Surface Modification of Gold Nanorods (GNRDs) Using Double Thermo-Responsive Block Copolymers: Evaluation of Self-Assembly and Stability of Nanohybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of P(DEGMA-co-OEGMA) Copolymers
2.3. Synthesis of P(DEGMA-co-OEGMA)-b-PNIPAAm Block Copolymers
2.4. Synthesis of P(DEGMA-co-OEGMA)-b-P(NIPAAm-co-BA)
2.5. Transformation of Trithiocarbonate End-Groups of the Block Copolymers into Thiol Functionality
2.6. Synthesis and Stabilization of Gold Nanorods (GNRDs)
2.7. Characterization of Polymers
2.8. Characterization of Aggregates and Nanohybrids
2.9. NIR-Induced Heating Investigations on Nanohybrid Dispersions
3. Results and Discussion
3.1. Synthesis and Characterization of P(DEGMA-co-OEGMA) Macro-RAFT Agent
3.2. Temperature-Responsive Behavior of P(DEGMA-co-OEGMA) Copolymers in Aqueous Media
3.3. Synthesis and Characterization of P(DEGMA-co-OEGMA)-b-PNIPAAm and P(DEGMA-co-OEGMA)-b-P(NIPAAm-co-BA)
3.4. Thermo-Responsive Behavior of P(DEGMA-co-OEGMA)-b-PNIPAAm and P(DEGMA-co-OEGMA)-b-P(NIPAAm-co-BA) Block Copolymers in Aqueous Media
3.5. Aminolysis of Trithiocarbonate End-Groups of Block Copolymers to Form Block Copolymers with Thiol End-Groups
3.6. Preparation of Double Thermo-Responsive Copolymer@GNRDs Nanohybrids: Self-Assembly and Stability Investigations
3.7. Behavior of Copolymer@GNRDs Nanohybrids upon Heating and by NIR-Irradiation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nurakhmetova, Z.A.; Azhkeyeva, A.N.; Klassen, I.A.; Tatykhanova, G.S. Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers. Polymers 2020, 12, 2625. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Zhou, Y. Gold Nanoparticles and Gold Nanorods in the Landscape of Cancer Therapy. Mol. Cancer 2023, 22, 98. [Google Scholar] [CrossRef] [PubMed]
- Mackey, M.A.; Ali, M.R.K.; Austin, L.A.; Near, R.D.; El-Sayed, M.A. The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and in Vitro Experiments. J. Phys. Chem. B 2014, 118, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Yue, W.; Cai, S.; Tang, Q.; Lu, W.; Huang, L.; Qi, T.; Liao, J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front. Pharmacol. 2021, 12, 664123. [Google Scholar] [CrossRef] [PubMed]
- Kermanshahian, K.; Yadegar, A.; Ghourchian, H. Gold Nanorods Etching as a Powerful Signaling Process for Plasmonic Multicolorimetric Chemo-/Biosensors: Strategies and Applications. Coord. Chem. Rev. 2021, 442, 213934. [Google Scholar] [CrossRef]
- Abbasian, M.; Mahmoodzadeh, F.; Salehi, R.; Amirshaghaghi, A. Chemo-Photothermal Therapy of Cancer Cells Using Gold Nanorod-Cored Stimuli-Responsive Triblock Copolymer. New J. Chem. 2017, 41, 12777–12788. [Google Scholar] [CrossRef]
- Liu, L.Z.; Sun, X.Y.; Yan, Z.Y.; Ye, B.F. NIR Responsive AuNR/PNIPAM/PEGDA Inverse Opal Hydrogel Microcarriers for Controllable Drug Delivery. New J. Chem. 2021, 45, 7893–7899. [Google Scholar] [CrossRef]
- Kwon, Y.; Choi, Y.; Jang, J.; Yoon, S.; Choi, J. Nir Laser-Responsive Pnipam and Gold Nanorod Composites for the Engineering of Thermally Reactive Drug Delivery Nanomedicine. Pharmaceutics 2020, 12, 204. [Google Scholar] [CrossRef]
- Bao, Y.; Oluwafemi, A. Recent Advances in Surface Modified Gold Nanorods and Their Improved Sensing Performance. Chem. Commun. 2023, 60, 469–481. [Google Scholar] [CrossRef]
- DiazDuarte-Rodriguez, M.; Cortez-Lemus, N.A.; Licea-Claverie, A.; Licea-Rodriguez, J.; Méndez, E.R. Dual Responsive Polymersomes for Gold Nanorod and Doxorubicin Encapsulation: Nanomaterials with Potential Use as Smart Drug Delivery Systems. Polymers 2019, 11, 939. [Google Scholar] [CrossRef]
- Ghamkhari, A.; Mahmoodzadeh, F.; Ghorbani, M.; Hamishehkar, H. A Novel Gold Nanorods Coated by Stimuli-Responsive ABC Triblock Copolymer for Chemotherapy of Solid Tumors. Eur. Polym. J. 2019, 115, 313–324. [Google Scholar] [CrossRef]
- Dhara, M. Nanohybrid Materials Using Gold Nanoparticles and RAFT-Synthesized Polymers for Biomedical Applications. J. Macromol. Sci. Part A Pure Appl. Chem. 2023, 60, 841–855. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. End-Functional Polymers, Thiocarbonylthio Group Removal/Transformation and Reversible Addition-Fragmentation-Chain Transfer (RAFT) Polymerization. Polym. Int. 2011, 60, 9–25. [Google Scholar] [CrossRef]
- Li, C.; Wang, C.; Ji, Z.; Jiang, N.; Lin, W.; Li, D. Synthesis of Thiol-Terminated Thermoresponsive Polymers and Their Enhancement Effect on Optical Limiting Property of Gold Nanoparticles. Eur. Polym. J. 2019, 113, 404–410. [Google Scholar] [CrossRef]
- Han, F.; Armstrong, T.; Andres-Arroyo, A.; Bennett, D.; Soeriyadi, A.; Chamazketi, A.A.; Bakthavathsalam, P.; Tilley, R.D.; Gooding, J.J.; Reece, P.J. Optical tweezers-based characterisation of gold core–satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale 2020, 12, 1680–1687. [Google Scholar] [CrossRef]
- Pietsch, C.; Mansfeld, U.; Guerrero-Sanchez, C.; Hoeppener, S.; Vollrath, A.; Wagner, M.; Hoogenboom, R.; Saubern, S.; Thang, S.H.; Becer, C.R.; et al. Thermo-Induced Self-Assembly of Responsive Poly(DMAEMA-b-DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles. Macromolecules 2012, 45, 9292–9302. [Google Scholar] [CrossRef]
- Vagias, A.; Papagiannopoulos, A.; Kreuzer, L.P.; Giaouzi, D.; Busch, S.; Pispas, S.; Müller-Buschbaum, P. Effects of Polymer Block Length Asymmetry and Temperature on the Nanoscale Morphology of Thermoresponsive Double Hydrophilic Block Copolymers in Aqueous Solutions. Macromolecules 2021, 54, 7298–7313. [Google Scholar] [CrossRef]
- Hu, N.; Mi, L.; Metwalli, E.; Bießmann, L.; Herold, C.; Cubitt, R.; Zhong, Q.; Müller-Buschbaum, P. Effect of Thermal Stimulus on Kinetic Rehydration of Thermoresponsive Poly(Diethylene Glycol Monomethyl Ether Methacrylate)-Block-Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate) Thin Films Probed by In Situ Neutron Reflectivity. Langmuir 2022, 38, 8094–8103. [Google Scholar] [CrossRef]
- Shao, G.; Liu, Y.; Cao, R.; Han, G.; Yuan, B.; Zhang, W. Thermo-Responsive Block Copolymers: Assembly and Application. Polym. Chem. 2023, 14, 1863–1880. [Google Scholar] [CrossRef]
- Philipp, M.; Kyriakos, K.; Silvi, L.; Lohstroh, W.; Petry, W.; Krüger, J.K.; Papadakis, C.M.; Müller-Buschbaum, P. From Molecular Dehydration to Excess Volumes of Phase-Separating PNIPAM Solutions. J. Phys. Chem. B 2014, 118, 4253–4260. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, K.; Zhang, W.A. New Thermoresponsive Polymer of Poly(N-Acryloylsarcosine Methyl Ester) with a Tunable LCST. Polym. Chem. 2017, 8, 3090–3101. [Google Scholar] [CrossRef]
- Suzuki, N.; Koyama, S.; Koike, R.; Ebara, N.; Arai, R.; Takeoka, Y.; Rikukawa, M.; Tsai, F.Y. Palladium-Catalyzed Mizoroki–Heck and Copper-Free Sonogashira Coupling Reactions in Water Using Thermoresponsive Polymer Micelles. Polymers 2021, 13, 2717. [Google Scholar] [CrossRef] [PubMed]
- Hinton, T.M.; Guerrero-Sanchez, C.; Graham, J.E.; Le, T.; Muir, B.W.; Shi, S.; Tizard, M.L.V.; Gunatillake, P.A.; McLean, K.M.; Thang, S.H. The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency. Biomaterials 2012, 33, 7631–7642. [Google Scholar] [CrossRef]
- Montoya-Villegas, K.A.; Licea-Claveríe, Á.; Zapata-González, I.; Gómez, E.; Ramírez-Jiménez, A. The Effect in the RAFT Polymerization of Two Oligo(Ethylene Glycol) Methacrylates When the CTA 4-Cyano-4-(Propylthiocarbonothioylthio) Pentanoic Acid Is Auto-Hydrolyzed to Its Corresponding Amide. J. Polym. Res. 2019, 26, 71. [Google Scholar] [CrossRef]
- Márquez-Castro, J.E.; Licea-Claverie, A.; Licea-Rodriguez, J.; Quiroga-Sánchez, L.P.; Méndez, E.R. Surface Grafted Gold Nanorods (GNRDs) Using Thermosensitive Copolymers with Various Transition Temperatures: Nanomaterials with Potential Application for Photothermal Therapy. Eur. Polym. J. 2023, 197, 112341. [Google Scholar] [CrossRef]
- Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.C.; Mornet, S.; Duguet, E.; Jérôme, C. Gold Nanorods Coated with a Thermo-Responsive Poly(Ethylene Glycol)-b-Poly(N-Vinylcaprolactam) Corona as Drug Delivery Systems for Remotely near Infrared-Triggered Release. Polym. Chem. 2014, 5, 799–813. [Google Scholar] [CrossRef]
- Selianitis, D.; Pispas, S. PDEGMA-b-PDIPAEMA Copolymers via RAFT Polymerization and Their PH and Thermoresponsive Schizophrenic Self-Assembly in Aqueous Media. J. Polym. Sci. 2020, 58, 1867–1880. [Google Scholar] [CrossRef]
- Wang, H.; Ullah, A. Synthesis and Evaluation of Thermoresponsive Renewable Lipid-Based Block Copolymers for Drug Delivery. Polymers 2022, 14, 3436. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.; Montoya-Villegas, K.A.; Licea-Claverie, A.; Gonzalez-Ayon, M.A. Tunable Thermo-Responsive Copolymers from DEGMA and OEGMA Synthesized by RAFT Polymerization and the Effect of the Concentration and Saline Phosphate Buffer on Its Phase Transition. Polymers 2019, 11, 1657. [Google Scholar] [CrossRef]
- Weaver, L.G.; Stockmann, R.; Postma, A.; Thang, S.H. Multi-responsive (diethylene glycol) methyl ether methacrylate (DEGMA)-based copolymer systems. RSC Adv. 2016, 6, 90923–90933. [Google Scholar] [CrossRef]
- Kasprów, M.; Machnik, J.; Otulakowski, L.; Dworak, A.; Trzebicka, B. Thermoresponsive P(HEMA-co-OEGMA) copolymers: Synthesis, characteristics and solution behavior. RSC Adv. 2019, 9, 40966–40974. [Google Scholar] [CrossRef] [PubMed]
- Szweda, D.; Szweda, R.; Dworak, A.; Trzebicka, B. Thermoresponsive Poly[Oligo(Ethylene Glycol) Methacrylate]s and Their Bioconjugates—Synthesis and Solution Behavior. Polimery 2017, 62, 298–310. [Google Scholar] [CrossRef]
- Tymetska, S.; Shymborska, Y.; Stetsyshyn, Y.; Budkowski, A.; Bernasik, A.; Awsiuk, K.; Donchak, V.; Raczkowska, J. Thermoresponsive Smart Copolymer Coatings Based on P(NIPAM-co-HEMA) and P(OEGMA-co-HEMA) Brushes for Regenerative Medicine. ACS Biomater. Sci. Eng. 2023, 9, 6256–6272. [Google Scholar] [CrossRef] [PubMed]
- López, Á.M.; Tirado-Guizar, A.; Licea-Claverie, A.; Ramírez-Jiménez, A. Thermo and PH-Responsive Poly(DEGMA-Co-OEGMA)-b-Poly(DEAEM) Synthesized by RAFT Polymerization and Its Self-Assembly Study. Macromol. Res. 2022, 30, 917–929. [Google Scholar] [CrossRef]
- Cortez-Lemus, N.; Licea-Claverie, A. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci. 2016, 53, 1–51. [Google Scholar] [CrossRef]
- Yañez-Macias, R.; Alvarez-Moises, I.; Perevyazko, I.; Lezov, A.; Guerrero-Santos, R.; Schubert, U.S.; Guerrero-Sanchez, C. Effect of the Degree of Quaternization and Molar Mass on the Cloud Point of Poly[2-(dimethylamino)ethyl methacrylate] Aqueous Solutions: A Systematic Investigation. Macromol. Chem. Phys. 2017, 218, 1700065. [Google Scholar] [CrossRef]
- Škvarla, J.; Zedník, J.; Šlouf, M.; Pispas, S.; Štěpánek, M. Poly(N-Isopropyl Acrylamide)-Block-Poly(n-Butyl Acrylate) Thermoresponsive Amphiphilic Copolymers: Synthesis, Characterization and Self-Assembly Behavior in Aqueous Solutions. Eur. Polym. J. 2014, 61, 124–132. [Google Scholar] [CrossRef]
- Yin, F.; Behra, J.S.; Beija, M.; Brûlet, A.; Fitremann, J.; Payré, B.; Gineste, S.; Destarac, M.; Lauth-de Viguerie, N.; Marty, J.D. Effect of the microstructure of n-butyl acrylate/N-isopropylacrylamide copolymers on their thermo-responsiveness, self-organization and gel properties in water. J. Colloid Interface Sci. 2020, 578, 685–697. [Google Scholar] [CrossRef]
- Yin, F.; Laborie, P.; Lonetti, B.; Gineste, S.; Coppel, Y.; Lauth-De Viguerie, N.; Marty, J.D. Dual Thermo- and PH-Responsive Block Copolymer of Poly(N-Isopropylacrylamide)-Block-Poly(N,N-Diethylamino Ethyl Acrylamide): Synthesis, Characterization, Phase Transition, and Self-Assembly Behavior in Aqueous Solution. Macromolecules 2023, 56, 3703–3720. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gao, C.; Li, S.; Huo, F.; Zhang, W. Doubly Thermo-Responsive ABC Triblock Copolymer Nanoparticles Prepared through Dispersion RAFT Polymerization. Polym. Chem. 2014, 5, 2961–2972. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.Y.; Park, M.J. End-Group Chemistry and Junction Chemistry in Polymer Science: Past, Present, and Future. Macromolecules 2020, 53, 746–763. [Google Scholar] [CrossRef]
- Scherger, M.; Räder, H.J.; Nuhn, L. Self-Immolative RAFT-Polymer End Group Modification. Macromol. Rapid Commun. 2021, 42, 2000752. [Google Scholar] [CrossRef]
- Zygadlo, K.; Liu, C.H.; Bernardo, E.R.; Ai, H.; Nieh, M.P.; Hanson, L.A. Correlating Structural Changes in Thermoresponsive Hydrogels to the Optical Response of Embedded Plasmonic Nanoparticles. Nanoscale Adv. 2023, 6, 146–154. [Google Scholar] [CrossRef]
- Rohleder, D.; Vana, P. Near-Infrared-Triggered Photothermal Aggregation of Polymer-Grafted Gold Nanorods in a Simulated Blood Fluid. Biomacromolecules 2021, 22, 1614–1624. [Google Scholar] [CrossRef]
- Liu, H.; Pierre-Pierre, N.; Huo, Q. Dynamic light scattering for gold nanorod size characterization and study of nanorod–protein interactions. Gold Bull. 2012, 45, 187–195. [Google Scholar] [CrossRef]
Entry | Sample 1 | Feed Molar Ratio [M]:[CTA]:[I] | P(D:O) 2 (mol%) | Conv. 3 (%) | Mn Theo 4 (g/mol) | Mn SEC 5 (g/mol) | Ð 5 Mw/Mn |
---|---|---|---|---|---|---|---|
P1 | P(DEGMA72%-co-OEGMA28%) | [66]:[1]:[0.1] | 72:28 | 76 | 11,700 | 11,100 | 1.10 |
P2 | P(DEGMA73%-co-OEGMA27%) | [134]:[1]:[0.1] | 73:27 | 75 | 22,800 | 17,500 | 1.05 |
P3 | P(DEGMA70%-co-OEGMA30%) | [200]:[1]:[0.1] | 70:30 | 63 | 27,900 | 25,800 | 1.07 |
P4 | P(DEGMA71%-co-OEGMA29%) | [270]:[1]:[0.1] | 71:29 | 58 | 34,700 | 30,100 | 1.06 |
Entry | Sample 1 | Feed Molar Ratio [Mon]: [mCTA]:[I] 2 | Composition PDO:PNIPAAm:PBA 3 (mol %) | Conv. 4 (%) | Mn Theo 5 (g mol−1) | Mn SEC 6 (g mol−1) | Ð 6 |
---|---|---|---|---|---|---|---|
P1 | P(D72%-co-O28%) | ------ | 100:0:0 | 76 | 11,700 | 11,100 | 1.10 |
P1-1 | P(D-co-O)68%-b-PNIPAAm32% | [50]:[1]:[0.1] | 68:32:0 | 58 | 14,500 | 17,500 | 1.05 |
P1-2 | P(D-co-O)47%-b-PNIPAAm53% | [100]:[1]:[0.1] | 47:53:0 | 71 | 20,100 | 18,900 | 1.04 |
P1-3 | P(D-co-O)49%-b-P(NIPAAm40%-co-BA11%) | [100]:[1]:[0.1] | 49:40:11 | 65 | 18,600 | 19,300 | 1.05 |
P2 | P(D73%-co-O27%) | ------ | 100:0:0 | 75 | 22,500 | 17,500 | 1.05 |
P2-1 | P(D-co-O)63%-b-PNIPAAm37% | [100]:[1]:[0.1] | 63:37:0 | 72 | 30,400 | 24,500 | 1.05 |
P2-2 | P(D-co-O)37%-b-PNIPAAm63% | [200]:[1]:[0.1] | 37:63:0 | 71 | 35,500 | 32,600 | 1.09 |
P2-3 | P(D-co-O)48%-b-P(NIPAAm43%-co-BA9%) | [200]:[1]:[0.1] | 48:43:9 | 62 | 31,700 | 27,900 | 1.10 |
P3 | P(D70%-co-O30%) | ------ | 100:0:0 | 63 | 27,900 | 25,800 | 1.07 |
P3-1 | P(D-co-O)68%-b-PNIPAAm32% | [100]:[1]:[0.1] | 68:32:0 | 75 | 34,300 | 31,100 | 1.05 |
P3-2 | P(D-co-O)45%-b-PNIPAAm55% | [200]:[1]:[0.1] | 45:55:0 | 75 | 42,700 | 36,200 | 1.13 |
P3-3 | P(D-co-O)50%-b-P(NIPAAm44%-co-BA6%) | [200]:[1]:[0.1] | 50:44:6 | 59 | 39,300 | 34,200 | 1.09 |
Sample 1 | Mn 2 SEC 1 (g mol−1) | Ð 2 | Tcp 1 3 (°C) | Tcp 2 3 (°C) | Tg 1 4 (°C) | Tg 2 4 (°C) |
---|---|---|---|---|---|---|
P(D-co-O)47%-b-PNIPAAm53% | 19,800 | 1.04 | 33 | 43 | −40 | 79 |
P(D-co-O)37%-b-PNIPAAm63% | 32,600 | 1.09 | 33 | 43 | −45 | 74 |
P(D-co-O)45%-b-PNIPAAm55% | 36,200 | 1.13 | 35 | 43 | −43 | 73 |
P(D-co-O)48%-b-P(NIPAAm43%-co-BA9%) | 27,900 | 1.10 | 16 | 43 | −35 | 64 |
P(D-co-O)50%-b-P(NIPAAm44%-co-BA6%) | 34,200 | 1.09 | 16 | 43 | −30 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Castro, J.E.; Licea-Claverie, A.; Guerrero-Sánchez, C.; Méndez, E.R. Surface Modification of Gold Nanorods (GNRDs) Using Double Thermo-Responsive Block Copolymers: Evaluation of Self-Assembly and Stability of Nanohybrids. Polymers 2024, 16, 3293. https://doi.org/10.3390/polym16233293
Márquez-Castro JE, Licea-Claverie A, Guerrero-Sánchez C, Méndez ER. Surface Modification of Gold Nanorods (GNRDs) Using Double Thermo-Responsive Block Copolymers: Evaluation of Self-Assembly and Stability of Nanohybrids. Polymers. 2024; 16(23):3293. https://doi.org/10.3390/polym16233293
Chicago/Turabian StyleMárquez-Castro, Jesús E., Angel Licea-Claverie, Carlos Guerrero-Sánchez, and Eugenio R. Méndez. 2024. "Surface Modification of Gold Nanorods (GNRDs) Using Double Thermo-Responsive Block Copolymers: Evaluation of Self-Assembly and Stability of Nanohybrids" Polymers 16, no. 23: 3293. https://doi.org/10.3390/polym16233293
APA StyleMárquez-Castro, J. E., Licea-Claverie, A., Guerrero-Sánchez, C., & Méndez, E. R. (2024). Surface Modification of Gold Nanorods (GNRDs) Using Double Thermo-Responsive Block Copolymers: Evaluation of Self-Assembly and Stability of Nanohybrids. Polymers, 16(23), 3293. https://doi.org/10.3390/polym16233293