Fu, T.; Qiu, R. Preparation and Performance of Cement Mortar Reinforced by Modified Bamboo Fibers. Polymers 2020, 12, 2650. [Google Scholar] [CrossRef]
- Kaplan, G.; Bayraktar, O.Y. The effect of hemp fiber usage on the mechanical and physical properties of cement based mortars. Res. Eng. Struct. Mater. 2021, 7, 245–258. [Google Scholar] [CrossRef]
- Mercante, I.; Alejandrino, C.; Ojeda, J.P.; Chini, J.; Maroto, C.; Fajardo, N. Mortar and concrete composites with recycled plastic: A review. Sci. Technol. Mater. 2018, 30, 69–79. [Google Scholar] [CrossRef]
- Jamshidi, A.; White, G. Evaluation of Performance and Challenges of Use of Waste Materials in Pavement Construction: A Critical Review. Appl. Sci. 2019, 10, 226. [Google Scholar] [CrossRef]
- American Chemistry Council. 2022 Resin Situation and Trends 2023; American Chemistry Council; Available online: https://www.americanchemistry.com/chemistry-in-america/data-industry-statistics/statistics-on-the-plastic-resins-industry/resources/2022-resin-situation-and-trends (accessed on 5 November 2024).
- Montagna, L.S.; Santana, R.M.C. Influence of rubber particle size on properties of recycled thermoplastics containing rubber tyre waste. Plast. Rubber Compos. 2012, 41, 256–262. [Google Scholar] [CrossRef]
- Poulakis, J.G.; Papaspyrides, C.D. Recycling of polypropylene by the dissolution/reprecipitation technique: I. A model study. Resour. Conserv. Recycl. 1997, 20, 31–41. [Google Scholar] [CrossRef]
- Carvalho, C.H.R.; Motta, L.A.C. Study about concrete with recycled expanded polystyrene. Rev. IBRACON Estrut. Mater. 2019, 12, 1390–1407. [Google Scholar] [CrossRef]
- Herki, B.A.; Khatib, J.M. Valorisation of waste expanded polystyrene in concrete using a novel recycling technique. Eur. J. Environ. Civ. Eng. 2016, 21, 1384–1402. [Google Scholar] [CrossRef]
- Ramli Sulong, N.H.; Mustapa SA, S.; Abdul Rashid, M.K. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J. Appl. Polym. Sci. 2019, 136, 47529. [Google Scholar] [CrossRef]
- Assaad, J.J.; Mikhael, C.; Hanna, R. Recycling of waste expanded polystyrene concrete in lightweight sandwich panels and structural applications. Clean. Mater. 2022, 4, 100095. [Google Scholar] [CrossRef]
- Menezes, I.; De Oliveira, D.; Da Silva, S.; Brito, T.; Gachet, L.; Cecche, R. Study and application of mortars with residues of expanded polystyrene. Int. J. Dev. Res. 2018, 8, 21097–21102. [Google Scholar]
- Milling, A.; Mwasha, A.; Martin, H. Exploring the full replacement of cement with expanded polystyrene (EPS) waste in mortars used for masonry construction. Constr. Build. Mater. 2020, 253, 119158. [Google Scholar] [CrossRef]
- Kibria, M.G.; Rahaman, O.; Wahid, M.F.; Salam, A. Effect of Recycled Polystyrene Polymer in Concrete as a coarse aggregate. In Proceedings of the Civil and Water Resources Engineering Conference, BIAM Foundation, Dhaka, Bangladesh, 3–4 November 2017. [Google Scholar]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Narang, N.; Kaushik, M.K.; Sharma, A.; Guleria, S.P. Large Scale Waste Tire Reutilization Practices for GTR in Civil Applications. 2016. Available online: https://www.researchgate.net/profile/M-Kaushik-2/publication/305755579_Large_scale_waste_tire_reutilization_practices_for_granulated_and_chopped_rubber_Tires_in_Civil_Engineering_Applications/links/579f57bf08ae80bf6ea7b2a4/Large-scale-waste-tire-reutilization-practices-for-granulated-and-chopped-rubber-Tires-in-Civil-Engineering-Applications.pdf (accessed on 5 November 2024).
- Tasalloti, A.; Chiaro, G.; Murali, A.; Banasiak, L. Physical and Mechanical Properties of Granulated Rubber Mixed with Granular Soils—A Literature Review. Sustainability 2021, 13, 4309. [Google Scholar] [CrossRef]
- Nehdi, M.; Khan, A. Cementitious Composites Containing Recycled Tire Rubber: An Overview of Engineering Properties and Potential Applications. Cem. Concr. Aggreg. 2001, 23, 3–10. [Google Scholar] [CrossRef]
- Rigotti, D.; Dorigato, A. Novel uses of recycled rubber in civil applications. Adv. Ind. Eng. Polym. Res. 2022, 5, 214–233. [Google Scholar] [CrossRef]
- Sambucci, M.; Valente, M. Ground Waste Tire Rubber as a Total Replacement of Natural Aggregates in Concrete Mixes: Application for Lightweight Paving Blocks. Materials 2021, 14, 7493. [Google Scholar] [CrossRef] [PubMed]
- Fazli, A.; Rodrigue, D. Recycling Waste Tires into Ground Tire Rubber (GTR)Rubber Compounds: A Review. J. Compos. Sci. 2020, 4, 103. [Google Scholar] [CrossRef]
- Medina, N.F.; Garcia, R.; Hajirasouliha, I.; Pilakoutas, K.; Guadagnini, M.; Raffoul, S. Composites with recycled rubber aggregates: Properties and opportunities in construction. Constr. Build. Mater. 2018, 188, 884–897. [Google Scholar] [CrossRef]
- Pietrzak, A.; Ulewicz, M. Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties. Materials 2023, 16, 2231. [Google Scholar] [CrossRef]
- Maaroufi, M.; Belarbi, R.; Abahri, K.; Benmahiddine, F. Full characterization of hygrothermal, mechanical and morphological properties of a recycled expanded polystyrene-based mortar. Constr. Build. Mater. 2021, 301, 124310. [Google Scholar] [CrossRef]
- Pczieczek, A.; Schackow, A.; Effting, C.; Dias, T.F.; Gomes, I.R. Properties of Mortars containing Tire Rubber Waste and Expanded Polystyrene (EPS). J. Urban Environ. Eng. 2017, 11, 219–225. [Google Scholar]
- Tamut, T.; Prabhu, R.; Venkataramana, K.; Yaragal, S.C. Partial Replacement of Corase Aggregates by Expanded Polystyrene beads in Concrete. Int. J. Res. Eng. Technol. 2014, 3, 238–241. [Google Scholar]
- Bing, C.; Ning, L. Experimental Research on Properties of Fresh and Hardened Rubberized Concrete. J. Mater. Civ. Eng. 2014, 26, 04014040. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M.A.; Najimi, M. Properties of multi-strength grade EPS concrete containing silica fume and rice husk ash. Constr. Build. Mater. 2012, 35, 211–219. [Google Scholar] [CrossRef]
- Thorneycroft, J.; Orr, J.; Savoikar, P.; Ball, R.J. Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Constr. Build. Mater. 2018, 161, 63–69. [Google Scholar] [CrossRef]
- Binici, H.; Gemci, R.; Kaplan, H. Physical and mechanical properties of mortars without cement. Constr. Build. Mater. 2012, 28, 357–361. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Sanjayan, J. Experimental and numerical investigation of novel light weight concrete panels made with aerogel and phase change materials. Energy Build. 2023, 283, 11283. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Sanjayan, J.; Haris, M. Comparative analysis of form-stable phase change material integrated concrete panels for building envelopes. Case Stud. Constr. Mater. 2023, 18, e01737. [Google Scholar] [CrossRef]
- Farouk, A.I.B.; Hassan, N.A.; Mahmud, M.Z.H.; Mirza, J.; Jaya, R.P.; Hainin, M.R.; Yaacob, H.; Yusoff, N.I.M. Effects of mixture design variables on rubber–bitumen interaction: Properties of dry mixed rubberized asphalt mixture. Mater. Struct. 2016, 50, 12. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Zhou, J. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 2013, 40, 869–874. [Google Scholar] [CrossRef]
- Lanzón, M.; Cnudde, V.; De Kock, T.; Dewanckele, J. Microstructural examination and potential application of rendering mortars made of tire rubber and expanded polystyrene wastes. Constr. Build. Mater. 2015, 94, 817–825. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, G.; Guo, Y.; Gupta, R.; Liu, W.V. Developing thermal insulation cement-based mortars using recycled carbon black derived from scrapped off-the-road tires. Constr. Build. Mater. 2023, 393, 132043. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Mazzoli, A.; Moriconi, G. Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Mater. Des. 2011, 32, 1646–1650. [Google Scholar] [CrossRef]
- Ferrándiz-Mas, V.; Bond, T.; García-Alcocel, E.; Cheeseman, C.R. Lightweight mortars containing expanded polystyrene and paper sludge ash. Constr. Build. Mater. 2014, 61, 285–292. [Google Scholar] [CrossRef]
- Leong, G.W.; Chin, T.M.; Mo, K.H.; Ibrahim, Z.; Putra, A.; Othman, M.N. Incorporation of crumb rubber and air-entraining agent in ultra-lightweight cementitious composite: Evaluation of mechanical and acoustic properties. J. Build. Eng. 2021, 42, 103034. [Google Scholar] [CrossRef]
- Corredor-Bedoya, A.C.; Zoppi, R.A.; Serpa, A.L. Composites of scrap tire rubber particles and adhesive mortar—Noise insulation potential. Cem. Concr. Compos. 2017, 82, 45–66. [Google Scholar] [CrossRef]
- Yang, G.; Fan, Y.; Li, X.; Xu, Y. Influence of rubber powder size and volume fraction on dynamic compressive properties of rubberized mortar. Powder Technol. 2023, 420, 118376. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, M.; AbdElbaset, M.M. Utilization of waste rubber in non-structural applications. Constr. Build. Mater. 2015, 91, 195–207. [Google Scholar] [CrossRef]
- Saradhi Babu, D.; Babu, K.G.; Wee, T.H. Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cem. Concr. Res. 2005, 35, 1218–1223. [Google Scholar] [CrossRef]
- Chaikaew, C.; Sukontasukkul, P.; Chaisakulkiet, U.; Sata, V.; Chindaprasirt, P. Properties of Concrete Pedestrian Blocks Containing Crumb Rubber from Recycle Waste Tyres Reinforced with Steel Fibres. Case Stud. Constr. Mater. 2019, 11, e00304. [Google Scholar] [CrossRef]
- Turatsinze, A.; Garros, M. On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates. Resour. Conserv. Recycl. 2008, 52, 1209–1215. [Google Scholar] [CrossRef]
- Raffoul, S.; Garcia, R.; Pilakoutas, K.; Guadagnini, M.; Medina, N.F. Optimisation of rubberised concrete with high rubber content: An experimental investigation. Constr. Build. Mater. 2016, 124, 391–404. [Google Scholar] [CrossRef]
- Nagalakshmi, R.; Sathiyabama, J.; Rajendran, S.; Basha, I.A. Electrochemical study on corrosion inhibition of metals in artificial urine in presence of sodium chloride. Int. J. Chem. Sci. 2016, 14, 282–288. [Google Scholar]
- Topacio, A.; Marcos, M.C.M. Lightweight interlocking blocks using expanded polystyrene foam as partial replacement to coarse aggregates. In The 2018 World Congress on Advances in Civil, Environmental, & Materials Research (ACEM18); Songdo Convensia: Incheon, Republic of Korea, 2018. [Google Scholar]
Sample Code | EPS (wt%) | SBS (wt%) | GTR (wt%) | GTR/EPS Ratio (%) |
---|---|---|---|---|
Melt blend (M) | 70 | 10 | 20 | 28.6 |
Solvent blend (S) | 70 | 0 | 30 | 42.8 |
Sample Name | Composite Aggregate Type | Composite Aggregate (wt%) | Cement (wt%) | Coarse Aggregate (wt%) | Fine Aggregate (Sand) (wt%) | Water (wt%) |
---|---|---|---|---|---|---|
Control (C1) | - | - | 22 | - | 64 | 14 |
10% Sand replacement (M1) | Melt blend | 7 | 22 | - | 57 | 14 |
10% Sand replacement (S1) | Solvent blend | 7 | 22 | - | 57 | 14 |
10% cement replacement (M2) | Melt blend | 2 | 20 | - | 64 | 14 |
10% cement replacement (S2) | Solvent blend | 2 | 20 | - | 64 | 14 |
Concrete control (C2) | - | - | 17 | 42 | 32 | 9 |
1% aggregate replacement (MC3) | Melt blend | 1 | 17 | 41.5 | 31.5 | 9 |
1% aggregate replacement (SC3) | Solvent blend | 1 | 17 | 41.5 | 31.5 | 9 |
Type | Sample | Workability (mm) | Bulk Density (g cm−3) | Porosity (%) |
---|---|---|---|---|
Control | 115 ± 5 | 2.032 ± 0.004 | 8.85 ± 0.18 | |
Sand replacement | Solvent blending | 105 ± 4 | 1.816 ± 0.011 | 17.46 ± 0.10 |
Melt blending | 107 ± 3 | 1.828 ± 0.012 | 17.75 ± 2.65 | |
Cement replacement | Solvent blending | 110 ± 6 | 1.966 ± 0.033 | 9.01 ± 0.24 |
Melt blending | 108 ± 4 | 1.947 ± 0.014 | 9.59 ± 2.26 |
System | Replacement Details | Compressive Strength Variation After 28 Days (%) | Flexural Strength Variation After 28 Days (%) | Water Absorption Coefficient Variation (%) | Porosity Variation (%) | Ref. |
---|---|---|---|---|---|---|
Solvent blend | 10% Sand replacement | 7.6% increase | 18.4% increase | 26.6% increase | 97.3% up | This work |
10% Cement replacement | 22.2% increase | 5.26% increase | 3.3% increase | 100% up | ||
Melt blend | 10% Sand replacement | Equal | 15.8% increase | 60% increase | 1.8% up | |
10% Cement replacement | 12.2% increase | Equal | 13.3% increase | 8.4% up | ||
Mortar | Sand with 10 wt% GTR | 27% drop | - | 4% increase | 4% increase | [31] |
Sand with 7.5 wt% EPS | 26% drop | - | 2% increase | 3% increase | ||
GTR added at 0.6 wt% of total | 7% drop | 8% drop | 14% drop | 2% increase | [41] | |
EPS added at 0.6 wt% of total | 51% drop | 53% drop | 31% drop | 15% increase | ||
53% by volume EPS; no sand | 86% drop | - | - | - | [30] | |
Sand with 30 vol% C black obtained from GTR | 40% drop | - | - | - | [42] | |
Sand with 10 wt% shoe rubber | 22% drop | 22% drop | - | - | [43] | |
Sand with 10 wt% S.B.R. | 27% drop | 17% drop | - | - | ||
Sand with 60 vol% EPS | 65% drop | - | - | - | [44] | |
Light weight aggregate with 15% crumb rubber | 53% drop | 33% drop | - | - | [45] | |
All mortar with 25 wt% GTR | - | - | - | 40% increase | [46] | |
Sand with 40 vol% GTR | 27% drop | - | - | - | [47] | |
Sand with 20 vol% GTR | 40% drop | 32% drop | 34% increase | - | [48] | |
Concrete | Cement with 15 vol% EPS | 23% drop | 19% drop | 25% increase | - | [34] |
Sand with 10 wt% GTR | 17% drop | 7% drop | 9% drop | - | [29] | |
Coarse gravel with 10 vol% EPS | 23% drop | - | - | - | [32] | |
Coarse aggregate with 25 vol% GTR | 16% drop | 20% drop | - | - | [33] | |
Coarse aggregate with 16.3 vol% EPS | 64% drop | - | - | - | [49] | |
Coarse and fine aggregate with 10 vol% GTR | - | 14% drop | 28% increase | - | [50] | |
Coarse gravel aggregate with 10 vol% GTR | 33% drop | - | - | - | [51] | |
Coarse gravel with 10 vol% GTR | 26% drop * | - | - | - | [52] | |
Coarse aggregate with 4 wt% GTR | 3% drop * | - | - | - | [53] | |
Coarse gravel with 10 vol% EPS | 7% drop | - | - | - | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhani, K.; Prasad, K.; Hameed, N.; Nikzad, M.; Salim, N.V. Expanded Polystyrene/Tyre Crumbs Composites as Promising Aggregates in Mortar and Concrete. Polymers 2024, 16, 3207. https://doi.org/10.3390/polym16223207
Subhani K, Prasad K, Hameed N, Nikzad M, Salim NV. Expanded Polystyrene/Tyre Crumbs Composites as Promising Aggregates in Mortar and Concrete. Polymers. 2024; 16(22):3207. https://doi.org/10.3390/polym16223207
Chicago/Turabian StyleSubhani, Karamat, Krishnamurthy Prasad, Nishar Hameed, Mostafa Nikzad, and Nisa V. Salim. 2024. "Expanded Polystyrene/Tyre Crumbs Composites as Promising Aggregates in Mortar and Concrete" Polymers 16, no. 22: 3207. https://doi.org/10.3390/polym16223207
APA StyleSubhani, K., Prasad, K., Hameed, N., Nikzad, M., & Salim, N. V. (2024). Expanded Polystyrene/Tyre Crumbs Composites as Promising Aggregates in Mortar and Concrete. Polymers, 16(22), 3207. https://doi.org/10.3390/polym16223207