Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Synthesis and Electrospinning Membrane
2.2.1. Preparation of Molecularly Imprinted Polymer Microsphere
2.2.2. Preparation of Molecularly Imprinted Membrane (MIM) Via Electrospinning
2.3. Analytical Conditions
2.3.1. Optimization of MIP Amount
2.3.2. Optimization of Adsorption Time
2.3.3. Chromatographic Conditions
3. Results and Discussion
3.1. Preparation of MIM and Morphology
3.2. Characterization of Electrospun MIP Composite Material in Terms of Morphology, Surface Area and Adsorption
3.2.1. Properties of Polymer Solutions
3.2.2. Viscosity vs. Shear Rate Polymer Solution Behaviour
3.3. Effects of Voltage
3.4. Effects of Flowrate
3.5. Needle Effect
3.6. Tip-to-Collector Effect
3.7. Effects of Polymer Solvent
3.8. Effects of PVA Polymer Choice by Degree of Hydrolysis
3.9. Interpretation of the Results from the Adsorption and Application Studies
3.9.1. Material Swelling Studies
3.9.2. TGA Spectra of Polymer Materials
3.9.3. FTIR Spectra of Polymer Materials
3.9.4. Adsorption Time of the Electrospun PVA-MIP and PVA-NIP Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kunene, P.N.; Mahlambi, P.N.; Ndlovu, T. Adsorption of Antiretroviral Drugs, Abacavir, Nevirapine, and Efavirenz from River Water and Wastewater Using Exfoliated Graphite: Isotherm and Kinetic Studies. J. Environ. Manag. 2024, 360, 121200. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.S. Nonsteroidal Anti-Inflammatory Drugs; Acetaminophen. In Encyclopedia of the Neurological Sciences; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 3. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Shekar, S.; Pavithra, N.; Samuel, J.; Subramanian, S.; Singh, J.; et al. Adsorption and Detoxification of Pharmaceutical Compounds from Wastewater Using Nanomaterials: A Review on Mechanism, Kinetics, Valorization and Circular Economy. J. Environ. Manag. 2021, 300, 113569. [Google Scholar] [CrossRef] [PubMed]
- Ighalo, J.O.; Ajala, O.J.; Umenweke, G.; Ogunniyi, S.; Adeyanju, C.A.; Igwegbe, C.A.; Adeniyi, A.G. Mitigation of Clofibric Acid Pollution by Adsorption: A Review of Recent Developments. J. Environ. Chem. Eng. 2020, 8, 104264. [Google Scholar] [CrossRef]
- de Deus Pereira de Moraes Segundo, J.; de Moraes, M.O.S.; Brito, W.R.; Matos, R.S.; Salerno, M.; Barcelay, Y.R.; Segala, K.; da Fonseca Filho, H.D.; d’Ávila, M.A. Molecularly Imprinted Membrane Produced by Electrospinning for β-Caryophyllene Extraction. Materials 2022, 15, 7275. [Google Scholar] [CrossRef]
- de Deus Pereira de Moraes Segundo, J.; de Moraes, M.O.S.; Brito, W.R.; d’Ávila, M.A. Incorporation of Molecularly Imprinted Polymer Nanoparticles in Electrospun Polycaprolactone Fibers. Mater. Lett. 2020, 275, 128088. [Google Scholar] [CrossRef]
- Xue, X.; Lu, R.; Li, Y.; Wang, Q.; Li, J.; Wang, L. Molecularly Imprinted Electrospun Nanofibers for Adsorption of 2,4-Dinitrotoluene in Water. Analyst 2018, 143, 3466–3471. [Google Scholar] [CrossRef]
- Bitas, D.; Samanidou, V. Molecularly Imprinted Polymers as Extracting Media for the Chromatographic Determination of Antibiotics in Milk. Molecules 2018, 23, 316. [Google Scholar] [CrossRef]
- Matei, E.; Covaliu-Mierla, C.I.; Țurcanu, A.A.; Râpa, M.; Predescu, A.M.; Predescu, C. Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal. Membranes 2022, 12, 67. [Google Scholar] [CrossRef]
- Zhu, F.; Zheng, Y.M.; Zhang, B.G.; Dai, Y.R. A Critical Review on the Electrospun Nanofibrous Membranes for the Adsorption of Heavy Metals in Water Treatment. J. Hazard. Mater. 2021, 401, 123608. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, M.S.; Choi, Y.; Lee, K.B.; Kim, J.H. Synthesis of PVA-g-POEM Graft Copolymers and Their Use in Highly Permeable Thin Film Composite Membranes. Chem. Eng. J. 2018, 346, 739–747. [Google Scholar] [CrossRef]
- Türkoğlu, G.C.; Khomarloo, N.; Mohsenzadeh, E.; Gospodinova, D.N.; Neznakomova, M.; Salaün, F. PVA-Based Electrospun Materials—A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape—A Review. Int. J. Mol. Sci. 2024, 25, 1668. [Google Scholar] [CrossRef] [PubMed]
- Kamrani, H.; Nosrati, A. Fabrication of Nanofiber Filtration Membranes Using Polyethylene Terephthalate (PET): A Review. J. Membr. Sci. Technol. 2018, 8, 1000183. [Google Scholar] [CrossRef]
- Mandal, S.; Dey, A. PET Chemistry. In Recycling of Polyethylene Terephthalate Bottles; William Andrew: Norwich, NY, USA, 2019; pp. 1–22. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Lv, M.; Shi, Y.; Cao, D. Super Hydrophilic Poly(Ethylene Terephthalate) (PET)/Poly(Vinyl Alcohol) (PVA) Composite Fibrous Mats with Improved Mechanical Properties Prepared via Electrospinning Process. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 436, 417–424. [Google Scholar] [CrossRef]
- Özen, H.A.; Mutuk, T.; Yiğiter, M. Smoke Filtration Performances of Membranes Produced from Commercial PVA and Recycled PET by Electrospinning Method and ANN Modeling. Environ. Sci. Pollut. Res. 2023, 30, 2469–2479. [Google Scholar] [CrossRef]
- Qwane, S.N.; Mdluli, P.S.; Madikizela, L.M. Synthesis, Characterization and Application of a Molecularly Imprinted Polymer in Selective Adsorption of Abacavir from Polluted Water. S. Afr. J. Chem. 2020, 73, 84–91. [Google Scholar] [CrossRef]
- Nkosi, S.M.; Mahlambi, P.N.; Chimuka, L. Synthesis, Characterisation and Optimisation of Bulk Molecularly Imprinted Polymers from Nonsteroidal Anti-Inflammatory Drugs. S. Afr. J. Chem. 2022, 76, 56–64. [Google Scholar] [CrossRef]
- Sigonya, S.; Mokhena, T.C.; Mayer, P.M.; Mdluli, P.S.; Makhanya, T.R.; Mokhothu, T.H. Synthesis of a Multi-Template Molecular Imprinted Bulk Polymer for the Adsorption of Non-Steroidal Inflammatory and Antiretroviral Drugs. Appl. Sci. 2024, 14, 3320. [Google Scholar] [CrossRef]
- Ramajayam, K.; Ganesan, S.; Ramesh, P.; Beena, M.; Kokulnathan, T.; Palaniappan, A. Molecularly Imprinted Polymer-Based Biomimetic Systems for Sensing Environmental Contaminants, Biomarkers, and Bioimaging Applications. Biomimetics 2023, 8, 245. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Soylak, M.; Erk, N. Innovative Molecularly Imprinted Electrochemical Sensor for the Nanomolar Detection of Tenofovir as an Anti-HIV Drug. Talanta 2023, 253, 123991. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Li, B.; Hsiao, B.S.; Chu, B. Electrospun Nanofibrous Membranes for High Flux Microfiltration. J. Memb. Sci. 2012, 392–393, 167–174. [Google Scholar] [CrossRef]
- Theron, S.A.; Zussman, E.; Yarin, A.L. Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions. Polymer 2004, 45, 2017–2030. [Google Scholar] [CrossRef]
- Eren Boncu, T.; Ozdemir, N.; Uskudar Guclu, A. Electrospinning of Linezolid Loaded PLGA Nanofibers: Effect of Solvents on Its Spinnability, Drug Delivery, Mechanical Properties, and Antibacterial Activities. Drug Dev. Ind. Pharm. 2020, 46, 109–121. [Google Scholar] [CrossRef]
- Tahmasebi, Z.; Davarani, S.S.H.; Asgharinezhad, A.A. An Efficient Approach to Selective Electromembrane Extraction of Naproxen by Means of Molecularly Imprinted Polymer-Coated Multi-Walled Carbon Nanotubes-Reinforced Hollow Fibers. J. Chromatogr. A 2016, 1470, 19–26. [Google Scholar] [CrossRef]
- Ardekani, R.; Borhani, S.; Rezaei, B. Selective Molecularly Imprinted Polymer Nanofiber Sorbent for the Extraction of Bisphenol A in a Water Sample. Polym. Int. 2020, 69, 780–793. [Google Scholar] [CrossRef]
- Nayak, R.; Padhye, R.; Kyratzis, I.L.; Truong, Y.B.; Arnold, L. Effect of Viscosity and Electrical Conductivity on the Morphology and Fiber Diameter in Melt Electrospinning of Polypropylene. Text. Res. J. 2013, 83, 606–617. [Google Scholar] [CrossRef]
- Deshawar, D.; Gupta, K.; Chokshi, P. Electrospinning of Polymer Solutions: An Analysis of Instability in a Thinning Jet with Solvent Evaporation. Polymer 2020, 202, 122656. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, S.; Wang, K.; Zhang, Q.; Fu, Q. On-Line Ascertain the Processing Fluidity of Concentrated Poly(Vinyl Alcohol) Aqueous Solutions. Polymer 2022, 243, 124608. [Google Scholar] [CrossRef]
- Vieira, S.; Ancelmo, A.; Mansur, P.; Carvalho, I.C.; Carvalho, S.M.; Mansur, H.S. Dressing and Skin Tissue Engineering Applications. Gels 2023, 9, 166. [Google Scholar] [CrossRef]
- Reena; Kumar, A.; Mahto, V.; Choubey, A.K. Synthesis and Characterization of Cross-Linked Hydrogels Using Polyvinyl Alcohol and Polyvinyl Pyrrolidone and Their Blend for Water Shut-off Treatments. J. Mol. Liq. 2020, 301, 112472. [Google Scholar] [CrossRef]
- Mongruel, A.; Cloitre, M. Shear Viscosity of Suspensions of Aligned Non-Brownian Fibres. Rheol. Acta 1999, 38, 451–457. [Google Scholar] [CrossRef]
- Bounoua, S.; Lemaire, E.; Férec, J.; Ausias, G.; Kuzhir, P. Shear-Thinning in Concentrated Rigid Fiber Suspensions: Aggregation Induced by Adhesive Interactions. J. Rheol. 2016, 60, 1279–1300. [Google Scholar] [CrossRef]
- Şener, A.G.; Altay, A.S.; Altay, F. Effect of Voltage on Morphology of Electrospun Nanofibers. In Proceedings of the 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011. [Google Scholar]
- Faizal, F.; Al-Fikri, A.M.; Abdurrochman, A.; Joni, I.M.; Panatarani, C. Development of Precision Pump and High Voltage DC-Regulator for Electrospinning Apparatus: Experimental Test with Preparation of PVA Microfiber. J. Phys. Conf. Ser. 2020, 1568, 012006. [Google Scholar] [CrossRef]
- Larrondo, L.; Manley, R.S.J. Electrostatic Fiber Spinning from Polymer Melts—2. Examination of the Flow Field in an Electrically Driven Jet. J. Polym. Sci. Part A-2 Polym. Phys. 1981, 19, 921–932. [Google Scholar] [CrossRef]
- Grant, S.L. Preparation and Characterisation of Poly (Ethylene Terephthalate) Nanocomposites. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2011. [Google Scholar]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A.; McPhee, D.J. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A.S.; Damerchely, R. The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. J. Eng. Fiber Fabr. 2012, 7, 42–49. [Google Scholar] [CrossRef]
- Singh, Y.P.; Dasgupta, S.; Nayar, S.; Bhaskar, R. Optimization of Electrospinning Process & Parameters for Producing Defect-Free Chitosan/Polyethylene Oxide Nanofibers for Bone Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2020, 31, 781–803. [Google Scholar] [CrossRef]
- Baykara, T.; Taylan, G. Coaxial Electrospinning of PVA/Nigella Seed Oil Nanofibers: Processing and Morphological Characterization. Mater. Sci. Eng. B 2021, 265, 115012. [Google Scholar] [CrossRef]
- Gündüz, G.Ş. Investigation of the Effect of Needle Diameter and the Solution Flow Rate on Fiber Morphology in the Electrospinning Method. Fibres Text. East. Eur. 2023, 31, 22–29. [Google Scholar] [CrossRef]
- Xie, S.; Zeng, Y. Effects of Electric Field on Multineedle Electrospinning: Experiment and Simulation Study. Ind. Eng. Chem. Res. 2012, 51, 5336–5345. [Google Scholar] [CrossRef]
- Acik, G. A Comprehensive Study on Electrospinning of Poly (Vinyl Alcohol): Effects of the Tcd, Applied Voltage, Flow Rate, and Solution Concentration. J. Turkish Chem. Soc. Sect. A Chem. 2020, 7, 609–616. [Google Scholar] [CrossRef]
- Zhang, H. Effects of Electrospinning Parameters on Morphology and Diameter of Electrospun PLGA/MWNTs Fibers and Cytocompatibility in Vitro. J. Bioact. Compat. Polym. 2011, 26, 590–606. [Google Scholar] [CrossRef]
- Purwar, R.; Sai Goutham, K.; Srivastava, C.M. Electrospun Sericin/PVA/Clay Nanofibrous Mats for Antimicrobial Air Filtration Mask. Fibers Polym. 2016, 17, 1206–1216. [Google Scholar] [CrossRef]
- Jarusuwannapoom, T.; Hongrojjanawiwat, W.; Jitjaicham, S.; Wannatong, L.; Nithitanakul, M.; Pattamaprom, C.; Koombhongse, P.; Rangkupan, R.; Supaphol, P. Effect of Solvents on Electro-Spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers. Eur. Polym. J. 2005, 41, 409–421. [Google Scholar] [CrossRef]
- Mabesoone, M.F.J.; Palmans, A.R.A.; Meijer, E.W. Solute-Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. J. Am. Chem. Soc. 2020, 142, 19781–19798. [Google Scholar] [CrossRef]
- Raza, M.A.; Hallett, P.D.; Liu, X.; He, M.; Afzal, W. Surface Tension of Aqueous Solutions of Small-Chain Amino and Organic Acids. J. Chem. Eng. Data 2019, 64, 5049–5056. [Google Scholar] [CrossRef]
- Kahvand, F.; Fasihi, M. Plasticizing and Anti-Plasticizing Effects of Polyvinyl Alcohol in Blend with Thermoplastic Starch. Int. J. Biol. Macromol. 2019, 140, 775–781. [Google Scholar] [CrossRef]
- Karim, S.S.; Farrukh, S.; Matsuura, T.; Ahsan, M.; Hussain, A.; Shakir, S.; Chuah, L.F.; Hasan, M.; Bokhari, A. Model Analysis on Effect of Temperature on the Solubility of Recycling of Polyethylene Terephthalate (PET) Plastic. Chemosphere 2022, 307, 136050. [Google Scholar] [CrossRef]
- Mahalingam, S.; Raimi-Abraham, B.T.; Craig, D.Q.M.; Edirisinghe, M. Solubility-Spinnability Map and Model for the Preparation of Fibres of Polyethylene (Terephthalate) Using Gyration and Pressure. Chem. Eng. J. 2015, 280, 344–353. [Google Scholar] [CrossRef]
- Suleiman, G.S.A.; Zeng, X.; Chakma, R.; Wakai, I.Y.; Feng, Y. Recent Advances and Challenges in Thermal Stability of PVA-Based Film: A Review. Polym. Adv. Technol. 2024, 35, e6327. [Google Scholar] [CrossRef]
- Park, J.C.; Ito, T.; Kim, K.O.; Kim, K.W.; Kim, B.S.; Khil, M.S.; Kim, H.Y.; Kim, I.S. Electrospun Poly(Vinyl Alcohol) Nanofibers: Effects of Degree of Hydrolysis and Enhanced Water Stability. Polym. J. 2010, 42, 273–276. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on Morphology of Electrospun Poly(Vinyl Alcohol) Mats. Eur. Polym. J. 2005, 41, 423–432. [Google Scholar] [CrossRef]
- Angelo Miranda, M.; Jabarin, S.A.; Coleman, M. Modification of Poly(Ethylene Terephthalate) (PET) Using Linoleic Acid for Oxygen Barrier Improvement: Impact of Processing Methods. J. Appl. Polym. Sci. 2017, 134, 45023. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Cao, X.; Liu, Q.; Wang, H.; Kong, B. Preparation and Functional Properties of Poly(Vinyl Alcohol)/Ethyl Cellulose/Tea Polyphenol Electrospun Nanofibrous Films for Active Packaging Material. Food Control 2021, 130, 108331. [Google Scholar] [CrossRef]
- Ullah, S.; Hashmi, M.; Hussain, N.; Ullah, A.; Sarwar, M.N.; Saito, Y.; Kim, S.H.; Kim, I.S. Stabilized Nanofibers of Polyvinyl Alcohol (PVA) Crosslinked by Unique Method for Efficient Removal of Heavy Metal Ions. J. Water Process Eng. 2020, 33, 101111. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Sun, B.; Li, Y.; Li, Y.; Wang, C. Preparation of Molecularly Imprinted Sericin/Poly(Vinyl Alcohol) Electrospun Fibers for Selective Removal of Methylene Blue. Chem. Res. Chin. Univ. 2017, 33, 986–994. [Google Scholar] [CrossRef]
- Nojavan, C.; Sepehri, R.; Harirchi, P.; Zahedi, P.; Kabiri, M.; Kharat, Z.; Ghorbanian, S.A. Potential Use of Electrospun Poly(Ethylene Terephthalate)/Carbon Nanotubes Containing Aspirin in Vascular Tissue Engineering Application. Fibers Polym. 2024, 25, 71–81. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Lei, X.; Zhai, Y. Electrospun Nanofiber Membranes Containing Molecularly Imprinted Polymer (MIP) for Rhodamine B (RhB). Adv. Chem. Eng. Sci. 2012, 2, 266–274. [Google Scholar] [CrossRef]
Sample No. | Polymer | Polymer Ratio (%) | Solvent | Solvent Volume (mL) | Conductivity (µS/cm) | Viscosity (mPa·s) |
---|---|---|---|---|---|---|
1. | PET | 100 | TFA | 40 | 33.6 | 12.7 |
2. | 100 | TFA and DCM | 30:10 | 11.64 | 3.9 | |
3. | PVA DH (87–90%) | 100 | Water | 40 | 1054 | 165.5 |
4. | 100 | Water and ethanol | 30:10 | 987 | 229.6 | |
5. | PET MIP | 98.6/1.4 | TFA | 40 | 70.5 | 35.2 |
6. | 98.6/1.4 | TFA and DCM | 30:10 | 24.35 | −2.7 | |
7. | PVA DH (87–90%) MIP | 98.6/1.4 | Water | 40 | 1190 | 154.9 |
8. | 98.6/1.4 | Water and ethanol | 30:10 | 465 | 307.2 | |
9. | PET NIP | 98.6/1.4 | TFA | 40 | 72.9 | 18.3 |
10. | 98.6/1.4 | TFA and DCM | 30:10 | 13.46 | −0.7 | |
11. | PVA DH (87–90%) NIP | 98.6/1.4 | Water | 40 | 1082 | 167 |
12. | 98.6/1.4 | Water and ethanol | 30:10 | 550 | 167.5 |
Sample No. | Polymer | Polymer Ratio (%) | Solvent | Solvent Volume (mL) | Conductivity (µS/cm) | Viscosity (mPa·s) |
---|---|---|---|---|---|---|
1. | PVA DH (99%) | 100 | water | 40 | 839 | 2058.8 |
2. | 100 | Water and ethanol | 30:10 | 425 | 249.8 | |
3. | PVA DH (99%) MIP | 98.6/1.4 | Water | 40 | 1386 | 2276.4 |
4. | 98.6/1.4 | Water and ethanol | 30:10 | 666 | 586.6 | |
5. | PVA DH (99%) NIP | 98.6/1.4 | Water | 40 | 698 | 1316.2 |
6. | 98.6/1.4 | Water and ethanol | 30:10 | 351 | 2314.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigonya, S.; Mokhena, T.C.; Mayer, P.; Makhanya, T.R.; Mokhothu, T.H. Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers. Polymers 2024, 16, 3297. https://doi.org/10.3390/polym16233297
Sigonya S, Mokhena TC, Mayer P, Makhanya TR, Mokhothu TH. Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers. Polymers. 2024; 16(23):3297. https://doi.org/10.3390/polym16233297
Chicago/Turabian StyleSigonya, Sisonke, Teboho Clement Mokhena, Paul Mayer, Talent Raymond Makhanya, and Thabang Hendrica Mokhothu. 2024. "Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers" Polymers 16, no. 23: 3297. https://doi.org/10.3390/polym16233297
APA StyleSigonya, S., Mokhena, T. C., Mayer, P., Makhanya, T. R., & Mokhothu, T. H. (2024). Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers. Polymers, 16(23), 3297. https://doi.org/10.3390/polym16233297