Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Differential Scanning Calorimetry (DSC)
3.2. Step Mode DSC
3.3. Thermogravimetric Analysis (TGA)
3.4. Shape Stability Test
3.5. Fourier Transform Infrared Spectroscopy (FTIR)
3.6. Microscopic Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Palomo Del Barrio, E.; Cadoret, R.; Daranlot, J.; Achchaq, F. New sugar alcohols mixtures for long-term thermal energy storage applications at temperatures between 70 °C and 100 °C. Sol. Energy Mater. Sol. Cells 2016, 155, 454–468. [Google Scholar] [CrossRef]
- del Barrio, E.P.; Godin, A.; Duquesne, M.; Daranlot, J.; Jolly, J.; Alshaer, W.; Kouadio, T.; Sommier, A. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol. Energy Mater. Sol. Cells 2017, 159, 560–569. [Google Scholar] [CrossRef]
- Diarce, G.; Gandarias, I.; Campos-Celador, Á.; García-Romero, A.; Griesser, U.J. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90 °C temperature range. Sol. Energy Mater. Sol. Cells 2015, 134, 215–226. [Google Scholar] [CrossRef]
- Shockner, T.; Zada, O.; Goldenshluger, S.; Ziskind, G. Investigation of high-enthalpy organic phase-change materials for heat storage and thermal management. J. Phys Energy 2023, 5, 024015. [Google Scholar] [CrossRef]
- Shao, X.F.; Yang, S.; Shi, H.Y.; Fan, L.W.; Yuan, Y.P. A comprehensive evaluation on the cycling stability of sugar alcohols for medium-temperature latent heat storage. J. Energy Storage 2023, 64, 107190. [Google Scholar] [CrossRef]
- Ribezzo, A.; Falciani, G.; Bergamasco, L.; Fasano, M.; Chiavazzo, E. An overview on the use of additives and preparation procedure in phase change materials for thermal energy storage with a focus on long term applications. J. Energy Storage 2022, 53, 105140. [Google Scholar] [CrossRef]
- Lv, L.; Huang, S.; Cen, K.; Zhou, H. Experimental study of screening polyols and their binary eutectic phase change materials for long-term thermal energy storage. J. Clean. Prod. 2023, 399, 136636. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, Q.; Li, B.; Liu, X.; Rao, Z. Recent advances of sugar alcohols phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2023, 188, 113805. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Egea, A.; García, A.; Herrero-Martín, R.; Pérez-García, J. Accelerated testing methods to analyse long term stability of a Phase Change Material under the combined effect of shear stress and thermal cycling. J. Energy Storage 2022, 56, 105867. [Google Scholar] [CrossRef]
- Turunen, K.; Li, S.; Yazdani, M.R. Ionic Mixture of Binary Sugar Alcohols and a Polymer: Composition Optimization for Long-Term Thermal Energy Storage. ACS Sustain. Chem. Eng. 2022, 10, 15508–15519. [Google Scholar] [CrossRef]
- Safari, A.; Saidur, R.; Sulaiman, F.A.; Xu, Y.; Dong, J. A review on supercooling of Phase Change Materials in thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 905–919. [Google Scholar] [CrossRef]
- Zahir, H.; Rahman, M.M.; Mohaisen, K.O.; Helal, A.; Shaikh, M.N.; Rahman, M.M. Clarification of the Supercooling and Heat Storage Efficiency Calculation Formula for Shape-Stabilized Phase Change Materials. ACS Omega 2022, 7, 41096–41099. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, J.; Liu, Y.; Xu, Y.; Cui, K.; Yao, Z.; Fu, B.; Song, C.; Shang, W.; Tao, P.; et al. Supercooled Sugar Alcohols Stabilized by Alkali Hydroxides for Long-Term Room-Temperature Phase Change Solar-Thermal Energy Storage. SSRN Electron. J. 2022, 452, 139328. [Google Scholar] [CrossRef]
- Behzadi, S.; Farid, M.M. Long term thermal stability of organic PCMs. Appl. Energy 2014, 122, 11–16. [Google Scholar] [CrossRef]
- Shao, X.F.; Yang, S.; Wang, C.; Wang, W.J.; Zeng, Y.; Fan, L.W. Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature thermal energy storage. (Ⅲ): Thermal endurance. Energy J. 2020, 209, 118483. [Google Scholar] [CrossRef]
- Solé, A.; Neumann, H.; Niedermaier, S.; Martorell, I.; Schossig, P.; Cabeza, L.F. Stability of sugar alcohols as PCM for thermal energy storage. Sol. Energy Mater. Sol. Cells 2014, 126, 125–134. [Google Scholar] [CrossRef]
- Neumann, H.; Niedermaier, S.; Gschwander, S.; Schossig, P. Cycling stability of d -mannitol when used as phase change material for thermal storage applications. Thermochim. Acta 2018, 660, 134–143. [Google Scholar] [CrossRef]
- Paul, A.; Shi, L.; Bielawski, C.W. A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage. Energy Convers. Manag. 2015, 103, 139–146. [Google Scholar] [CrossRef]
- Tomassetti, S.; Aquilanti, A.; Muciaccia, P.F.; Coccia, G.; Mankel, C.; Koenders, E.A.B.; Di Nicola, G. A review on thermophysical properties and thermal stability of sugar alcohols as phase change materials. J. Energy Storage 2022, 55, 105456. [Google Scholar] [CrossRef]
- Maxa, J.; Novikov, A.; Nowottnick, M.; Heimann, M.; Jarchoff, K. PCM-based Thermal Buffer Coating for High Temperature Applications. In Proceedings of the 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 18–21 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9. [Google Scholar]
- Wang, Y.; Qin, Z.; Zhang, T.; Zhang, Z.; Li, Y. Effect of encapsulation and additives doping on the thermophysical properties of erythritol for thermal energy storage. J. Renew. Sustain. Energy 2020, 12, 024103. [Google Scholar] [CrossRef]
- Alferez Luna, M.P.; Neumann, H.; Gschwander, S. Stability Study of Erythritol as Phase Change Material for Medium Temperature Thermal Applications. Appl. Sci. 2021, 11, 5448. [Google Scholar] [CrossRef]
- Yan, X.; Feng, Y.; Qiu, L.; Zhang, X. Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials. Energy J. 2021, 233, 121158. [Google Scholar] [CrossRef]
- Nomura, T.; Zhu, C.; Sagara, A.; Okinaka, N.; Akiyama, T. Estimation of thermal endurance of multicomponent sugar alcohols as phase change materials. Appl. Therm. Eng. 2015, 75, 481–486. [Google Scholar] [CrossRef]
- Solé, A.; Neumann, H.; Niedermaier, S.; Cabeza, L.F.; Palomo, E. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application. Energy Procedia 2014, 48, 436–439. [Google Scholar] [CrossRef]
- Shao, X.F.; Wang, J.; Fan, L.W. Non-Isothermal Phase Change Behaviors of Binary Mixtures of D-Dulcitol and Pentaerythritol As Novel Heat Storage Materials. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, 9–15 November 2018; ASME: New York, NY, USA, 2018. [Google Scholar]
- Gallegos Lazcano, M.A.; Yu, W. Thermal performance and flammability of phase change material for medium and elevated temperatures for textile application. J. Therm. Anal. Calorim. 2014, 117, 9–17. [Google Scholar] [CrossRef]
- Gamisch, S.; Kick, M.; Klünder, F.; Weiss, J.; Laurenz, E.; Haussmann, T. Thermal Storage: From Low-to-High-Temperature Systems. Energy Technol. 2023, 11, 2300544. [Google Scholar] [CrossRef]
- Wang, K.; Sun, C.; Wiafe Biney, B.; Li, W.; Al-shiaani, N.H.A.; Chen, K.; Liu, D.; Guo, A. Polyurethane template-based erythritol/graphite foam composite phase change materials with enhanced thermal conductivity and solar-thermal energy conversion efficiency. Polymer 2022, 256, 125204. [Google Scholar] [CrossRef]
- Li, Q.; Feng, Y.; Li, Y.T.; Ning, Y.H.; Hu, P.; Lin, C.H.; Zhang, Y.-H.; Zhou, M.; Yu, L.-P.; Li, C.-C.; et al. Erythritol confined in multiwalled carbon nanotubes reinforced silica aerogel as novel form-stable phase change materials. J. Mol. Liq. 2022, 360, 119589. [Google Scholar] [CrossRef]
- Pan, C.; He, P.; Wu, J.; Chen, N.; Wei, J.; Xu, T.; Shi, E.; Wang, A.; Jia, H. Copper foam effectively improves the thermal performance of graphene-aerogel composite phase-change materials for thermal storage. J. Energy Storage 2022, 51, 104485. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Pionteck, J. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide. J. Nanosci. Nanotechnol. 2015, 15, 1984–2000. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheng, Q.; Du, P.; Wang, X.; Wu, M.; Rao, Z. Thermal property optimization and shape stabilization of sugar alcohols phase change thermal energy storage materials reinforced by sintering synthesized alumina porous ceramics. J. Energy Storage 2023, 65, 107325. [Google Scholar] [CrossRef]
- Barreneche, C.; Solé, A.; Miró, L.; Martorell, I.; Fernández, A.I.; Cabeza, L.F. Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM). Thermochim. Acta 2013, 553, 23–26. [Google Scholar] [CrossRef]
- Sarı, A.; Biçer, A.; Lafçı, Ö.; Ceylan, M. Galactitol hexa stearate and galactitol hexa palmitate as novel solid–liquid phase change materials for thermal energy storage. J. Sol. Energy 2011, 85, 2061–2071. [Google Scholar] [CrossRef]
- Shao, X.; Yang, S.; Fan, L.; Yuan, Y. Sugar alcohol phase change materials for low-to-medium temperature thermal energy storage: A comprehensive review. J. Energy Storage 2023, 68, 107848. [Google Scholar] [CrossRef]
- Deka, P.P.; Ansu, A.K.; Sharma, R.K.; Tyagi, V.V.; Sarı, A. Development and characterization of form-stable porous TiO2 tetradecanoic acid based composite PCMwith long-term stability as solar thermal energy storage material. Int. J. Energy Res. 2020, 44, 10044–10057. [Google Scholar] [CrossRef]
- Hasanabadi, S.; Sadrameli, S.M.; Soheili, H.; Moharrami, H.; Heyhat, M.M. A cost-effective form-stable PCM composite with modified paraffin and expanded perlite for thermal energy storage in concrete. J. Therm. Anal. Calorim. 2019, 136, 1201–1216. [Google Scholar] [CrossRef]
- Wang, X.-L.; Yang, K.-K.; Wang, Y.-Z. Properties of Starch Blends with Biodegradable Polymers. J. Macromol. Sci. Polym. Rev. 2003, 43, 385–409. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Novel biodegradable form stable phase change materials: Blends of poly(ethylene oxide) and gelatinized potato starch. J. Appl. Polym. Sci. 2010, 116, 1725–1731. [Google Scholar] [CrossRef]
- Sun, D.S.; Yoo, B. Rheological and thermal properties of blend systems of rice flour and potato starch. Food Sci. Biotechnol. 2011, 20, 1679–1684. [Google Scholar] [CrossRef]
- Dogan, O.M.; Keskin, S.; Dogan, A.; Ataman, H.; Usanmaz, A. Structure-property Relation of a Soft Liner Material Used in Denture Applications. Dent. Mater. J. 2007, 26, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Jenab, A.; Roghanian, R.; Ghorbani, N.; Ghaedi, K.; Emtiazi, G. The Efficacy of Electrospun PAN/Kefiran Nanofiber and Kefir in Mammalian Cell Culture: Promotion of PC12 Cell Growth, Anti-MCF7 Breast Cancer Cells Activities, and Cytokine Production of PBMC. Int. J. Nanomed. 2020, 15, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.; Yoo, C. Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
- Boukir, A.; Mehyaoui, I.; Fellak, S.; Asia, L.; Doumenq, P. The effect of the natural degradation process on the cellulose structure of Moroccan hardwood fiber: A survey on spectroscopy and structural properties. Mediterr. J. Chem. 2019, 8, 179–190. [Google Scholar] [CrossRef]
- Bacher, A. Infrared Spectroscopy n.d. Available online: https://www.chem.ucla.edu/~bacher/spectrocopy/IR1.html (accessed on 6 September 2024).
- Sujka, M.; Jamroz, J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocoll. 2013, 31, 413–419. [Google Scholar] [CrossRef]
- Barrera, G.N.; Calderón-Domínguez, G.; Chanona-Pérez, J.; Gutiérrez-López, G.F.; León, A.E.; Ribotta, P.D. Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis. Carbohydr. Polym. 2013, 98, 1449–1457. [Google Scholar] [CrossRef]
- Yazdani, M.R.; Etula, J.; Zimmerman, J.B.; Seppälä, A. Ionic cross-linked polyvinyl alcohol tunes vitrification and cold-crystallization of sugar alcohol for long-term thermal energy storage. Green Chem. 2020, 22, 5447–5462. [Google Scholar] [CrossRef]
Number of Sample/The Mass Ratio of: | Dulcitol | Starch |
---|---|---|
1 | 50 | 50 |
2 | 60 | 40 |
3 | 70 | 30 |
4 | 80 | 20 |
5 | 85 | 15 |
6 | 90 | 10 |
7 | 100 | 0 |
The Mass Ratio of Dulcitol/Starch | Tm [°C] | Qm [J/g] | Tc [°C] | Qc [J/g] | Tcc [°C] | Qcc [J/g] |
---|---|---|---|---|---|---|
50:50 | 185 | 126.16 | 84 | 0.74 | 87 | 52.90 |
60:40 | 185 | 159.80 | 80, 95 | 27.18 | 70 | 21.40 |
70:30 | 190 | 229.89 | 90, 96, 100 | 125.38 | 155 | 21.19 |
80:20 | 190 | 234.71 | 97, 105 | 152.81 | 160 | 10.86 |
85:15 | 190 | 265.25 | 98 | 147.34 | 150 | 29.70 |
90:10 | 190 | 275.29 | 100, 102 | 159.94 | 145 | 30.72 |
100:0 | 190 | 341.35 | 112, 115 | 251.71 | 0 | 0.00 |
Temeprature Program | Tm1 [°C] | Qm1 [J/g] | Tm2 [°C] | Qm2 [J/g] | Tcc1onset [°C] | Tcc1peak [°C] | Tcc1endset [°C] | Qcc1 [J/g] | Tcc2onset [°C] | Tcc2peak [°C] | Tcc2endset [°C] | Qcc2 [J/g] | Tcc3onset [°C] | Tcc3peak [°C] | Tcc3endset [°C] | Qcc3 [J/g] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0.00 | 185 | 120.02 | 76 | 86 | 105 | 110.76 | - | - | - | 0.00 | - | - | - | 0.00 |
2 | - | 0.00 | 185 | 130.44 | 70 | 88 | 106 | 127.6 | - | - | - | 0.00 | - | - | - | 0.00 |
3 | - | 0.00 | 186 | 125.18 | 83 | 103 | 128 | 124.72 | - | - | - | 0.00 | - | - | - | 0.00 |
4 | - | 0.00 | 179 | 123.96 | 85 | 85 | 85 | 25.69 | 98 | 119 | 159 | 24.36 | 161 | 165 | 168 | 2.45 |
5 | 160 | 1.93 | 185 | 120.42 | 85 | 85 | 85 | 78.70 | 93 | 114 | 156 | 35.42 | 163 | 166 | 169 | 7.98 |
6 | 162 | 14.8 | 186 | 120.71 | 90 | 90 | 90 | 96.01 | 106 | 119 | 153 | 16.92 | 166 | 168 | 171 | 17.87 |
Qm [J/g] | Qcc [J/g] | η [%] | |
---|---|---|---|
1 | 120.02 | 110.76 | 92.28 |
2 | 130.44 | 127.60 | 97.82 |
3 | 125.18 | 124.72 | 99.63 |
4 | 123.96 | 52.50 | 42.35 |
5 | 122.35 | 122.10 | 99.80 |
6 | 135.51 | 130.80 | 96.52 |
Samples Dulcitol/Starch | T1% * [°C] | T2% [°C] | T3% [°C] | T5% [°C] | T10% [°C] | T50% [°C] | TDTGmax [°C] | Char Residue at 600 °C [%] |
---|---|---|---|---|---|---|---|---|
50:50 | 212 | 246 | 257 | 272 | 290 | 319 | 326 | 0.644 |
60:40 | 229 | 249 | 259 | 270 | 285 | 319 | 327 | 1.411 |
70:30 | 243 | 260 | 269 | 280 | 295 | 330 | 338 | 0.229 |
80:20 | 245 | 266 | 275 | 286 | 301 | 334 | 343 | 0.137 |
85:15 | 249 | 265 | 274 | 285 | 300 | 336 | 347 | 0.247 |
90:10 | 249 | 264 | 272 | 284 | 299 | 337 | 349 | 0.115 |
100:0 | 258 | 272 | 281 | 292 | 309 | 349 | 362 | 0.057 |
Wavenumber [cm−1] | Chemical Bond |
---|---|
~620 | O-Hoop out of plane bending mode (weak and broad band) [43] |
~700 | CH2 rocking vibration [43] |
862 | -CH3 [44] |
~928 | O-H bending [45] |
1030 | C-O stretching [45] |
1047 | C-OH stretching vibration, C-O deformation [45] |
1078 | CH3 rocking [45] |
1119 | C-O (carbohydrates) [44] |
1209 | C-C stretching [45] |
1265 | C-O stretching [46] |
1296 | |
1358 | O-H bending [45] |
1379 | C-H bending, C-H stretching in CH3 [45] |
1468 | CH2, (bend) [45] |
1639 | C=C (stretch) [45] |
2877 | C-H, alkanes, sp3 [47] |
2916 | |
2933 | |
3246 | O-H stretching (OH groups) [45] |
3317 | |
3367 |
Samples Dulcitol/Starch | -OH Wavenumber [cm−1] | ||
---|---|---|---|
50:50 | 3247 | 3315 | 3380 |
60:40 | 3249 | 3325 | 3379 |
70:30 | 3248 | 3313 | 3363 |
80:20 | 3246 | 3323 | 3369 |
85:15 | 3247 | 3326 | 3360 |
90:10 | 3247 | 3319 | 3368 |
100:0 | 3246 | 3324 | 3362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szatkowska, M.; Pielichowska, K. Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage. Polymers 2024, 16, 3229. https://doi.org/10.3390/polym16223229
Szatkowska M, Pielichowska K. Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage. Polymers. 2024; 16(22):3229. https://doi.org/10.3390/polym16223229
Chicago/Turabian StyleSzatkowska, Martyna, and Kinga Pielichowska. 2024. "Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage" Polymers 16, no. 22: 3229. https://doi.org/10.3390/polym16223229
APA StyleSzatkowska, M., & Pielichowska, K. (2024). Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage. Polymers, 16(22), 3229. https://doi.org/10.3390/polym16223229