Impact of Hexyl Branch Content on the Mechanical Properties and Deformation Mechanisms of Amorphous Ethylene/1-Octene Copolymers: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Simulation Methodology
2.1. Force Field Selection
2.2. Model Construction
2.3. Simulation Details
3. Results and Discussion
3.1. Stress–Strain Behavior Under Different Conditions
3.1.1. Influence of Chain Length, Chain Count, and Hexyl Branch Content
3.1.2. The Role of Temperature and Strain Rate in Mechanical Response
3.2. Energy Evolution During Stretching
3.2.1. Temperature and Strain Rate Dependence
3.2.2. Content of Hexyl Branched Chains Dependence
3.3. Development of Internal Configuration
3.3.1. Variation in Bond Length, Bond Angle, and Dihedral Angle
3.3.2. Evolution of Free Volume
3.3.3. Transformation in Chain Orientation
3.3.4. Variation in the Entanglement Parameter
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jordan, J.L.; Casem, D.T.; Bradley, J.M.; Dwivedi, A.K.; Brown, E.N.; Jordan, C.W. Mechanical Properties of Low Density Polyethylene. J. Dyn. Behav. Mater. 2016, 2, 411–420. [Google Scholar] [CrossRef]
- Omar, M.F.; Akil, H.M.; Ahmad, Z.A. Effect of molecular structures on dynamic compression properties of polyethylene. Mater. Sci. Eng. A 2012, 538, 125–134. [Google Scholar] [CrossRef]
- Ostoja Starzewski, A.; Steinhauser, N.; Xin, B.S. Decisive Progress in Metallocene-Catalyzed Elastomer Synthesis. Macromolecules 2008, 41, 4095–4101. [Google Scholar] [CrossRef]
- Xu, G.; Xiao, Y.; Wang, W.-J.; Li, B.-G.; Liu, P. Rheological and Mechanical Study of Comb-Branched Polyolefin Elastomers Containing Macromer Residues. Macromolecules 2023, 56, 3064–3072. [Google Scholar] [CrossRef]
- Bensason, S.; Minick, J.; Moet, A.; Chum, S.; Hiltner, A.; Baer, E. Classification of homogeneous ethylene-octene copolymers based on comonomer content. J. Polym. Sci. Part B Polym. Phys. 1996, 34, 1301–1315. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Yao, S.; Zhang, H.; Hu, D.; Zhao, L. Insight into the Influence of Properties of Poly(Ethylene-co-octene) with Different Chain Structures on Their Cell Morphology and Dimensional Stability Foamed by Supercritical CO2. Polymers 2021, 13, 1494. [Google Scholar] [CrossRef]
- Mohite, A.S.; Rajpurkar, Y.D.; More, A.P. Bridging the gap between rubbers and plastics: A review on thermoplastic polyolefin elastomers. Polym. Bull. 2021, 79, 1309–1343. [Google Scholar] [CrossRef]
- He, Y.; Qiu, X.; Klosin, J.; Cong, R.; Roof, G.R.; Redwine, D. Terminal and Internal Unsaturations in Poly(ethylene-co-1-octene). Macromolecules 2014, 47, 3782–3790. [Google Scholar] [CrossRef]
- Ohtaki, H.; Deplace, F.; Vo, G.D.; LaPointe, A.M.; Shimizu, F.; Sugano, T.; Kramer, E.J.; Fredrickson, G.H.; Coates, G.W. Allyl-Terminated Polypropylene Macromonomers: A Route to Polyolefin Elastomers with Excellent Elastic Behavior. Macromolecules 2015, 48, 7489–7494. [Google Scholar] [CrossRef]
- Zhang, M.; Lynch, D.; Wanke, S. Effect of molecular structure distribution on melting and crystallization behavior of 1-butene/ethylene copolymers. Polymer 2001, 42, 3067–3075. [Google Scholar] [CrossRef]
- Simanke, A.G.; Galland, G.B.; Freitas, L.; da Jornada, J.A.H.; Quijada, R.; Mauler, R.S. Influence of the comonomer content on the thermal and dynamic mechanical properties of metallocene ethylene/1-octene copolymers. Polymer 1999, 40, 5489–5495. [Google Scholar] [CrossRef]
- Vicente-Alique, E.; Vega, J.F.; Robledo, N.; Nieto, J.; Martínez-Salazar, J. Study of the effect of the molecular architecture of the components on the melt rheological properties of polyethylene blends. J. Polym. Res. 2015, 22, 62. [Google Scholar] [CrossRef]
- Yan, D.; Wang, W.-J.; Zhu, S. Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer 1999, 40, 1737–1744. [Google Scholar] [CrossRef]
- Liu, T.M.; Baker, W.E. The effect of the length of the short chain branch on the impact properties of linear low density polyethylene. Polym. Eng. Sci. 1992, 32, 944–955. [Google Scholar] [CrossRef]
- Moyassari, A.; Mostafavi, H.; Gkourmpis, T.; Hedenqvist, M.; Gedde, U.; Nilsson, F. Simulation of semi-crystalline polyethylene: Effect of short-chain branching on tie chains and trapped entanglements. Polymer 2015, 72, 177–184. [Google Scholar] [CrossRef]
- He, Q.; Zhang, R.; Hu, Y.; Li, J.; Qian, J. Study on the structure and property of metallocene ethylene/1-heptene and ethylene/1-octene copolymers. J. Macromol. Sci. Part A 2024, 61, 922–933. [Google Scholar] [CrossRef]
- Stadler, F.J.; Piel, C.; Klimke, K.; Kaschta, J.; Parkinson, M.; Wilhelm, M.; Kaminsky, W.; Münstedt, H. Influence of Type and Content of Various Comonomers on Long-Chain Branching of Ethene/α-Olefin Copolymers. Macromolecules 2006, 39, 1474–1482. [Google Scholar] [CrossRef]
- Chum, P.S.; Swogger, K.W. Olefin polymer technologies—History and recent progress at the Dow Chemical Company. Prog. Polym. Sci. 2008, 33, 797–819. [Google Scholar] [CrossRef]
- Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network Stretching, Slip Processes, and Fragmentation of Crystallites during Uniaxial Drawing of Polyethylene and Related Copolymers. A Comparative Study. Macromolecules 1999, 32, 4390–4403. [Google Scholar] [CrossRef]
- Kennedy, M.A.; Peacock, A.J.; Failla, M.D.; Lucas, J.C.; Mandelkern, L. Tensile Properties of Crystalline Polymers: Random Copolymers of Ethylene. Macromolecules 1995, 28, 1407–1421. [Google Scholar] [CrossRef]
- Kennedy, M.A.; Peacock, A.J.; Mandelkern, L. Tensile Properties of Crystalline Polymers: Linear Polyethylene. Macromolecules 1994, 27, 5297–5310. [Google Scholar] [CrossRef]
- Alamo, R.G.; Chan, E.K.M.; Mandelkern, L.; Voigt-martin, I.G. Influence of molecular weight on the melting and phase structure of random copolymers of ethylene. Macromolecules 1992, 25, 6381–6394. [Google Scholar] [CrossRef]
- Alamo, R.G.; Mandelkern, L. Thermodynamic and structural properties of ethylene copolymers. Macromolecules 1989, 22, 1273–1277. [Google Scholar] [CrossRef]
- Wignall, G.D.; Alamo, R.G.; Ritchson, E.J.; Mandelkern, L.; Schwahn, D. SANS Studies of Liquid−Liquid Phase Separation in Heterogeneous and Metallocene-Based Linear Low-Density Polyethylenes. Macromolecules 2001, 34, 8160–8165. [Google Scholar] [CrossRef]
- Okabe, M.; Isayama, M.; Matsuda, H. Phenomenological study on sol–gel transition of linear low density polyethylene in organic solvents. J. Appl. Polym. Sci. 1985, 30, 4735–4743. [Google Scholar] [CrossRef]
- Gupta, P.; Wilkes, G.L.; Sukhadia, A.M.; Krishnaswamy, R.K.; Lamborn, M.J.; Wharry, S.M.; Tso, C.C.; DesLauriers, P.J.; Mansfield, T.; Beyer, F.L. Does the length of the short chain branch affect the mechanical properties of linear low density polyethylenes? An investigation based on films of copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst. Polymer 2005, 46, 8819–8837. [Google Scholar] [CrossRef]
- Brown, D.; Clarke, J.H.R. Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology. Macromolecules 1991, 24, 2075–2082. [Google Scholar] [CrossRef]
- Hossain, D.; Tschopp, M.A.; Ward, D.K.; Bouvard, J.L.; Wang, P.; Horstemeyer, M.F. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 2010, 51, 6071–6083. [Google Scholar] [CrossRef]
- Yashiro, K.; Ito, T.; Tomita, Y. Molecular dynamics simulation of deformation behavior in amorphous polymer: Nucleation of chain entanglements and network structure under uniaxial tension. Int. J. Mech. Sci. 2003, 45, 1863–1876. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, X.; Xu, H.; Li, J.; Jiang, S. Microscopic study of structure/property interrelation of amorphous polymers during uniaxial deformation: A molecular dynamics approach. Polymer 2015, 77, 254–265. [Google Scholar] [CrossRef]
- Bao, Q.; Yang, Z.; Lu, Z. Molecular dynamics simulation of amorphous polyethylene (PE) under cyclic tensile-compressive loading below the glass transition temperature. Polymer 2020, 186, 121968–121979. [Google Scholar] [CrossRef]
- Liao, L.; Huang, C.; Meng, C. Study on mechanical properties of polyethylene with chain branching in atomic scale by molecular dynamics simulation. Mol. Simul. 2018, 44, 1016–1024. [Google Scholar] [CrossRef]
- Yan, Z.; Zaoui, A.; Zaïri, F. Uniaxial stretching and shape memory behavior of branched amorphous polyethylene. Chin. J. Phys. 2022, 79, 6–12. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Li, Z.-S.; Lu, Z.-Y.; Sun, C.-C. Roles of Branch Content and Branch Length in Copolyethylene Crystallization: Molecular Dynamics Simulations. Macromolecules 2001, 35, 106–111. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Li, Z.-S.; Yang, H.; Sun, C.-C. Molecular Dynamics Simulations on Crystallization of Polyethylene Copolymer with Precisely Controlled Branching. Macromolecules 2004, 37, 7393–7400. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Li, Z.-S.; Lu, Z.-Y.; Sun, C.-C. Molecular dynamics simulation of the linear low-density polyethylene crystallization. J. Chem. Phys. 2001, 115, 3916–3922. [Google Scholar] [CrossRef]
- Zhang, X.-b.; Li, Z.-s.; Lu, Z.-y.; Sun, C.-C. The crystallization of low-density polyethylene: A molecular dynamics simulation. Polymer 2002, 43, 3223–3227. [Google Scholar] [CrossRef]
- Gao, R.; He, X.; Shao, Y.; Hu, Y.; Zhang, H.; Liu, Z.; Liu, B. Effects of Branch Content and Branch Length on Polyethylene Crystallization: Molecular Dynamics Simulation. Macromol. Theory Simul. 2016, 25, 303–311. [Google Scholar] [CrossRef]
- Gao, R.; He, X.; Zhang, H.; Shao, Y.; Liu, Z.; Liu, B. Molecular dynamics study of the isothermal crystallization mechanism of polyethylene chain: The combined effects of chain length and temperature. J. Mol. Model. 2016, 22, 67. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Pacheco, A.A.; Batra, R.C. Analysis of structural changes during plastic deformations of amorphous polyethylene. Polymer 2013, 54, 819–840. [Google Scholar] [CrossRef]
- Xie, F.; Lu, Z.; Yang, Z.; Hu, W.; Yuan, Z. Mechanical behaviors and molecular deformation mechanisms of polymers under high speed shock compression: A molecular dynamics simulation study. Polymer 2016, 98, 294–304. [Google Scholar] [CrossRef]
- Lavine, M.S.; Waheed, N.; Rutledge, G.C. Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension. Polymer 2003, 44, 1771–1779. [Google Scholar] [CrossRef]
- Caminiti, R.; Pandolfi, L.; Ballirano, P. Structure of Polyethylene from X-Ray Powder Diffraction: Influence of the Amorphous Fraction on Data Analysis. J. Macromol. Sci. Part B 2000, 39, 481–492. [Google Scholar] [CrossRef]
- Binder, K. Monte Carlo and Molecular Dynamics Simulations in Polymer Science; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; Veld, P.J.I.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Vu-Bac, N.; Lahmer, T.; Keitel, H.; Zhao, J.; Zhuang, X.; Rabczuk, T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mech. Mater. 2014, 68, 70–84. [Google Scholar] [CrossRef]
- Bowman, A.L.; Mun, S.; Nouranian, S.; Huddleston, B.D.; Gwaltney, S.R.; Baskes, M.I.; Horstemeyer, M.F. Free volume and internal structural evolution during creep in model amorphous polyethylene by Molecular Dynamics simulations. Polymer 2019, 170, 85–100. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Li, Z.-S.; Sun, J. Polymer Structures and Glass Transition: A Molecular Dynamics Simulation Study. Macromol. Theory Simul. 2001, 10, 624–633. [Google Scholar] [CrossRef]
- White, R.P.; Lipson, J.E.G. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef]
- Merah, N.; Saghir, F.; Khan, Z.; Bazoune, A. Effect of temperature on tensile properties of HDPE pipe material. Plast. Rubber Compos. 2006, 35, 226–230. [Google Scholar] [CrossRef]
- Chen, K.; Yu, J.; Liu, Y.; Song, M.; Jiang, Q.; Ji, H.; Zou, J.; Zhang, Y.; Wang, H. Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature. Polym. Int. 2019, 68, 555–563. [Google Scholar] [CrossRef]
- Li, C.; Shang, Y.; Li, J.; Jiang, S. Structure/property relationship of semicrystalline polymers during tensile deformation: A molecular dynamics approach. Colloid Polym. Sci. 2022, 300, 675–689. [Google Scholar] [CrossRef]
- Vu-Bac, N.; Areias, P.M.A.; Rabczuk, T. A multiscale multisurface constitutive model for the thermo-plastic behavior of polyethylene. Polymer 2016, 105, 327–338. [Google Scholar] [CrossRef]
- Ding, G.; Tam, L.-H.; Wu, C. Molecular investigation on physical and tensile properties of polyethylene (PE) under high-pressure hydrogen environments. Int. J. Hydrogen Energy 2024, 86, 1036–1050. [Google Scholar] [CrossRef]
Interaction Type | Parameters |
---|---|
Bond Length | Kbond = 350 kcal/mol, r0 = 1.53 Å |
Bond Angle | Kangle = 60 kcal/mol/deg2, θ0 = 109.5° |
Dihedral | K0 = 1.736, K1 = −4.490, K2 = 0.776, K3 = 6.990 (kcal/mol) |
Non-Bonded | σ = 4.01 Å, ε = 0.112 kcal/mol |
System | Chain Length, lc a | Molecular Weight Mw, g·mol−1 | Number of Chains, nc | Number of Branched Chains, nBC b | Content of Branched Chains, cBC/% c |
---|---|---|---|---|---|
60PE650 | 650 | 9113 | 60 | 0 | 0 |
60POE650/8 | 650 | 10,094 | 60 | 9 | 8.31 |
60POE390/23 | 390 | 6730 | 60 | 15 | 23.07 |
60POE650/23 | 650 | 11,216 | 60 | 25 | 23.07 |
60POE1040/23 | 1040 | 17,946 | 60 | 40 | 23.07 |
30POE650/23 | 650 | 11,216 | 30 | 25 | 23.07 |
100POE650/23 | 650 | 11,216 | 100 | 25 | 23.07 |
60POE650/42 | 650 | 12,898 | 60 | 46 | 42.46 |
Current Simulation | Adapted from Ref. [16] | ||||
---|---|---|---|---|---|
Branch Content/wt% | E/MPa | σy/MPa | Branch Content /wt% | E/MPa | σy/MPa |
0 | 1640 | 150 | 15.02 | 43.47 | 8.50 |
8.31 | 1390 | 141 | 20.50 | 18.31 | 6.50 |
23.07 | 1280 | 134 | 22.89 | 14.78 | 5.68 |
42.46 | 1160 | 120 | 24.57 | 13.73 | 5.23 |
Temperature/K | Strain Rate έ/s−1 | E/GPa | σy/GPa |
---|---|---|---|
100 | 1010 | 2.40 | 0.23 |
250 | 1010 | 1.99 | 0.18 |
300 | 1010 | 1.16 | 0.12 |
300 | 109 | 0.60 | 0.08 |
300 | 108 | 0.26 | 0.04 |
400 | 1010 | 0.89 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; He, Q.; Yu, H.; Li, J.; Hu, Y.; Qian, J. Impact of Hexyl Branch Content on the Mechanical Properties and Deformation Mechanisms of Amorphous Ethylene/1-Octene Copolymers: A Molecular Dynamics Study. Polymers 2024, 16, 3236. https://doi.org/10.3390/polym16233236
Zhang R, He Q, Yu H, Li J, Hu Y, Qian J. Impact of Hexyl Branch Content on the Mechanical Properties and Deformation Mechanisms of Amorphous Ethylene/1-Octene Copolymers: A Molecular Dynamics Study. Polymers. 2024; 16(23):3236. https://doi.org/10.3390/polym16233236
Chicago/Turabian StyleZhang, Ruijun, Qiqi He, Hongbo Yu, Junhua Li, Yuexin Hu, and Jianhua Qian. 2024. "Impact of Hexyl Branch Content on the Mechanical Properties and Deformation Mechanisms of Amorphous Ethylene/1-Octene Copolymers: A Molecular Dynamics Study" Polymers 16, no. 23: 3236. https://doi.org/10.3390/polym16233236
APA StyleZhang, R., He, Q., Yu, H., Li, J., Hu, Y., & Qian, J. (2024). Impact of Hexyl Branch Content on the Mechanical Properties and Deformation Mechanisms of Amorphous Ethylene/1-Octene Copolymers: A Molecular Dynamics Study. Polymers, 16(23), 3236. https://doi.org/10.3390/polym16233236