Co-Optimization of Mechanical Properties and Radiopacity Through Radiopaque Filler Incorporation for Medical Tubing Applications
Abstract
:1. Introduction
1.1. Background
1.2. Polymers in Medical Tubing
1.3. Requirements for Radiopaque Materials
- A
- = atomic mass;
- E
- = X-ray energy.
1.4. Inorganic Fillers
Filler | Advantages | Disadvantages |
---|---|---|
Barium sulphate (BaSO4) | Widely used in industry Relatively inexpensive Very process stable Easy to color | High loading levels Poor tinting strength |
Bismuth oxychloride (BiOCl) | Excellent white color Highly compatible with wide range of polymers Smooth surface finish | Difficult to color Susceptible to UV degradation |
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEBA/Filler Composites
2.3. Twin-Screw Compounding
2.4. Injection Molding
2.5. Mechanical Analysis
2.5.1. Tensile Testing
2.5.2. Flexural Testing
2.5.3. Impact Testing
- K = notched impact energy;
- m = mass of the hammer;
- g = gravity constant;
- H = initial height of pendulum hammer;
- h = distance travelled by pendulum hammer post impact.
- α = Charpy notched impact (J/m2);
- A = cross-sectional area minus notch (m);
- g = gravity constant;
- H = initial height of pendulum hammer;
- h = distance travelled by pendulum hammer post impact.
2.6. Thermal Analysis
2.6.1. Melt Flow Index
2.6.2. Differential Scanning Calorimetry
- ∆Hf = enthalpy of fusion obtained from thermogram;
- ∆Hf* = enthalpy of fusion of 100% crystalline PA12 in the hard regions of the PEBAX [37].
2.7. Physical Analysis
2.7.1. Density
- Mf = mass fraction;
- ρf = density of mass fraction;
- Vf = volume fraction;
- Vtot = total volume;
- Mtot = total mass of the composite;
- ρtheor = theoretical density.
- W1 = mass of sample in air;
- W2 = mass of sample underwater.
2.7.2. Ash Content Analysis
- W1 = mass of crucible (g):
- W2 = mass of polymer sample and crucible together (g):
- W3 = mass of ash sample and crucible together (g).
2.7.3. X-Ray Medical Imaging
3. Results and Discussion
3.1. Processing Observations
3.1.1. Twin-Screw Extrusion
3.1.2. Injection Molding
3.2. Mechanical Properties
3.2.1. Tensile Properties
3.2.2. Flexural Properties
3.2.3. Impact Strength
3.3. Thermal Analysis
3.3.1. Melt Flow Analysis
3.3.2. Differential Scanning Calorimetry
3.4. Physical Properties
3.4.1. Density
3.4.2. Ash Content
3.4.3. Radiopacity Contrast
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bitkina, O.V.l.; Kim, H.K.; Park, J. Usability and user experience of medical devices: An overview of the current state, analysis methodologies, and future challenges. Int. J. Ind. Ergon. 2020, 76, 102932. [Google Scholar] [CrossRef]
- Biesiekierski, A.; Munir, K.; Li, Y.; Wen, C. 2—Material selection for medical devices. In Metallic Biomaterials Processing and Medical Device Manufacturing; Wen, C., Ed.; Woodhead Publishing: Cambridge, UK, 2020; pp. 31–94. [Google Scholar] [CrossRef]
- Saint, S.; Chenoweth, C.E. Biofilms and catheter-associated urinary tract infections. Infect. Dis. Clin. N. Am. 2003, 17, 411–432. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.K.; New, P.W.; Heriseanu, R.; Petronis, S.; Håkansson, J.; Håkansson, M.Å.; Lee, B.B. Intermittent catheterization with single- or multiple-reuse catheters: Clinical study on safety and impact on quality of life. Int. Urol. Nephrol. 2020, 52, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Emonde, C.; Eggers, M.-E.; Wichmann, M.; Hurschler, C.; Ettinger, M.; Denkena, B. Radiopacity Enhancements in Polymeric Implant Biomaterials: A Comprehensive Literature Review. ACS Biomater. Sci. Eng. 2024, 10, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.L.; Turner, I.G. Materials for urinary catheters: A review of their history and development in the UK. Med. Eng. Phys. 2005, 27, 443–453. [Google Scholar] [CrossRef]
- Lai, C.; Wang, S.; Zhong, P.; Chen, Y.; Xu, J.; Li, X.; Liu, W. A low-friction and high-stability hydrophilic PVP/PEG coated TPU for interventional catheter applications. Tribol. Int. 2024, 198, 109859. [Google Scholar] [CrossRef]
- Wildgruber, M.; Lueg, C.; Borgmeyer, S.; Karimov, I.; Braun, U.; Kiechle, M.; Ettl, J.; Berger, H. Polyurethane versus silicone catheters for central venous port devices implanted at the forearm. Eur. J. Cancer Oxf. Engl. 2016, 59, 113–124. [Google Scholar] [CrossRef]
- Lewis, P.R.; Reynolds, K.; Gagg, C.; Gagg, C. Forensic Materials Engineering: Case Studies; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Alicdan, J.; Feldheim, A.; Fong, C.; Myers, F.; Torriani, F. Peripheral Venous Catheter Associated Bloodstream Infections (PVC-BSI) Risk Compared to Central Line Associated Bloodstream Infections (CLABSI). Am. J. Infect. Control 2023, 51, S34–S35. [Google Scholar] [CrossRef]
- Niaounakis, M. 1—Introduction to Biopolymers. In Biopolymers Reuse, Recycling, and Disposal; Niaounakis, M., Ed.; William Andrew Publishing: Oxford, UK, 2013; pp. 1–75. [Google Scholar] [CrossRef]
- Errichiello, F.; Di Maio, E.; Nicolais, L. High-Performance and Sustainable Expanded Plastics by Graded Foaming Technologies. Chem. Eng. Trans. 2023, 100, 463–468. [Google Scholar] [CrossRef]
- Singh, S.; Varghese, A.M.; Reinalda, D.; Karanikolos, G.N. Graphene—Based membranes for carbon dioxide separation. J. CO2 Util. 2021, 49, 101544. [Google Scholar] [CrossRef]
- González, T.; Castro-Muñoz, R.; Vera, M.; Merlet, G.; Pino-Soto, L.; Cabezas, R. Polyether-block-amide PEBA membranes for gas separation and pervaporation; current design and applications. J. Ind. Eng. Chem. 2024, 135, 67–86. [Google Scholar] [CrossRef]
- Bardin, A.; Le Gac, P.-Y.; Albouy, P.-A.; Bindi, H.; Fayolle, B. Correlation between crystallization and mechanical stress revealed by chain scission of segmented amide copolymer. Polymer 2022, 247, 124757. [Google Scholar] [CrossRef]
- Arkema SA. Pebax 2533 SA01 MED; Arkema: Colombes, France, 2024. [Google Scholar]
- Arkema SA. Pebax 4033 SA01 MED; Arkema: Colombes, France, 2024. [Google Scholar]
- Arkema SA. Pebax 6333 SA01 MED; Arkema: Colombes, France, 2024. [Google Scholar]
- Arkema SA. Pebax 7233 SA01 MED; Arkema: Colombes, France, 2024. [Google Scholar]
- Lusic, H.; Grinstaff, M.W. X-Ray Computed Tomography Contrast Agents. Chem. Rev. 2013, 113, 1641–1666. [Google Scholar] [CrossRef]
- Baiocchi, M.; Barsoum, S.; Khodaei, S.; de la Torre Hernandez, J.M.; Valentino, S.E.; Dunford, E.C.; MacDonald, M.J.; Keshavarz-Motamed, Z. Effects of Choice of Medical Imaging Modalities on a Non-invasive Diagnostic and Monitoring Computational Framework for Patients with Complex Valvular, Vascular, and Ventricular Diseases Who Undergo Transcatheter Aortic Valve Replacement. Front. Bioeng. Biotechnol. 2021, 9, 643453. [Google Scholar] [CrossRef] [PubMed]
- Villarraga-Gómez, H.; Lee, C.; Smith, S.T. Dimensional metrology with X-ray CT: A comparison with CMM measurements on internal features and compliant structures. Precis. Eng. 2018, 51, 291–307. [Google Scholar] [CrossRef]
- Khalid, A.; John, A.; Ali, A.; Batool, N.; Zamir, A. Frequency of Gastrointestinal Diseases Diagnosed on Barium Contrast Studies: Frequency of Gastrointestinal Diseases. Pak. Biomed. J. 2022, 5, 325–329. [Google Scholar] [CrossRef]
- Jain, S.; Srinivasan, B. An Insight on the Strategical Approach of Gastro-retentive Drug Delivery System. Pharm. Sci. 2023, 3, 34–54. [Google Scholar]
- Oskarsson, A. Chapter 4—Barium. In Handbook on the Toxicology of Metals, 5th ed.; Nordberg, G.F., Costa, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 91–100. [Google Scholar] [CrossRef]
- Su, J.-F.; Le, D.-P.; Liu, C.-H.; Lin, J.-D.; Xiao, X.-J. Critical care management of patients with barium poisoning: A case series. Chin. Med. J. 2020, 133, 724–725. [Google Scholar] [CrossRef]
- Danthanavat, N.; Mongkolsuk, M.; Tochaikul, G.; Sriwongta, S.; Piyajaroenporn, A.; Lithreungnam, C.; Moonkum, N. Study of epoxy shielding material with barium sulphate for development of radiation protection materials in low-dose diagnostic X-ray. Radiat. Eff. Defects Solids 2021, 176, 887–895. [Google Scholar] [CrossRef]
- Mungpayaban, H.; Rueanngoen, A.; Rindhatayathon, P.; Ninlaphruk, S.; Ekgasit, S.; Pengprecha, S. Barium sulphate–amorphous cellulose composite as innovative X-ray shielding substrate. Mater. Res. Innov. 2023, 27, 45–54. [Google Scholar] [CrossRef]
- Rudyy, A.V.; Fronya, A.A.; Zavestovskaya, I.N. Prospects for the Use of Bismuth Nanoparticles and Its Compounds in Biomedicine. Phys. Nucl. 2023, 86, 2507–2512. [Google Scholar] [CrossRef]
- Polaskova, M.; Sedlacek, T.; Polasek, Z.; Filip, P. Modification of Polyvinyl Chloride Composites for Radiographic Detection of Polyvinyl Chloride Retained Surgical Items. Polymers 2023, 15, 587. [Google Scholar] [CrossRef] [PubMed]
- Acquarulo, L. Specialty Compounds for Medical Applications: An Introduction. Spec. Compd. Med. Appl. Introd. 1996, 3, 32–41. [Google Scholar]
- Radiopaque Compounds. Foster Corp. 2024. Available online: https://www.fostercomp.com/custom-compounds/radiopaque-compounds/ (accessed on 3 September 2024).
- ISO 527-1 & ISO 527-2; Tensile Test on Plastics. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 179-1:2023; Plastics—Determination of Charpy Impact Properties Part 1: Non-Instrumented Impact Test. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 1183; Plastics—Methods for Determining the Density of Non-Cellular Plastics. International Organization for Standardization: Geneva, Switzerland, 2019.
- Halim, K.; Farrell, J.; Kennedy, J. Preparation and characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications. Mater. Chem. Phys. 2013, 143, 336–348. [Google Scholar] [CrossRef]
- Rosato Donald, V.; Rosato Dominick, V. 7—Process Control Technology. In Injection Molding Handbook, 3rd ed.; Springer: Boston, MA, USA, 2000; pp. 623–715. [Google Scholar]
- Bayazian, H.; Schoeppner, V. Investigation of molecular weight distributions during extrusion process of polypropylene by rheometry experiment. AIP Conf. Proc. 2019, 2065, 030044. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Bréchet, Y.; Cavaillé, J.-Y.; Chabert, E.; Chazeau, L.; Dendievel, R.; Flandin, L.; Gauthier, C. Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions. Adv. Eng. Mater. 2001, 3, 571–577. [Google Scholar] [CrossRef]
- Ming, Y.; Zhou, Z.; Hao, T.; Nie, Y. Polymer Nanocomposites: Role of modified filler content and interfacial interaction on crystallization. Eur. Polym. J. 2022, 162, 110894. [Google Scholar] [CrossRef]
- Peng, Q.; Tellefsen, M. Bismuth Oxychloride—A Multifunctional Color Additive. Cosmet. Toilet. 2003, 118, 53–62. [Google Scholar]
- Zhang, M.; Zhang, B.; Li, X.; Yin, Z.; Guo, X. Synthesis and surface properties of submicron barium sulfate particles. Appl. Surf. Sci. 2011, 258, 24–29. [Google Scholar] [CrossRef]
- Paknia, A.; Pramanik, A.; Dixit, A.R.; Chattopadhyaya, S. Effect of size, content and shape of reinforcements on the behaviour of Metal Matrix Composites (MMCs) under tension. J. Mater. Eng. Perform. 2016, 25, 4444–4459. [Google Scholar] [CrossRef]
- Chandrasekaran, C. 14—Technoeconomic Aspects of Nonrubber Linings—Glass, FRP, and Lead. In Anticorros. Rubber Linin; Chandrasekaran, C., Ed.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 115–127. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, S.; Zhang, X.; Zhao, Z.; Jing, D. Preparation and properties of carbon nanotubes/carbon fiber/poly (ether ether ketone) multiscale composites. Compos. Part Appl. Sci. Manuf. 2018, 108, 89–98. [Google Scholar] [CrossRef]
- Ramesh, A.; Ramu, K.; Ali Baig, M.A.; Dinesh Guptha, E. Influence of fly ash nano filler on the tensile and flexural properties of novel hybrid epoxy nano-composites. Mater. Today Proc. 2020, 27, 1252–1257. [Google Scholar] [CrossRef]
- Arulmurugan, M.; Selvakumar, A.S.; Prabu, K.; Rajamurugan, G. Effect of barium sulphate on mechanical, DMA and thermal behaviour of woven aloevera/flax hybrid composites. Bull. Mater. Sci. 2020, 43, 58. [Google Scholar] [CrossRef]
- Bociong, K.; Szczesio, A.; Krasowski, M.; Sokolowski, J. The influence of filler amount on selected properties of new experimental resin dental composite. Open Chem. 2018, 16, 905–911. [Google Scholar] [CrossRef]
- Sreekanth, M.; Bambole, V.; Mhaske, S.; Mahanwar, P. Effect of Particle Size and Concentration of Flyash on Properties of Polyester Thermoplastic Elastomer Composites. J. Miner. Mater. Charact. Eng. 2009, 8, 237–248. [Google Scholar] [CrossRef]
- Lakkundi, A.; Raju, G.; Madhusudhana, H.; Satish, G. Optimizing Filler Loading and Particle Size for Enhanced PhysicoMechanical Properties in Peanut Shell. J. Mater. Sci. Manuf. Res. 2024, 5, 1–8. [Google Scholar] [CrossRef]
- Hnatkova, E.; Hales, A.; Jiranek, L.; Vera, J.; Hausnerová, B. Rheological Investigation of Highly Filled Polymers: Effect of Molecular Weight. AIP Conf. Proc. 2015, 1662, 040003. [Google Scholar] [CrossRef]
- Pingping, Z.; Dezhu, M. Study on the double cold crystallization peaks of poly(ethylene terephthalate) 3. The influence of the addition of calcium carbonate (CaCO3). Eur. Polym. J. 2000, 36, 2471–2475. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Chow, L.C.; Yang, M.; Mitchell, J.W. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). Int. J. Polym. Sci. 2014, 2014, 827028. [Google Scholar] [CrossRef]
- Khalaf, M. Effect of alkali lignin on heat of fusion, crystallinity and melting points of low density polyethylene (LDPE), medium density polyethylene (MDPE) and high density polyethylene (HDPE). J. Thi-Qar Sci. 2010, 2, 89–95. [Google Scholar]
- Hanna, V.; Yan, P.; Petcher, S.; Hasell, T. Incorporation of fillers to modify the mechanical performance of inverse vulcanised polymers. Polym. Chem. 2022, 13, 3930–3937. [Google Scholar] [CrossRef]
- Chang, C.-T.; Chen, H.-T.; Girsang, S.P.; Chen, Y.-M.; Wan, D.; Shen, S.-H.; Wang, J. 3D-printed radiopaque polymer composites for the in situ monitoring of biodegradable medical implants. Appl. Mater. Today 2020, 20, 100771. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Gao, C.; Bai, Y.; Liu, B.; Wang, W.; Ma, Y.; Saijilafu; Yang, H.; Li, Y.; et al. Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement. Mater. Sci. Eng. C 2020, 116, 110904. [Google Scholar] [CrossRef] [PubMed]
- Shannon, A.; O’Sullivan, K.J.; Clifford, S.; O’Sullivan, L. Assessment and selection of filler compounds for radiopaque PolyJet multi-material 3D printing for use in clinical settings. Proc. Inst. Mech. Eng. 2022, 236, 740–747. [Google Scholar] [CrossRef]
- He, W.; Ai, K.; Lu, L. Nanoparticulate X-ray CT contrast agents. Sci. China Chem. 2015, 58, 753–760. [Google Scholar] [CrossRef]
- Pan, J.; Wang, J.; Zhao, Y.; Han, B.; Shu, G.; Ma, M.; Wang, X.; Wei, X.; Hou, W.; Sun, S.-K. Real-time detection of gastrointestinal leaks via bismuth chelate-enhanced X-ray gastroenterography. Biomaterials 2024, 311, 122646. [Google Scholar] [CrossRef]
- Jagdale, P.; Rovere, M.; Ronca, R.; Vigneri, C.; Bernardini, F.; Calzetta, G.; Tagliaferro, A. Determination of the X-ray attenuation coefficient of bismuth oxychloride nanoplates in polydimethylsiloxane. J. Mater. Sci. 2020, 55, 7095–7105. [Google Scholar] [CrossRef]
- Huang, S.D. Bismuth-Based Nanoparticles for CT Imaging. In Design and Applications of Nanoparticles in Biomedical Imaging; Bulte, J.W.M., Modo, M.M.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 429–444. [Google Scholar] [CrossRef]
Properties | Units | Pebax® 2533 SA01 MED | Pebax® 4033 SA01 MED | Pebax® 6333 SA01 MED | Pebax® 7233 SA01 MED |
---|---|---|---|---|---|
Shore A hardness | - | 74 | 89 | ~100 (estimate) | >100 (estimate) |
Shore D hardness | - | ~25 (estimate) | 35 | 58 | 61 |
Tensile modulus | MPa | 12 | 73 | 307 | 510 |
Charpy notched impact strength, +23 °C | kJ/m2 | No break | No break | No break | 15 |
Property | Dry/Cond | Unit | Test Standard |
---|---|---|---|
Tensile modulus | 307/240 | MPa | [33] |
Yield stress | 19/18 | MPa | |
Yield strain | 22/22 | % | |
Nominal strain at break | 50/>50 | % | |
Shore D hardness, after 15 s | 58 | - | [34] |
Charpy notched impact strength, +23 °C | -/No Break | kJ/m2 | [35] |
Density | 1.01/- | g/cm3 | [36] |
Sample Name | PEBA (wt.%) | BaSO4 (wt.%) | BiOCl (wt.%) |
---|---|---|---|
PEBA100 | 100 | 0 | 0 |
PEBA/BaSO410 | 90 | 10 | 0 |
PEBA/BaSO420 | 80 | 20 | 0 |
PEBA/BaSO430 | 70 | 30 | 0 |
PEBA/BiOCl10 | 90 | 0 | 10 |
PEBA/BiOCl20 | 80 | 0 | 20 |
PEBA/BiOCl30 | 70 | 0 | 30 |
Heating Zone | Parameter (°C) |
---|---|
Zone 1 | 80 |
Zone 2 | 160 |
Zone 3 | 180 |
Zone 4 | 180 |
Zone 5 | 180 |
Zone 6 | 180 |
Zone 7 | 180 |
Zone 8 | 190 |
Zone 9 | 190 |
Zone 10 | 190 |
Sample | Σ (MPa) | ε (%) | E (MPa) |
---|---|---|---|
PEBA100 | 39.78 ± 0.69 | 330.35 ± 5.06 | 126.96 ± 28.57 |
PEBA90BiOCl10 | 39.67 ± 0.89 | 310.78 ± 8.50 | 159.90 ± 25.44 |
PEBA80BiOCl20 | 40.67 ± 0.79 | 311.90 ± 7.05 | 153.92 ± 33.33 |
PEBA70BiOCl30 | 40.66 ± 0.16 | 314.79 ± 3.84 | 189.92 ± 15.94 |
PEBA90BaS0410 | 36.95 ± 1.57 | 303.19 ± 16.06 | 134.79 ± 24.17 |
PEBA80BaS0420 | 36.78 ± 0.69 | 307.83 ± 6.23 | 155.26 ± 36.71 |
PEBA70BaS0430 | 32.88 ± 1.47 | 281.40 ± 16.72 | 172.46 ± 58.18 |
εf (MPa) | % Increase | σfc (MPa) | % Increase | |
---|---|---|---|---|
PEBA100 | 125.01 ± 2.44 | - | 7.20 ± 0.08 | - |
PEBA90BaSO410 | 141.50 ± 0.78 | 13.19 | 7.92 ± 0.06 | 10.00 |
PEBA80BaSO420 | 156.82 ± 0.91 | 25.45 | 8.55 ± 0.03 | 35.00 |
PEBA70BaSO430 | 177.72 ± 2.52 | 42.16 | 9.35 ± 0.05 | 29.86 |
PEBA90BiOCl10 | 140.01 ± 0.57 | 12.00 | 7.88 ± 0.03 | 9.44 |
PEBA80BiOCl20 | 158.08 ± 1.05 | 26.45 | 8.60 ± 0.04 | 19.44 |
PEBA70BiOCl30 | 181.35 ± 0.65 | 45.07 | 9.57 ± 0.02 | 32.92 |
Sample | Tm (°C) | ΔHm (J g−1) | Tc (°C) | ΔHcc (J g−1) | Χc (%) |
---|---|---|---|---|---|
PEBA100 | 172.30 | 58.12 | 133.67 | 62.29 | 89.41 |
PEBA/BaSO410 | 172.59 | 52.25 | 136.17 | 54.95 | 80.38 |
PEBA/BaSO420 | 172.65 | 40.70 | 136.90 | 44.69 | 62.62 |
PEBA/BaSO430 | 173.71 | 41.35 | 136.89 | 45.89 | 63.61 |
PEBA/BIOCl10 | 173.53 | 52.33 | 144.03 | 52.54 | 79.89 |
PEBA/BIOCl20 | 173.36 | 34.79 | 144.01 | 38.22 | 54.71 |
PEBA/BIOCl30 | 171.44 | 36.39 | 143.34 | 39.06 | 55.77 |
ρtheor (g/cm3) | ρact (g/cm3) | Deviation (%) | |
---|---|---|---|
PEBA100 | 1.010 | 1.010 | 0.0100 |
PEBA/90BaSO410 | 1.095 | 1.107 | 0.0101 |
PEBA/80BaSO420 | 1.195 | 1.183 | 0.0099 |
PEBA/70BaSO430 | 1.316 | 1.316 | 0.0100 |
PEBA/90BiOCl10 | 1.106 | 1.115 | 0.0101 |
PEBA/80BiOCl20 | 1.222 | 1.212 | 0.0099 |
PEBA/70BiOCl30 | 1.366 | 1.381 | 0.0101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugent, A.; Molloy, J.; Kelly, M.; Colbert, D.M. Co-Optimization of Mechanical Properties and Radiopacity Through Radiopaque Filler Incorporation for Medical Tubing Applications. Polymers 2024, 16, 3220. https://doi.org/10.3390/polym16223220
Nugent A, Molloy J, Kelly M, Colbert DM. Co-Optimization of Mechanical Properties and Radiopacity Through Radiopaque Filler Incorporation for Medical Tubing Applications. Polymers. 2024; 16(22):3220. https://doi.org/10.3390/polym16223220
Chicago/Turabian StyleNugent, Alan, Joseph Molloy, Maurice Kelly, and Declan Mary Colbert. 2024. "Co-Optimization of Mechanical Properties and Radiopacity Through Radiopaque Filler Incorporation for Medical Tubing Applications" Polymers 16, no. 22: 3220. https://doi.org/10.3390/polym16223220
APA StyleNugent, A., Molloy, J., Kelly, M., & Colbert, D. M. (2024). Co-Optimization of Mechanical Properties and Radiopacity Through Radiopaque Filler Incorporation for Medical Tubing Applications. Polymers, 16(22), 3220. https://doi.org/10.3390/polym16223220