Natural Antibacterial Compounds with Potential for Incorporation into Dental Adhesives: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question and PICO Method
2.2. Search Strategy
2.3. Inclusion Criteria
2.4. Screening and Data Extraction
2.5. Risk of Bias Assessment
3. Results
3.1. Study Selection
3.2. Articles’ General Features
Author | Natural Antibacterial Agent | Incorporation Material | Concentrations | Antibacterial Effect Assessment | Specimens | Microorganisms Tested | Adhesive Properties Tested | Main Conclusions |
---|---|---|---|---|---|---|---|---|
Du et al. (2012) [35] | Epigallocatechin-3-gallate (EGCG) | AdperTM Single Bond 2 (SB.) (3M ESPE, St. Paul, MN, USA) | 100, 200, and 300 μg/mL | Direct contact test and SEM evaluation | Adhesive + composite discs | Streptococcus mutans | Microtensile bond strength and degree of conversion | Incorporation of EGCG at the concentration of 200 μg /mL exhibits antibacterial activity whilst maintaining the adhesive integrity. |
Elsaka (2012) [44] | Chitosan | AdperTM Single Bond 2 (3M ESPE, St. Paul, MN, USA) | 0.12%, 0.25%, 0.5%, and 1% (w/w) | Direct contact test | Adhesive discs | Streptococcus mutans | Microtensile bond strength, degree of conversion, and viscosity | Experimental adhesive resin containing chitosan shows antibacterial effect. Incorporating 0.12% (w/w) chitosan does not adversely affect the adhesive properties. |
Peralta et al. (2013) [43] | Butia Capitata essential oil | Experimental adhesive | 1 mol% | Bacterial viability (colony counts) and pH supernatant | Enamel discs + primer and adhesive | Human saliva (Streptococcus mutans, lactobacilli, aciduric bacteria, and total microorganisms) | Microtensile bond strength, degree of conversion, water sorption, and solubility | B. Capitata oil presents similar antibacterial activity to a commercial antimicrobial adhesive, but also to the control. Adhesive properties were retained; however, there was a decrease in bond strength after 6 months. |
Geraldeli et al. (2017) [46] | Arginine | Experimental adhesive | 7% | Direct contact test and CLSM | Adhesive discs | Streptococcus mutans and Streptococcus gordonii | Microtensile bond strength, degree of conversion, ultimate tensile strength, flexural strength, flexural modulus, and Knoop hardness | Adhesive system containing 7% arginine exhibits antibacterial effects, while retaining physical and mechanical properties. |
Yang et al. (2017) [39] | Quercetin | AdperTM Single Bond 2 (SB.) (3M ESPE, St. Paul, MN, USA) | 100, 500, and 1000 μg/mL | CLSM and XTT assay | Adhesive + composite discs | Streptococcus mutans | Microtensile bond strength, degree of conversion, and nanoleakage | Adhesive modification with 500 μg/mL quercetin showed a balanced status of the antibacterial ability and adhesive properties. |
Su et al. (2018) [41] | Nisin | AdperTM Single Bond 2 (3M, St. Paul, MN, USA) | 1%, 3%, and 5% (w/v) | Film contact test, agar diffusion test, XTT assay, and CLSM | Adhesive + composite discs Paper discs impregnated with the adhesive (ADT) | Streptococcus mutans | Microtensile bond strength and degree of conversion | The nisin-incorporated adhesive significantly inhibits the growth of Streptococcus mutans and its biofilm. However, concentrations above 1% exhibit a decrease in bond strength. |
Rezaeian et al. (2019) [36] | Thymol | Experimental adhesive | 5 wt% | Direct contact test (based on ASTM E 2180–07 [47]) | Adhesive discs | Streptococcus mutans | Microshear bond strength, degree of conversion, and flexural and viscoelastic properties | The thymol-incorporated adhesive showed appropriate antibacterial activity and comparable physico-mechanical properties to the control adhesive. |
Dias et al. (2020) [37] | Proanthocyanidin | Experimental adhesive | 1 wt%, 2 wt%, 4.5 wt%, and 6 wt% | Bacterial growth and MTT assay | Adhesive discs | Streptococcus mutans | Microtensile bond strength, degree of conversion, water sorption, and solubility | The incorporation of proanthocyanidin did not promote an antibacterial effect in the adhesive. |
Leyva del Rio et al. (2020) [18] | Tt-farnesol | AdperTM Scotchbond Universal (3M ESPE, St. Paul, MN, United States) | 0.38%, 1.90% and 3.80% (v/v) | Colony-forming units, biofilm dry weight, production of extracellular insoluble polysaccharides, and SEM | Adhesive + composite discs | Streptococcus mutans | Microtensile bond strength, degree of conversion, and hybrid layer permeability | Tt-farnesol increased the antibacterial activity of the universal adhesive system. However, the degree of conversion and bonding effectiveness of the adhesive were altered. |
Zhao et al. (2020) [42] | Nisin | Single Bond Universal (3M, St. Paul, MN, U.S.A.) | 1%, 2%, and 3% (w/v) | CLSM, qRT-PCR, PSA, and LDH | Adhesive + composite discs | Streptococcus mutans and saliva-derived multispecies | Microtensile bond strength and degree of conversion | The incorporation of 3% (w/v) nisin in the adhesive achieved a substantial antibacterial activity without compromising the bonding properties. |
Ribeiro et al. (2021) [38] | Apigenin Proanthocyanidin Tt-farnesol | Experimental primer | 4.5% proanthocyanidin, 1 mM apigenin, and 1 mM apigenin + 5 mM tt-farnesol | Hardness loss of enamel and dentin at the restorative margin | Enamel and dentin restorations | Streptococcus mutans | Microtensile bond strength, degree of conversion, nanoleakage, water sorption, and solubility | Integration of apigenin and proanthocyanidin in a dental adhesive system showed promising results in preventing secondary caries in enamel and dentin, without compromising the adhesive physical properties. The association of apigenin + tt-farnesol decreased bond strength after 1 year and was not effective in reducing hardness loss in enamel. |
de Oliveira Souza et al. (2022) [40] | Cashew nut shell liquid (CNSL) Anacardic acid Cardol | Ambar APS (FGM, Joinville, SC, Brazil) | 15 μg/mL (each compound separately) | Direct contact test | Adhesive discs | Streptococcus mutans and Candida albicans | Microtensile bond strength, degree of conversion, elastic modulus, flexural resistance, water sorption, and solubility | All 3 compounds showed antibacterial activity without jeopardizing the adhesive performance. |
Yao et al. (2022) [45] | Carboxymethyl chitosan (CMC) | Experimental primer | 5, 10, and 20 mg/mL | Direct contact test, XTT assay and CLSM | Primer and adhesive + composite discs | Streptococcus mutans | Microtensile bond strength and degree of conversion | The incorporation of 20 mg/mL CMC obtained the highest antibacterial activity and did not adversely affect the adhesive properties. |
3.3. Studies’ Patterns and Important Outcomes
3.3.1. Antibacterial Effectiveness
3.3.2. Adhesive Integrity
3.3.3. Long-Term Stability
3.4. RoB Analysis of the Studies
4. Discussion
4.1. Antibacterial Effectiveness
4.2. Adhesive Integrity
4.3. Concentration Dependency
4.4. Long-Term Performance
4.5. Biocompatibility and Safety
4.6. Clinical Implications
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vaidyanathan, T.K.; Vaidyanathan, J. Recent Advances in the Theory and Mechanism of Adhesive Resin Bonding to Dentin: A Critical Review. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 558–578. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J. Current Perspectives on Dental Adhesion: (1) Dentin Adhesion—Not There Yet. Jpn. Dent. Sci. Rev. 2020, 56, 190–207. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, M.G. A Simple Method of Increasing the Adhesion of Acrylic Filling Materials to Enamel Surfaces. J. Dent. Res. 1955, 34, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The Promotion of Adhesion by the Infiltration of Monomers into Tooth Substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin Bonding Systems: From Dentin Collagen Structure to Bond Preservation and Clinical Applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef]
- Demarco, F.F.; Collares, K.; Correa, M.B.; Cenci, M.S.; de Moraes, R.R.; Opdam, N.J. Should My Composite Restorations Last Forever? Why Are They Failing? Braz. Oral Res. 2017, 31 (Suppl. 1), 92–99. [Google Scholar] [CrossRef]
- Eltahlah, D.; Lynch, C.D.; Chadwick, B.L.; Blum, I.R.; Wilson, N.H.F. An Update on the Reasons for Placement and Replacement of Direct Restorations. J. Dent. 2018, 72, 1–7. [Google Scholar] [CrossRef]
- Kopperud, S.E.; Tveit, A.B.; Gaarden, T.; Sandvik, L.; Espelid, I. Longevity of Posterior Dental Restorations and Reasons for Failure. Eur. J. Oral Sci. 2012, 120, 539–548. [Google Scholar] [CrossRef]
- Mjör, I.A.; Moorhead, J.E.; Dahl, J.E. Reasons for Replacement of Restorations in Permanent Teeth in General Dental Practice. Int. Dent. J. 2000, 50, 361–366. [Google Scholar] [CrossRef]
- Milosevic, M.; Miletic, V.; Mitrovic, N.; Manojlovic, D.; Savic Stankovic, T.; Maneski, T. Measurement of local deformation fields in dental composites using 3D optical system. Chem. Listy 2011, 105, 751–753. [Google Scholar]
- Pinna, R.; Usai, P.; Filigheddu, E.; Garcia-Godoy, F.; Milia, E. The Role of Adhesive Materials and Oral Biofilm in the Failure of Adhesive Resin Restorations. Am. J. Dent. 2017, 30, 285–292. [Google Scholar] [PubMed]
- Kermanshahi, S.; Santerre, J.P.; Cvitkovitch, D.G.; Finer, Y. Biodegradation of Resin-Dentin Interfaces Increases Bacterial Microleakage. J. Dent. Res. 2010, 89, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Beyth, N.; Domb, A.J.; Weiss, E.I. An in Vitro Quantitative Antibacterial Analysis of Amalgam and Composite Resins. J. Dent. 2007, 35, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Innes, N.P.T.; Frencken, J.E.; Bjørndal, L.; Maltz, M.; Manton, D.J.; Ricketts, D.; Van Landuyt, K.; Banerjee, A.; Campus, G.; Doméjean, S.; et al. Managing Carious Lesions: Consensus Recommendations on Terminology. Adv. Dent. Res. 2016, 28, 49–57. [Google Scholar] [CrossRef]
- Singhal, D.; Acharya, S.; Thakur, A. Microbiological Analysis after Complete or Partial Removal of Carious Dentin Using Two Different Techniques in Primary Teeth: A Randomized Clinical Trial. Dent. Res. J. 2016, 13, 30. [Google Scholar] [CrossRef]
- Chen, L.; Suh, B.I.; Yang, J. Antibacterial Dental Restorative Materials: A Review. Am. J. Dent. 2018, 31, 6B–12B. [Google Scholar]
- Wang, Y.; Ding, Y.; Deng, J.; Nie, R.; Meng, X. Antibacterial One-Step Self-Etching Dental Adhesive with Silver Nanoparticles Synthesized in Situ. J. Dent. 2023, 129, 104411. [Google Scholar] [CrossRef]
- Leyva del Rio, D.; Sartori, N.; Tomblin, N.B.; Phark, J.-H.; Pardi, V.; Murata, R.M.; Duarte, S., Jr. Bioactive Dental Adhesive System with Tt-Farnesol: Effects on Dental Biofilm and Bonding Properties. Front. Bioeng. Biotechnol. 2020, 8, 865. [Google Scholar] [CrossRef]
- Cheng, L.; Weir, M.D.; Zhang, K.; Arola, D.D.; Zhou, X.; Xu, H.H.K. Dental Primer and Adhesive Containing a New Antibacterial Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate. J. Dent. 2013, 41, 345–355. [Google Scholar] [CrossRef]
- Imazato, S.; Kinomoto, Y.; Tarumi, H.; Torii, M.; Russell, R.R.B.; McCabe, J.F. Incorporation of Antibacterial Monomer MDPB into Dentin Primer. J. Dent. Res. 1997, 76, 768–772. [Google Scholar] [CrossRef]
- Xiao, Y.-H.; Ma, S.; Chen, J.-H.; Chai, Z.-G.; Li, F.; Wang, Y.-J. Antibacterial Activity and Bonding Ability of an Adhesive Incorporating an Antibacterial Monomer DMAE-CB. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.D.; Pedrosa, M.D.S.; Toma, S.H.; Araki, K.; Marques, M.M.; Medeiros, I.S. Antibacterial Effect, Cytotoxicity, and Bond Strength of a Modified Dental Adhesive Containing Silver Nanoparticles. Odontology 2023, 111, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Eskandarizadeh, A.; Sharokhi, F.; Hamze, F.; Kalantari, M.; Hoseiniffar, R.; Khaleghi, M.; Shadman, N.; Ramezani, F. Antibacterial, Physical and Mechanical Properties of Bonding Agent Containing Synthesized Zinc Dimethacrylate. J. Clin. Exp. Dent. 2019, 11, e686–e694. [Google Scholar] [CrossRef]
- Henn, S.; Nedel, F.; de Carvalho, R.V.; Lund, R.G.; Cenci, M.S.; Pereira-Cenci, T.; Demarco, F.F.; Piva, E. Characterization of an Antimicrobial Dental Resin Adhesive Containing Zinc Methacrylate. J. Mater. Sci. Mater. Med. 2011, 22, 1797–1802. [Google Scholar] [CrossRef]
- Lima, B.C.D.O.; Zeni, T.C.; Mendonça, M.J.; Roque, J.V.O.; Ueda, J.K.; Menolli, R.A.; Camilotti, V. Chlorhexidine Added to Different Adhesive Systems—Assessment of Antibacterial Activity and Bond Strength. Res. Soc. Dev. 2022, 11, e19011325785. [Google Scholar] [CrossRef]
- Shahi, S.; Özcan, M.; Maleki Dizaj, S.; Sharifi, S.; Al-Haj Husain, N.; Eftekhari, A.; Ahmadian, E. A Review on Potential Toxicity of Dental Material and Screening Their Biocompatibility. Toxicol. Mech. Methods 2019, 29, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Budala, D.G.; Martu, M.-A.; Maftei, G.-A.; Diaconu-Popa, D.A.; Danila, V.; Luchian, I. The Role of Natural Compounds in Optimizing Contemporary Dental Treatment—Current Status and Future Trends. J. Funct. Biomater. 2023, 14, 273. [Google Scholar] [CrossRef]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.-G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Parashar, S.; Singh, S.; Sood, G. Examining the Role of Health Consciousness, Environmental Awareness and Intention on Purchase of Organic Food: A Moderated Model of Attitude. J. Clean. Prod. 2023, 386, 135553. [Google Scholar] [CrossRef]
- Umaru, I.J. Introduction to Natural Product. In Extraction of Natural Products from Agro-Industrial Wastes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 19–34. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.H.S.; Sauro, S.; Lima, A.F.; Loguercio, A.D.; Della Bona, A.; Mazzoni, A.; Collares, F.M.; Staxrud, F.; Ferracane, J.; Tsoi, J.; et al. RoBDEMAT: A Risk of Bias Tool and Guideline to Support Reporting of Pre-Clinical Dental Materials Research and Assessment of Systematic Reviews. J. Dent. 2022, 127, 104350. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Du, X.; Huang, X.; Huang, C.; Wang, Y.; Zhang, Y. Epigallocatechin-3-Gallate (EGCG) Enhances the Therapeutic Activity of a Dental Adhesive. J. Dent. 2012, 40, 485–492. [Google Scholar] [CrossRef]
- Rezaeian, Z.; Beigi-Boroujeni, S.; Atai, M.; Ebrahimibagha, M.; Özcan, M. A Novel Thymol-Doped Enamel Bonding System: Physico-Mechanical Properties, Bonding Strength, and Biological Activity. J. Mech. Behav. Biomed. Mater. 2019, 100, 103378. [Google Scholar] [CrossRef]
- Dias, P.G.; da Silva, E.M.; Carvalho, C.M.; Miranda, M.; Portela, M.B.; Amaral, C.M. Characterization and Antibacterial Effect of an Experimental Adhesive Containing Different Concentrations of Proanthocyanidin. J. Adhes. Dent. 2020, 22, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.C.; Silva, E.M.; Carvalho, C.M.; Miranda, M.E.D.S.N.G.; Portela, M.B.; Amaral, C.M. Characterization and Anti-Caries Effect of an Experimental Adhesive Containing Natural Antimicrobial Agents. J Adhes Dent. 2021, 23, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, K.; Yan, H.; Liu, S.; Wang, Y.; Huang, C. High-Performance Therapeutic Quercetin-Doped Adhesive for Adhesive–Dentin Interfaces. Sci. Rep. 2017, 7, 8189. [Google Scholar] [CrossRef]
- de Oliveira Souza, N.; Cunha, D.A.; Sousa Rodrigues, N.; Bezerra, T.T.; Lomonaco, D.; Mazzetto, S.E.; Martins, C.H.G.; Casemiro, L.A.; de Paulo Aragão Saboia, V. Physicochemical and Microbiological Assessment of a Dental Adhesive Doped with Cashew Nut Shell Liquid. Odontology 2022, 110, 434–443. [Google Scholar] [CrossRef]
- Su, M.; Yao, S.; Gu, L.; Huang, Z.; Mai, S. Antibacterial Effect and Bond Strength of a Modified Dental Adhesive Containing the Peptide Nisin. Peptides 2018, 99, 189–194. [Google Scholar] [CrossRef]
- Zhao, M.; Qu, Y.; Liu, J.; Mai, S.; Gu, L. A Universal Adhesive Incorporating Antimicrobial Peptide Nisin: Effects on Streptococcus Mutans and Saliva-Derived Multispecies Biofilms. Odontology 2020, 108, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Peralta, S.L.; Carvalho, P.H.A.; van de Sande, F.H.; Pereira, C.M.P.; Piva, E.; Lund, R.G. Self-Etching Dental Adhesive Containing a Natural Essential Oil: Anti-Biofouling Performance and Mechanical Properties. Biofouling 2013, 29, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Elsaka, S.E. Antibacterial Activity and Adhesive Properties of a Chitosan-Containing Dental Adhesive. Quintessence Int. 2012, 43, 603–613. [Google Scholar] [PubMed]
- Yao, S.-Y.; Chen, S.-P.; Wang, R.-X.; Zhang, K.; Lin, X.-X.; Mai, S. Antibacterial Activity and Bonding Performance of Carboxymethyl Chitosan–Containing Dental Adhesive System. Int. J. Adhes. Adhes. 2022, 119, 103269. [Google Scholar] [CrossRef]
- Geraldeli, S.; Soares, E.F.; Alvarez, A.J.; Farivar, T.; Shields, R.C.; Sinhoreti, M.A.C.; Nascimento, M.M. A New Arginine-Based Dental Adhesive System: Formulation, Mechanical and Anticaries Properties. J. Dent. 2017, 63, 72–80. [Google Scholar] [CrossRef]
- ASTM E 2180–07; Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or Hydrophobic Materials. ASTM International: West Conshohocken, PA, USA, 2007.
- Cherian, J.M.; Kurian, N.; Varghese, K.G.; Thomas, H.A. World Health Organization’s Global Oral Health Status Report: Paediatric Dentistry in the Spotlight. J. Paediatr. Child Health 2023, 59, 925–926. [Google Scholar] [CrossRef]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J.M. Longevity of Posterior Composite Restorations: Not Only a Matter of Materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef]
- Spencer, P.; Ye, Q.; Park, J.; Topp, E.M.; Misra, A.; Marangos, O.; Wang, Y.; Bohaty, B.S.; Singh, V.; Sene, F.; et al. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration. Ann. Biomed. Eng. 2010, 38, 1989–2003. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Wieckiewicz, M.; Owczarek, A.; Wezgowiec, J. Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int. J. Mol. Sci. 2021, 22, 10337. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Y.; Haapasalo, M. Dental Materials with Antibiofilm Properties. Dent. Mater. 2014, 30, e1–e16. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, X.D.; Wu, C.D. The Tea Catechin Epigallocatechin Gallate Suppresses Cariogenic Virulence Factors of Streptococcus Mutans. Antimicrob. Agents Chemother. 2011, 55, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Raafat, D.; Sahl, H.-G. Chitosan and Its Antimicrobial Potential--a Critical Literature Survey: Chitosan and Its Antimicrobial Potential. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022, 27, 6545. [Google Scholar] [CrossRef]
- Chauhan, A.K.; Kang, S.C. Thymol Disrupts the Membrane Integrity of Salmonella Ser. Typhimurium in Vitro and Recovers Infected Macrophages from Oxidative Stress in an Ex Vivo Model. Res. Microbiol. 2014, 165, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, Y.; Jia, Y.; Zhang, M.; Huang, Y.; Li, C.; Li, K. Persimmon Oligomeric Proanthocyanidins Exert Antibacterial Activity through Damaging the Cell Membrane and Disrupting the Energy Metabolism of Staphylococcus aureus. ACS Food Sci. Technol. 2021, 1, 35–44. [Google Scholar] [CrossRef]
- Jeon, J.-G.; Pandit, S.; Xiao, J.; Gregoire, S.; Falsetta, M.L.; Klein, M.I.; Koo, H. Influences of Trans-Trans Farnesol, a Membrane-Targeting Sesquiterpenoid, on Streptococcus Mutans Physiology and Survival within Mixed-Species Oral Biofilms. Int. J. Oral Sci. 2011, 3, 98–106. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. Biomed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Oh, S.; Suzuki, Y.; Hayashi, S.; Suzuki, Y.; Koike, S.; Kobayashi, Y. Potency of Cashew Nut Shell Liquid in Rumen Modulation under Different Dietary Conditions and Indication of Its Surfactant Action against Rumen Bacteria. J. Anim. Sci. Technol. 2017, 59, 27. [Google Scholar] [CrossRef]
- Peralta, S.L.; de Carvalho, P.H.A.; Ccahuana-Vásquez, R.A.; de Pereira, C.M.P.; Cury, J.A.; Piva, E.; Lund, R.G. Cytotoxicity, Genotoxicity and Antibiofilm Activity on Streptococcus Mutans of an Experimental Self-Etching Adhesive System Containing Natural Butia Capitata Oil. Int. J. Adhes. Adhes. 2017, 78, 95–101. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Burne, R.A. Caries Prevention by Arginine Metabolism in Oral Biofilms: Translating Science into Clinical Success. Curr. Oral Health Rep. 2014, 1, 79–85. [Google Scholar] [CrossRef]
- Prince, A.; Sandhu, P.; Ror, P.; Dash, E.; Sharma, S.; Arakha, M.; Jha, S.; Akhter, Y.; Saleem, M. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends on Its Crowding and Degree of Oligomerization. Sci. Rep. 2016, 6, 37908. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, D. Chapter 15. Mechanism of Action of Antibiotics. In Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 1970; pp. 156–169. [Google Scholar]
- Esteves, C.M.; Ota-Tsuzuki, C.; Reis, A.F.; Rodrigues, J.A. Antibacterial Activity of Various Self-Etching Adhesive Systems against Oral Streptococci. Oper. Dent. 2010, 35, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S. Antibacterial Properties of Resin Composites and Dentin Bonding Systems. Dent. Mater. 2003, 19, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Loesche, W.J. Role of Streptococcus Mutans in Human Dental Decay. Microbiol. Rev. 1986, 50, 353–380. [Google Scholar] [CrossRef]
- Faustova, M.O.; Ananieva, M.M.; Basarab, Y.O.; Dobrobolska, O.V.; Vovk, I.M.; Loban’, G.A. Bacterial Factors of Cariogenicity (Literature Review). Wiad. Lek. 2018, 71 Pt 2, 378–382. [Google Scholar]
- Marcinkiewicz, J.; Strus, M.; Pasich, E. Antibiotic Resistance: A “Dark Side” of Biofilm-associated Chronic Infections. Pol. Arch. Med. Wewn. 2013, 123, 309–313. [Google Scholar] [CrossRef]
- Sim, C.P.C.; Dashper, S.G.; Reynolds, E.C. Oral Microbial Biofilm Models and Their Application to the Testing of Anticariogenic Agents. J. Dent. 2016, 50, 1–11. [Google Scholar] [CrossRef]
- Tobias, R.S. Antibacterial Properties of Dental Restorative Materials: A Review. Int. Endod. J. 1988, 21, 155–160. [Google Scholar] [CrossRef]
- Farrugia, C.; Camilleri, J. Antimicrobial Properties of Conventional Restorative Filling Materials and Advances in Antimicrobial Properties of Composite Resins and Glass Ionomer Cements—A Literature Review. Dent. Mater. 2015, 31, e89–e99. [Google Scholar] [CrossRef]
- Cocco, A.R.; de Oliveira da Rosa, W.L.; da Silva, A.F.; Lund, R.G.; Piva, E. A Systematic Review about Antibacterial Monomers Used in Dental Adhesive Systems: Current Status and Further Prospects. Dent. Mater. 2015, 31, 1345–1362. [Google Scholar] [CrossRef]
- Cadenaro, M.; Antoniolli, F.; Sauro, S.; Tay, F.R.; Di Lenarda, R.; Prati, C.; Biasotto, M.; Contardo, L.; Breschi, L. Degree of Conversion and Permeability of Dental Adhesives. Eur. J. Oral Sci. 2005, 113, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Ferreira, S.Q.; Costa, T.R.F.; Klein-Júnior, C.A.; Meier, M.M.; Loguercio, A.D. Effects of Increased Exposure Times of Simplified Etch-and-rinse Adhesives on the Degradation of Resin–Dentin Bonds and Quality of the Polymer Network. Eur. J. Oral Sci. 2010, 118, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Rousson, V.; Mahn, E. Bond Strength Tests of Dental Adhesive Systems and Their Correlation with Clinical Results—A Meta-Analysis. Dent. Mater. 2015, 31, 423–434. [Google Scholar] [CrossRef]
- Demeule, M.; Brossard, M.; Pagé, M.; Gingras, D.; Béliveau, R. Matrix Metalloproteinase Inhibition by Green Tea Catechins. Biochim. Biophys. Acta 2000, 1478, 51–60. [Google Scholar] [CrossRef]
- Yun, J.-H.; Pang, E.-K.; Kim, C.-S.; Yoo, Y.-J.; Cho, K.-S.; Chai, J.-K.; Kim, C.-K.; Choi, S.-H. Inhibitory Effects of Green Tea Polyphenol (–)-epigallocatechin Gallate on the Expression of Matrix Metalloproteinase-9 and on the Formation of Osteoclasts. J. Periodontal Res. 2004, 39, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.H.; Tay, F.R.; Yiu, C.; Hashimoto, M.; Breschi, L.; Carvalho, R.M.; Ito, S. Collagen Degradation by Host-Derived Enzymes during Aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef]
- Garlet, G.P. Multi-Purpose Materials in Dentistry—Is It Possible to Match Maximum Mechanical and Biological Properties/Performance? J. Appl. Oral Sci. 2013, 21. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Chai, Z.; Zhang, L.; Xiao, Y.; Fang, M.; Ma, S. Effects of a Dental Adhesive Incorporating Antibacterial Monomer on the Growth, Adherence and Membrane Integrity of Streptococcus Mutans. J. Dent. 2009, 37, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil-Mutluay, A.; Pashley, D.; Mutluay, M.M. Long-Term Durability of Dental Adhesives. Curr. Oral Health Rep. 2015, 2, 174–181. [Google Scholar] [CrossRef]
- Imazato, S.; Ebi, N.; Tarumi, H.; Russell, R.R.B.; Kaneko, T.; Ebisu, S. Bactericidal Activity and Cytotoxicity of Antibacterial Monomer MDPB. Biomaterials 1999, 20, 899–903. [Google Scholar] [CrossRef]
- Galler, K.; Hiller, K.; Ettl, T.; Schmalz, G. Selective Influence of Dentin Thickness upon Cytotoxicity of Dentin Contacting Materials. J. Endod. 2005, 31, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, E.; Bolay, C.; Arabulan, S.; Galler, K.M.; Buchalla, W.; Schmalz, G.; Widbiller, M. In-Vitro-Cytotoxicity of Self-Adhesive Dental Restorative Materials. Dent. Mater. 2024, 40, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Ateia, I.; Paulus, J.R.; Liu, H.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Antimicrobial Nisin Acts against Saliva Derived Multispecies Biofilms without Cytotoxicity to Human Oral Cells. Front. Microbiol. 2015, 6, 617. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z. Carboxymethyl Chitosan: Properties and Biomedical Applications. Int. J. Biol. Macromol. 2018, 120, 1406–1419. [Google Scholar] [CrossRef]
- Caiaffa, K.S.; dos Santos, V.R.; Abuna, G.F.; Santos-Filho, N.A.; Cilli, E.M.; Sakai, V.T.; Cintra, L.T.A.; Duque, C. Cytocompatibility and Synergy of EGCG and Cationic Peptides against Bacteria Related to Endodontic Infections, in Planktonic and Biofilm Conditions. Probiotics Antimicrob. Proteins 2021, 13, 1808–1819. [Google Scholar] [CrossRef]
- Frigaard, J.; Jensen, J.L.; Galtung, H.K.; Hiorth, M. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front. Pharmacol. 2022, 13, 880377. [Google Scholar] [CrossRef]
- Chai, Z.; Li, F.; Fang, M.; Wang, Y.; Ma, S.; Xiao, Y.; Huang, L.; Chen, J. The Bonding Property and Cytotoxicity of a Dental Adhesive Incorporating a New Antibacterial Monomer: A novel antibacterial adhesives. J. Oral Rehabil. 2011, 38, 849–856. [Google Scholar] [CrossRef]
- Antonucci, J.M.; Zeiger, D.N.; Tang, K.; Lin-Gibson, S.; Fowler, B.O.; Lin, N.J. Synthesis and Characterization of Dimethacrylates Containing Quaternary Ammonium Functionalities for Dental Applications. Dent. Mater. 2012, 28, 219–228. [Google Scholar] [CrossRef]
- Liu, J.X.; Werner, J.; Kirsch, T.; Zuckerman, J.D.; Virk, M.S. Cytotoxicity Evaluation of Chlorhexidine Gluconate on Human Fibroblasts, Myoblasts, and Osteoblasts. J. Bone Jt. Infect. 2018, 3, 165–172. [Google Scholar] [CrossRef]
- Damle, S.G. Eco-Friendly Green Dentistry: The Future of Dentistry? Contemp. Clin. Dent. 2016, 7, 423. [Google Scholar] [CrossRef]
- Rathee, M.; Vigarniya, M.M. A Literature Review on Holistic Dentistry. J. Oral Health Community Dent. 2018, 12, 106–110. [Google Scholar] [CrossRef]
Database | Search Algorithm | Search Date |
---|---|---|
PubMed | (antibacterial OR antimicrobial OR antibiotic OR anticaries OR antiseptic OR anticaries) AND (“Dental Adhesive” OR bond OR primer OR adhesive) AND (dental OR “restorative dentistry” OR “dental restoration” OR “adhesive dentistry”) NOT (review) | 17 July 2024 |
Scopus | ALL ((antibacterial OR antimicrobial OR antibiotic OR anticaries OR antiseptic OR anticaries) AND (“Dental Adhesive” OR bond OR primer OR adhesive) AND (dental OR “restorative dentistry” OR “dental restoration” OR “adhesive dentistry”) AND NOT (review)) | 17 July 2024 |
EMBASE | (antibacterial OR antimicrobial OR antibiotic OR anticaries OR antiseptic OR anticaries) AND (“Dental Adhesive” OR bond OR primer OR adhesive) AND (dental OR “restorative dentistry” OR “dental restoration” OR “adhesive dentistry”) NOT review | 18 July 2024 |
Web of Science | ALL = ((antibacterial OR antimicrobial OR antibiotic OR anticaries OR antiseptic OR anticaries) AND (“Dental Adhesive” OR bond OR primer OR adhesive) AND (dental OR “restorative dentistry” OR “dental restoration” OR “adhesive dentistry”) NOT (review)) | 18 July 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, A.C.; Mascarenhas, P.; Polido, M.; Vasconcelos e Cruz, J. Natural Antibacterial Compounds with Potential for Incorporation into Dental Adhesives: A Systematic Review. Polymers 2024, 16, 3217. https://doi.org/10.3390/polym16223217
Sousa AC, Mascarenhas P, Polido M, Vasconcelos e Cruz J. Natural Antibacterial Compounds with Potential for Incorporation into Dental Adhesives: A Systematic Review. Polymers. 2024; 16(22):3217. https://doi.org/10.3390/polym16223217
Chicago/Turabian StyleSousa, Ana Catarina, Paulo Mascarenhas, Mário Polido, and Joana Vasconcelos e Cruz. 2024. "Natural Antibacterial Compounds with Potential for Incorporation into Dental Adhesives: A Systematic Review" Polymers 16, no. 22: 3217. https://doi.org/10.3390/polym16223217
APA StyleSousa, A. C., Mascarenhas, P., Polido, M., & Vasconcelos e Cruz, J. (2024). Natural Antibacterial Compounds with Potential for Incorporation into Dental Adhesives: A Systematic Review. Polymers, 16(22), 3217. https://doi.org/10.3390/polym16223217