Propolis Extract: Weaving Antioxidant Power into Polymeric Composites Through Electrospinning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propolis Samples and Characterization
2.2. Polymeric Solution of Propolis Extract
2.3. Production of Polymer Composites by Electrospinning
2.4. Antioxidant Activity
2.5. Composite Characterization
2.6. Release Evaluation
3. Results
3.1. Propolis Extract Obtantion
3.2. Production and Characterization of Polymer Composites by Electrospinning
3.3. Antioxidant Activity and Release Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Wen, P.; Zong, M.H.; Linhardt, R.J.; Feng, K.; Wu, H. Electrospinning: A Novel Nano-Encapsulation Approach for Bioactive Compounds. Trends Food Sci. Technol. 2017, 70, 56–68. [Google Scholar] [CrossRef]
- Pérez-Pérez, V.; Jiménez-Martínez, C.; González-Escobar, J.L.; Corzo-Ríos, L.J. Exploring the Impact of Encapsulation on the Stability and Bioactivity of Peptides Extracted from Botanical Sources: Trends and Opportunities. Front. Chem. 2024, 12, 1423500. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Assadpour, E.; Tabarestani, H.S.; Falsafi, S.R. Trends in Food Science & Technology Electrospinning Approach for Nanoencapsulation of Bioactive Compounds; Recent Advances and Innovations. Trends Food Sci. Technol. 2020, 100, 190–209. [Google Scholar] [CrossRef]
- Castro Coelho, S.; Nogueiro Estevinho, B.; Rocha, F. Encapsulation in Food Industry with Emerging Electrohydrodynamic Techniques: Electrospinning and Electrospraying—A Review. Food Chem. 2021, 339, 127850. [Google Scholar] [CrossRef]
- Ghorani, B.; Tucker, N. Fundamentals of Electrospinning as a Novel Delivery Vehicle for Bioactive Compounds in Food Nanotechnology. Food Hydrocoll. 2015, 51, 227–240. [Google Scholar] [CrossRef]
- Drosou, C.G.; Krokida, M.K.; Biliaderis, C.G. Encapsulation of Bioactive Compounds through Electrospinning/Electrospraying and Spray Drying: A Comparative Assessment of Food-Related Applications. Dry. Technol. 2017, 35, 139–162. [Google Scholar] [CrossRef]
- da Trindade, L.G.; Zanchet, L.; Bonsanto, F.P.; Braga, A.R.C. Spinning a Sustainable Future: Electrospun Polysaccharide–Protein Fibers for Plant-Based Meat Innovation. Foods 2024, 13, 2962. [Google Scholar] [CrossRef]
- Assis, M.; Gonçalves, M.O.; de Foggi, C.C.; Burck, M.; dos Passos Ramos, S.; Libero, L.O.; Braga, A.R.C.; Longo, E.; de Sousa, C.P. Applications of (Nano)Encapsulated Natural Products by Physical and Chemical Methods. In Drug Discovery and Design Using Natural Products; Springer Nature: Cham, Switzerland, 2023; pp. 323–374. ISBN 9783031352058. [Google Scholar]
- Neves, B.V.; Ramos, S.d.P.; Trindade, L.G.d.; Nass, P.; Jacob-Lopes, E.; Zepka, L.Q.; Braga, A.R.C.; de Rosso, V.V. Spinning Gold: Unraveling the Bioaccessibility and Bioavailability of Pitanga’s Carotenoid Microfibers. Food Res. Int. 2024, 196, 115101. [Google Scholar] [CrossRef]
- Ramos, S.d.P.; Trindade, L.G.d.; Mazzo, T.M.; Longo, E.; Bonsanto, F.P.; de Rosso, V.V.; Braga, A.R.C. Electrospinning Composites as Carriers of Natural Pigment: Screening of Polymeric Blends. Processes 2022, 10, 2737. [Google Scholar] [CrossRef]
- Ramos, S.d.P.; Giaconia, M.A.; Assis, M.; Jimenez, P.C.; Mazzo, T.M.; Longo, E.; De Rosso, V.V.; Braga, A.R.C.C. Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules 2021, 26, 1206. [Google Scholar] [CrossRef] [PubMed]
- Giaconia, M.A.; Ramos, S.d.P.; Neves, B.V.; Almeida, L.; Costa-Lotufo, L.; de Rosso, V.V.; Braga, A.R.C. Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes 2022, 10, 2343. [Google Scholar] [CrossRef]
- Aliee, F.; Fahimirad, S.; Ganji, A.; Abtahi, H. Antimicrobial and Wound Healing Performance of Polycaprolactone Electrospun-Based Nanofibers Incorporating Propolis and Quercus Infectoria Gall Extracts. Nano 2024, 1–6. [Google Scholar] [CrossRef]
- Katiyar, D. Propolis: A Natural Biomaterial. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Tavares, L.; Smaoui, S.; Lima, P.S.; de Oliveira, M.M.; Santos, L. Propolis: Encapsulation and Application in the Food and Pharmaceutical Industries. Trends Food Sci. Technol. 2022, 127, 169–180. [Google Scholar] [CrossRef]
- Solorzano, E.R.; Roverso, M.; Bogialli, S.; Bortoli, M.; Orian, L.; Badocco, D.; Pettenuzzo, S.; Favaro, G.; Pastore, P. Antioxidant Activity of Zuccagnia-Type Propolis: A Combined Approach Based on LC-HRMS Analysis of Bioanalytical-Guided Fractions and Computational Investigation. Food Chem. 2024, 461, 140827. [Google Scholar] [CrossRef]
- Bhatti, N.; Hajam, Y.A.; Mushtaq, S.; Kaur, L.; Kumar, R.; Rai, S. A Review on Dynamic Pharmacological Potency and Multifaceted Biological Activities of Propolis. Discov. Sustain. 2024, 5, 185. [Google Scholar] [CrossRef]
- Du, P.; Chen, X.; Chen, Y.; Li, J.; Lu, Y.; Li, X.; Hu, K.; Chen, J.; Lv, G. In Vivo and in Vitro Studies of a Propolis-Enriched Silk Fibroin-Gelatin Composite Nanofiber Wound Dressing. Heliyon 2023, 9, e13506. [Google Scholar] [CrossRef]
- Mohankumar, J.B.; Uthira, L.; Su, M. Total Phenolic Content of Organic and Conventional Green Leafy Vegetables. J. Nutr. Human. Health 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Alencar, S.M.; Oldoni, T.L.C.; Castro, M.L.; Cabral, I.S.R.; Costa-Neto, C.M.; Cury, J.A.; Rosalen, P.L.; Ikegaki, M. Chemical Composition and Biological Activity of a New Type of Brazilian Propolis: Red Propolis. J. Ethnopharmacol. 2007, 113, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Shapla, U.M.; Raihan, J.; Islam, A.; Alam, F.; Solayman, N.; Gan, S.H.; Hossen, S.; Khalil, I. Propolis: The Future Therapy against Helicobacter Pylori-Mediated Gastrointestinal Diseases. J. Appl. Biomed. 2018, 16, 81–99. [Google Scholar] [CrossRef]
- Tran, C.T.N.; Brooks, P.R.; Bryen, T.J.; Williams, S.; Berry, J.; Tavian, F.; McKee, B.; Tran, T.D. Quality Assessment and Chemical Diversity of Australian Propolis from Apis Mellifera Bees. Sci. Rep. 2022, 12, 13574. [Google Scholar] [CrossRef]
- Kasote, D.M.; Pawar, M.V.; Bhatia, R.S.; Nandre, V.S.; Gundu, S.S.; Jagtap, S.D.; Kulkarni, M.V. HPLC, NMR Based Chemical Profiling and Biological Characterisation of Indian Propolis. Fitoterapia 2017, 122, 52–60. [Google Scholar] [CrossRef]
- Dhanya, A.T.; Haridas, K.R.; Divia, N.; Sudheesh, S. Development of Zein-Pectin Nanoparticle as Drug Carrier. Int. J. Drug Deliv. 2012, 4, 147. [Google Scholar]
- Oliveira Filho, J.G.; Egea, M.B. Edible Bioactive Film with Curcumin: A Potential “Functional” Packaging? Int. J. Mol. Sci. 2022, 23, 5638. [Google Scholar] [CrossRef]
- Kyuchyuk, S.; Paneva, D.; Karashanova, D.; Markova, N.; Georgieva, A.; Toshkova, R.; Manolova, N.; Rashkov, I. Core-Sheath-Like Poly(Ethylene Oxide)/Beeswax Composite Fibers Prepared by Single-Spinneret Electrospinning. Antibacterial, Antifungal, and Antitumor Activities. Macromol. Biosci. 2022, 22, 2200015. [Google Scholar] [CrossRef]
- Stipanelov Vrandečić, N.; Erceg, M.; Andričić, B.; Blanco, I.; Bottino, F.A. Characterization of Poly(Ethylene Oxide) Modified with Different Phenyl Hepta Isobutyl Polyhedral Oligomeric Silsesquioxanes. J. Therm. Anal. Calorim. 2020, 142, 1863–1875. [Google Scholar] [CrossRef]
- Almeida, C.B.d.; Corradini, E.; Forato, L.A.; Fujihara, R.; Lopes Filho, J.F. Microstructure and Thermal and Functional Properties of Biodegradable Films Produced Using Zein. Polímeros 2018, 28, 30–37. [Google Scholar] [CrossRef]
- Medeiros, G.B.; de Souza, P.R.; Retamiro, K.M.; Nakamura, C.V.; Muniz, E.C.; Corradini, E. Experimental Design to Evaluate Properties of Electrospun Fibers of Zein/Poly (Ethylene Oxide) for Biomaterial Applications. J. Appl. Polym. Sci. 2021, 138, 50898. [Google Scholar] [CrossRef]
- Kim, J.I.; Pant, H.R.; Sim, H.-J.J.; Lee, K.M.; Kim, C.S. Electrospun Propolis/Polyurethane Composite Nanofibers for Biomedical Applications. Mater. Sci. Eng. C 2014, 44, 52–57. [Google Scholar] [CrossRef]
- Ramos, S.d.P.; Giaconia, M.A.; Do Marco, J.T.; Paiva, R.d.S.; De Rosso, V.V.; Lemes, A.C.; Egea, M.B.; Assis, M.; Mazzo, T.M.; Longo, E.; et al. Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. Colloids Interfaces 2020, 4, 14. [Google Scholar] [CrossRef]
- Renkler, N.Z.; Cruz-Maya, I.; Bonadies, I.; Guarino, V. Electro Fluid Dynamics: A Route to Design Polymers and Composites for Biomedical and Bio-Sustainable Applications. Polymers 2022, 14, 4249. [Google Scholar] [CrossRef]
- Acevedo-Estupiñan, M.V.; Gutierrez-Lopez, G.F.; Cano-Sarmiento, C.; Parra-Escudero, C.O.; Rodriguez-Estrada, M.T.; Garcia-Varela, R.; García, H.S. Stability and Characterization of O/W Free Phytosterols Nanoemulsions Formulated with an Enzymatically Modified Emulsifier. LWT 2019, 107, 151–157. [Google Scholar] [CrossRef]
- Nagajothi, A.J.; Kannan, R.; Rajashabala, S. Preparation and Characterization of PEO-Based Composite Gel-Polymer Electrolytes Complexed with Lithium Trifluoro Methane Sulfonate. Mater. Sci.-Pol. 2018, 36, 185–192. [Google Scholar] [CrossRef]
- Nainggolan, G.; Gea, S.; Marpongahtun; Harahap, M.; Dellyansyah; Situmorang, S.A. Promoting Electrospun Lignin/PEO Nanofiber for High-Performance CO Filtration. J. Nat. Fibers 2023, 20, 2160402. [Google Scholar] [CrossRef]
- Acevedo, F.; Hermosilla, J.; Sanhueza, C.; Mora-Lagos, B.; Fuentes, I.; Rubilar, M.; Concheiro, A.; Alvarez-Lorenzo, C. Gallic Acid Loaded PEO-Core/Zein-Shell Nanofibers for Chemopreventive Action on Gallbladder Cancer Cells. Eur. J. Pharm. Sci. 2018, 119, 49–61. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Xue, J.; Zhang, H.; Wang, F.; Liu, J. Mechanistic Understanding of the Effect of Zein–Chlorogenic Acid Interaction on the Properties of Electrospun Nanofiber Films. Food Chem. X 2022, 16, 100454. [Google Scholar] [CrossRef]
- Curtis, R.A.; Lue, L. A Molecular Approach to Bioseparations: Protein–Protein and Protein–Salt Interactions. Chem. Eng. Sci. 2006, 61, 907–923. [Google Scholar] [CrossRef]
- Curtis, R.A.; Prausnitz, J.M.; Blanch, H.W. Protein-Protein and Protein-Salt Interactions in Aqueous Protein Solutions Containing Concentrated Electrolytes. Biotechnol. Bioeng. 1998, 57, 11–21. [Google Scholar] [CrossRef]
- Jaízia dos Santos Alves, M.; Rodrigues Monteiro, A.; Ayala Valencia, G. Antioxidant Nanoparticles Based on Starch and the Phenolic Compounds from Propolis Extract: Production and Physicochemical Properties. Starch-Stärke 2022, 74, 2100289. [Google Scholar] [CrossRef]
- Bonadies, I.; Cimino, F.; Guarino, V. In Vitro Degradation of Zein Nanofibres for Propolis Release in Oral Treatments. Mater. Res. Express 2019, 6, 075407. [Google Scholar] [CrossRef]
- Li, X.; He, J.; Zhang, W.; Khan, M.R.; Ahmad, N.; Tian, W. Pectin Film Fortified with Zein Nanoparticles and Fe3+-Encapsulated Propolis Extract for Enhanced Fruit Preservation. Food Hydrocoll. 2024, 157, 110405. [Google Scholar] [CrossRef]
Sample | Total Phenolic (GAE/g) | Total Flavonoid (RuE/g) | ABTS (µM TE/g) |
---|---|---|---|
Commercial Propolis A | 65.6 b ± 2.44 | 362.14 c ± 6.88 | 355.30 b ± 14.04 |
Commercial Propolis B | 67.8 b ± 1.29 | 444.47 b ± 10.44 | 349.82 b ± 15.10 |
Commercial Propolis C | 229.8 a ± 6.39 | 786.11 a ± 18.39 | 1.188.89 a ± 75.02 |
Time (h) | ABTS (μmol of TE/g) | Release % |
---|---|---|
0 | 0.0 ± 0.0 | 0.00 ± 0.00 |
2 | 5.21 ± 1.29 | 15.95 ± 0.12 |
4 | 5.39 ± 0.39 | 16.50 ± 0.23 |
10 | 6.77 ± 0.39 | 20.73 ± 0.19 |
12 | 8.92 ± 0.39 | 27.31 ± 0.43 |
18 | 20.00 ± 0.39 | 61.24 ± 1.20 |
24 | 30.98 ± 0.39 | 94.86 ± 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, S.d.P.; Bernardo, L.R.; Bürck, M.; Líbero, L.O.; Assis, M.; Braga, A.R.C. Propolis Extract: Weaving Antioxidant Power into Polymeric Composites Through Electrospinning. Polymers 2024, 16, 3230. https://doi.org/10.3390/polym16223230
Ramos SdP, Bernardo LR, Bürck M, Líbero LO, Assis M, Braga ARC. Propolis Extract: Weaving Antioxidant Power into Polymeric Composites Through Electrospinning. Polymers. 2024; 16(22):3230. https://doi.org/10.3390/polym16223230
Chicago/Turabian StyleRamos, Sergiana dos Passos, Leonardo Ribeiro Bernardo, Monize Bürck, Laura Ordonho Líbero, Marcelo Assis, and Anna Rafaela Cavalcante Braga. 2024. "Propolis Extract: Weaving Antioxidant Power into Polymeric Composites Through Electrospinning" Polymers 16, no. 22: 3230. https://doi.org/10.3390/polym16223230
APA StyleRamos, S. d. P., Bernardo, L. R., Bürck, M., Líbero, L. O., Assis, M., & Braga, A. R. C. (2024). Propolis Extract: Weaving Antioxidant Power into Polymeric Composites Through Electrospinning. Polymers, 16(22), 3230. https://doi.org/10.3390/polym16223230