Exploring α-Lipoic Acid Based Thermoplastic Silicone Adhesive: Towards Sustainable and Green Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Silicone Oils and Fabrication of LASAs
2.2.1. Synthesis of α-Monoepoxypropoxypropyl-ω-Monobutyl Terminated Polydimethylsiloxane (Mono-PDMS-E)
2.2.2. Synthesis of α, ω-Epoxypropoxypropyl Terminated Polydimethylsiloxane (Bis-PDMS-E)
2.2.3. Preparation of LASAs
2.3. Characterization Methods
2.3.1. Solvent Resistance
2.3.2. Shear Strength Tests
2.3.3. Reversible Surface Adhesion Tests
2.3.4. Thermoplastic Performance
2.3.5. Evaluation of Adhesion of LASA Under Different Humidities
2.3.6. Rheology Tests
2.3.7. Other Characterizations
3. Results and Discussion
3.1. Formation and Characterization of LASA
3.2. Surface Adhesion Properties
3.3. Reversible Adhesion Properties
3.4. Recycle and Thermal Degradation of LASA
3.4.1. The Green Recycling via Retro-ROP of Disulfide Linkages
3.4.2. Thermal Stability of the LASAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Zhao, Z.; Liu, Z.; Chen, H.; Yan, H.; Tan, J.; Li, F. UV-curable Silicone Pressure-Sensitive Adhesive Based on Thiol-ene Reaction. Prog. Org. Coat. 2024, 186, 107954. [Google Scholar] [CrossRef]
- Lee, B.K.; Ryu, J.H.; Baek, I.B.; Kim, Y.; Jang, W.I.; Kim, S.H.; Yoon, Y.S.; Kim, S.H.; Hong, S.G.; Byun, S.; et al. Silicone-Based Adhesives with Highly Tunable Adhesion Force for Skin-Contact Applications. Adv. Healthc. Mater. 2017, 6, 1700621. [Google Scholar] [CrossRef]
- Mower, T.M. Thermomechanical Behavior of Aerospace-grade RTV (Silicone Adhesive). Int. J. Adhes. Adhes. 2018, 87, 64–72. [Google Scholar] [CrossRef]
- Jin, Y.; Lei, Z.; Taynton, P.; Huang, S.; Zhang, W. Malleable and Recyclable Thermosets: The Next Generation of Plastics. Matter 2019, 1, 1456–1493. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Liu, P.; Wang, Z.; Yao, H.; Yao, X. Supramolecular Silicone Coating Capable of Strong Substrate Bonding, Readily Damage Healing, and Easy Oil Sliding. Sci. Adv. 2019, 5, eaaw5643. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhao, L.; Zhang, Y.; Li, Z.; Huang, F. Multiple Hydrogen Bonding Driven Supramolecular Architectures and Their Biomedical Applications. Chem. Soc. Rev. 2024, 53, 1592–1623. [Google Scholar] [CrossRef]
- Baykov, S.V.; Ivanov, D.M.; Kasatkina, S.O.; Galmés, B.; Frontera, A.; Resnati, G.; Kukushkin, V.Y. Stacking Interactions: A Supramolecular Approach to Upgrade Weak Halogen Bond Donors. Chem.—Eur. J. 2022, 28, e202201869. [Google Scholar] [CrossRef]
- Chen, Z.; Lohr, A.; Saha-Möller, C.R.; Würthner, F. Self-assembled π-stacks of Functional Dyes in Solution: Structural and Thermodynamic Features. Chem. Soc. Rev. 2009, 38, 564–584. [Google Scholar] [CrossRef]
- Shentu, Z.; Zhang, Z.; Zhao, J.; Chen, C.; Wu, Q.; Wang, L.; Yan, X. Supramolecular Polymer-assisted Manipulation of Triblock Copolymers: Understanding the Relationships between Microphase Structures and Mechanical Properties. J. Mater. Chem. A 2021, 9, 19619–19624. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, L.; Zhao, J.; Wang, L.; Liu, K.; Yu, W.; Yan, X. Synergistic Covalent and Supramolecular Polymers for Mechanically Robust but Dynamic Materials. Angew. Chem. Int. Ed. 2020, 59, 12139–12146. [Google Scholar] [CrossRef]
- Li, P.; Jiang, X.; Gu, R.; Tian, H.; Qu, D. Catalyst-Free Dynamic Covalent C=C/C=N Metathesis Reaction for Associative Covalent Adaptable Networks. Angew. Chem. Int. Ed. 2024, 63, e202406708. [Google Scholar] [CrossRef]
- Jiao, X.; Ma, Y.; Zhao, Z.; Gao, L.; Zhang, B.; Yang, J.; Li, M.; Hu, J. Robust Epoxy Resins with Autonomous Visualization of Damaging-Healing and Green Closed-Loop Recycling. Adv. Funct. Mater. 2024, 2024, 2409223. [Google Scholar] [CrossRef]
- Ji, S.; Xia, J.; Xu, H. Dynamic Chemistry of Selenium: Se–N and Se–Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Lett. 2016, 5, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Chandra, G. Review of the Environmental Fate and Effects of Silicone Materials in Textile Applications. Text. Chem. Color. 1995, 27, 21–24. [Google Scholar]
- Radermacher, G.; Rüdel, H.; Wesch, C.; Böhnhardt, A.; Koschorreck, J. Retrospective Analysis of Cyclic Volatile Methylsiloxanes in Archived German Fish Samples Covering a Period of Two Decades. Sci. Total Environ. 2020, 706, 136011. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Singh, A.; Marathe, D. Cyclic Volatile Methyl Siloxanes (D4, D5, and D6) as the Emerging Pollutants in Environment: Environmental Distribution, Fate, and Toxicological Assessments. Environ. Sci. Pollut. Res. Int. 2024, 31, 38681–38709. [Google Scholar] [CrossRef]
- Macphail, B.; Brook, M.A. Controlling Silicone-Saccharide Interfaces: Greening Silicones. Green Chem. 2017, 19, 4373–4379. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, P.; Li, Y.; Zeng, J. Biobased Covalent Adaptable Networks: Towards Better Sustainability of Thermosets. Green Chem. 2022, 24, 4363–4387. [Google Scholar] [CrossRef]
- Huang, L.; Gu, Z.; Gu, J.; Zhang, F.; Zhuang, J.; Ma, Q.; Zhang, T.; Li, J.; Liu, H.; Feng, W. Green Synthesis of Sodium Pyrithione Salt-activated Biomass-derived Carbon for Aqueous Zinc-ion Capacitors. Green Chem. 2024, 26, 10196–10204. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Sewell, P.; Brook, M.A. Utilization of Softwood Lignin as both Crosslinker and Reinforcing Agent in Silicone Elastomers. Green Chem. 2015, 17, 1811–1819. [Google Scholar] [CrossRef]
- Brook, M.A.; Yepremyan, A.; Lu, G.; Melendez-Zamudio, M.; Hrabowyj, D.J.; Gale, C.B. Antioxidant Silicone Oils from Natural Antioxidants. Green Chem. 2022, 24, 8751–8759. [Google Scholar] [CrossRef]
- Li, A.Y.; Melendez-Zamudio, M.; Yepremyan, A.; Brook, M.A. Learning from the Trees: Biomimetic Crosslinking of Silicones by Phenolic Coupling. Green Chem. 2023, 25, 5267–5275. [Google Scholar] [CrossRef]
- Bui, R.; Brook, M.A. Thermoplastic Silicone Elastomers from Divanillin Crosslinkers in a Catalyst-free Process. Green Chem. 2021, 23, 5600–5608. [Google Scholar] [CrossRef]
- Ruiz-Tovar, J.; Llavero, C.; Perez-Lopez, M.; Garcia-Marin, A. Effects of the Application of Vitamin E and Silicone Dressings vs Conventional Dressings on Incisional Surgical Site Infection in Elective Laparoscopic Colorectal Surgery: A Prospective Randomized Clinical Trial. J. Hosp. Infect. 2019, 102, 262–266. [Google Scholar] [CrossRef]
- Abdallah, M.; Hijazi, A.; Cozzi, P.G.; Gualandi, A.; Dumur, F.; Lalevée, J. Boron Compounds as Additives for the Cationic Polymerization Using Coumarin Derivatives in Epoxy Silicones. Macromol. Chem. Phys. 2021, 222, 2000404. [Google Scholar] [CrossRef]
- Kong, S.; Wang, R.; Feng, S.; Wang, D. Tannic Acid as a Natural Crosslinker for Catalyst-Free Silicone Elastomers From Hydrogen Bonding to Covalent Bonding. Front. Chem. 2021, 9, 778896. [Google Scholar] [CrossRef]
- Luo, J.; Shen, Z.; Jian, W.; Wang, S.; Li, Y.; Xia, K.; Zheng, S.Y.; Yang, J. A Facile Strategy to Fabricate Stretchable, Low Hysteresis and Adhesive Zwitterionic Elastomers by Concentration-induced Polymerization for Wound Healing. J. Chem. Eng. 2024, 496, 153804. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, D.-H.; Feringa, B.L.; Tian, H. Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials. J. Am. Chem. Soc. 2022, 144, 2022–2033. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, C.; Qu, D.; Long, Y.; Feringa, B.L.; Tian, H. Exploring a Naturally Tailored Small Molecule for Stretchable, Self-healing, and Adhesive Supramolecular Polymers. Sci. Adv. 2018, 4, eaat8192. [Google Scholar] [CrossRef]
- Zhang, Q.; Deng, Y.; Luo, H.; Shi, C.; Geise, G.M.; Feringa, B.L.; Tian, H.; Qu, D. Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. J. Am. Chem. Soc. 2019, 141, 12804–12814. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Q.; Feringa, B.L.; Tian, H.; Qu, D. Toughening a Self-Healable Supramolecular Polymer by Ionic Cluster-Enhanced Iron-Carboxylate Complexes. Angew. Chem. Int. Ed. 2020, 59, 5278–5283. [Google Scholar] [CrossRef]
- Zhang, Q.; Deng, Y.; Shi, C.; Feringa, B.L.; Tian, H.; Qu, D. Dual Closed-loop Chemical Recycling of Synthetic Polymers by Intrinsically Reconfigurable Poly(disulfides). Matter 2021, 4, 1352–1364. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Wen, J.; Shen, Z.; Meng, Q.; Liu, Q.; Yang, F.; Yu Zheng, S.; Li, J.; Sun, Z.; et al. Versatile Stretchable Conductor with Exceptional Resilience and Rapid Rebound Capabilities: Toward Sustainable and Damage-Resistant Soft Electronics. Adv. Funct. Mater. 2024, 34, 2313397. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Wu, P. Adaptive Ionogel Paint from Room-Temperature Autonomous Polymerization of α-Thioctic Acid for Stretchable and Healable Electronics. Adv. Funct. Mater. 2021, 31, 2101494. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, J.; He, D.; Ren, L.; Hao, Z.; Sun, R.; Zeng, X. Superior Stretchable, Low Thermal Resistance and Efficient Self-healing Composite Elastomers for Thermal Management. J. Mater. Chem. A 2022, 10, 21923–21932. [Google Scholar] [CrossRef]
- Choi, C.; Self, J.L.; Okayama, Y.; Levi, A.E.; Gerst, M.; Speros, J.C.; Hawker, C.J.; Read de Alaniz, J.; Bates, C.M. Light-Mediated Synthesis and Reprocessing of Dynamic Bottlebrush Elastomers under Ambient Conditions. J. Am. Chem. Soc. 2021, 143, 9866–9871. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.E.; Zheng, S.; Xue, H.; Brook, M.A. Thermoplastic, Redox Recyclable Silicone–lipoamide Elastomers. Green Chem. 2023, 25, 10644–10652. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, Y.; Brook, M.A. Thermoplastic Silicone Elastomers based on Gemini Ionic Crosslinks. Polym. Chem. 2020, 11, 7382–7392. [Google Scholar] [CrossRef]
- Ghosh, A.; Kozlowski, K.; Steele, T.W.J. Synthesis and Evaluation of Metal Lipoate Adhesives. Polymers 2023, 15, 2921. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Gao, L.; Xu, Y.; Fan, Z.; Liu, X.; Ni, Y.; Xuan, S.; Deng, H.; Gong, X. High-Performance Liquid Metal/Polyborosiloxane Elastomer toward Thermally Conductive Applications. ACS Appl. Mater. Interfaces. 2022, 14, 21564–21576. [Google Scholar] [CrossRef]
- Wu, Z.; Shangguan, Y.; Zhang, C.; Zheng, Q. Effects of Crosslinking and Silicone Coupling Agent on Properties of EVA Composite Hot Melt Adhesive. Polymers 2021, 13, 4101. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Q.; Hu, D.; Yu, K.; Zhang, X.; Ma, W. Mussel-Inspired Green Cross-Linking of Silicone Elastomers and Its Tunable Adhesion Behavior and Underwater Curing Capability. ACS Appl. Polym. Mater. 2024, 6, 8989–8996. [Google Scholar] [CrossRef]
- Antosik, A.K.; Mozelewska, K.; Piątek-Hnat, M.; Czech, Z.; Bartkowiak, M. Silicone Pressure-Sensitive Adhesives with Increased Thermal Resistance. J. Therm. Anal. Calorim. 2022, 147, 7719–7727. [Google Scholar] [CrossRef]
- Kochanke, A.; Krämer, K.; Üffing, C.; Hartwig, A. Influence of high-Temperature and high-Humidity Aging on the Material and Adhesive Properties of Addition Curing Silicone Adhesives. Int. J. Adhes. Adhes. 2021, 111, 102980. [Google Scholar] [CrossRef]
- Wang, H.; Yang, C.; Liu, R.; Gong, K.; Hao, Q.; Wang, X.; Wu, J.; Zhang, G.; Hu, Y.; Jiang, J. Build a Rigid–Flexible Graphene/Silicone Interface by Embedding SiO2 for Adhesive Application. ACS Omega 2017, 2, 1063–1073. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Shi, L.; Qi, S.; Cheng, J.; Jin, R. Improvement of Thermal Resistance of Polydimethylsiloxanes with Polymethylmethoxysiloxane as Crosslinker. Polym. Degrad. Stab. 2008, 93, 242–251. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, Z.; Yang, Z.; Yao, J.; Mu, Q.; Peng, D.; Zhao, H. Study on the Synthesis and Thermal Stability of Silicone Resins Reinforced by Si–O–Ph Cross-linking. RSC Adv. 2021, 11, 30971–30979. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chu, Z.; Zheng, S. Exploring α-Lipoic Acid Based Thermoplastic Silicone Adhesive: Towards Sustainable and Green Recycling. Polymers 2024, 16, 3254. https://doi.org/10.3390/polym16233254
Wang J, Chu Z, Zheng S. Exploring α-Lipoic Acid Based Thermoplastic Silicone Adhesive: Towards Sustainable and Green Recycling. Polymers. 2024; 16(23):3254. https://doi.org/10.3390/polym16233254
Chicago/Turabian StyleWang, Jiaqi, Zhaoyutian Chu, and Sijia Zheng. 2024. "Exploring α-Lipoic Acid Based Thermoplastic Silicone Adhesive: Towards Sustainable and Green Recycling" Polymers 16, no. 23: 3254. https://doi.org/10.3390/polym16233254
APA StyleWang, J., Chu, Z., & Zheng, S. (2024). Exploring α-Lipoic Acid Based Thermoplastic Silicone Adhesive: Towards Sustainable and Green Recycling. Polymers, 16(23), 3254. https://doi.org/10.3390/polym16233254