Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Formulation and Solid-State Studies
2.1.1. Materials
2.1.2. Solid States’ Analysis
Thermalgravimetric Analysis
Differential Scanning Calorimetry
Powder X-Ray Diffraction
Hot-Stage Polarized Light Microscopy
2.1.3. Qualification and Quantification of ITZ Using HPLC
2.1.4. Equilibrium Solubility Measurement
2.2. Formulation Studies
2.2.1. Preparation of the ASDs
2.2.2. Characterization of EXT
Solid States’ Analysis
Solubility of EXTs’ ITZ
In Vitro Drug Release from the EXTs
2.3. 3D Designs and Printing
2.4. In Vitro Drug Release from the Printed Tablets
2.5. Release Kinetic Studies of Printed Tablets
3. Results and Discussions
3.1. Solid States’ Analysis Studies
3.1.1. TGA Studies
3.1.2. DSC Analysis
3.1.3. Hot-Staged PLM
3.1.4. PXRD
3.2. Quality and Quantity of the ITZ
3.3. Formulation and Process Development
3.3.1. Solubility Measurement of ITZ, PM, and EXTs
3.3.2. In Vitro Drug Release Studies from Extrudates
3.4. The 3D-Printed Tablets
3.4.1. Characterization of the 3D Printing Filaments
3.4.2. Evaluation of the 3D-Printed Tablets
3.4.3. In Vitro Drug Release Studies
Drug Release
The Release Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. A Global View on Fungal Infections in Humans and Animals: Opportunistic Infections and Microsporidioses. J. Appl. Microbiol. 2021, 131, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, L.; Zhao, F.; Zhang, L.; Lu, Z.; Chu, T.; Wang, S.; Liu, Z.; Sun, Y.; Chen, M.; et al. Cryptococcus Neoformans, a Global Threat to Human Health. Infect. Dis. Poverty 2023, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal Infections in Humans: The Silent Crisis. Microb. Cell 2020, 7, 143. [Google Scholar] [CrossRef] [PubMed]
- Uppin, M.S.; Anuradha, S.V.N.; Uppin, S.G.; Paul, T.R.; Prayaga, A.K.; Sundaram, C. Fungal Infections as a Contributing Cause of Death: An Autopsy Study. Indian. J. Pathol. Microbiol. 2011, 54, 344–349. [Google Scholar] [CrossRef]
- Wiley-VCH Verlag GmbH & Co. KGaA. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Richardson, D.W. Laboratory Diagnosis of Fungal Infection; Wiley-Blackwell: Hoboken, NJ, USA, 2012; p. 445. [Google Scholar]
- Johnston, R.B.; Johnston, R.B. Weedon’s Skin Pathology Essentials; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wheat, L.J.; Freifeld, A.G.; Kleiman, M.B.; Baddley, J.W.; McKinsey, D.S.; Loyd, J.E.; Kauffman, C.A. Clinical Practice Guidelines for the Management of Patients with Histoplasmosis: 2007 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2007, 45, 807–825. [Google Scholar] [CrossRef]
- Barron, M.A.; Madinger, N.E. Opportunistic Fungal Infections, Part 3: Cryptococcosis, Histoplasmosis, Coccidioidomycosis, and Emerging Mould Infections. Infect. Med. 2008, 25, 539–551. [Google Scholar]
- Isoherranen, N.; Kunze, K.L.; Allen, K.E.; Nelson, W.L.; Thummel, K.E. Role of Itraconazole Metabolites in Cyp3a4 Inhibition. Drug Metab. Dispos. 2004, 32, 1121–1131. [Google Scholar] [CrossRef]
- Wharry, S. FDA Issues Warnings about Drugs Used to Treat Fungal Nail Infections. CMAJ Can. Med. Assoc. J. 2001, 164, 1738. [Google Scholar] [CrossRef]
- January–March 2018|Potential Signals of Serious Risks/New Safety Information Identified from the FDA Adverse Event Reporting System (FAERS)|FDA. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/january-march-2018-potential-signals-serious-risksnew-safety-information-identified-fda-adverse (accessed on 22 September 2024).
- Handa, S.; Villasis-Keever, A.; Shenoy, M.; Anandan, S.; Bhrushundi, M.; Garodia, N.; Fife, D.; De Doncker, P.; Shalayda, K.; Hu, P.; et al. No Evidence of Resistance to Itraconazole in a Prospective Real-World Trial of Dermatomycosis in India. PLoS ONE 2023, 18, e0281514. [Google Scholar] [CrossRef]
- He, Y.; Ho, C. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development. J. Pharm. Sci. 2015, 104, 3237–3258. [Google Scholar] [CrossRef]
- Schittny, A.; Huwyler, J.; Puchkov, M. Mechanisms of Increased Bioavailability through Amorphous Solid Dispersions: A Review. Drug Deliv. 2020, 27, 110–127. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Maddineni, S.; Lu, J.; Repka, M.A. Melt Extrusion with Poorly Soluble Drugs. Int. J. Pharm. 2013, 453, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Chen, H.; Wang, Y.; Wang, R.; Xu, J.; Zhang, C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022, 14, 1747. [Google Scholar] [CrossRef] [PubMed]
- Pisay, M.; Yarlagadda, D.L.; Vullendula, S.K.A.; Bhat, K.; Kunnatur Balasundara, K.; Mutalik, S. Effervescence-Induced Amorphous Solid Dispersions with Improved Drug Solubility and Dissolution. Pharm. Dev. Technol. 2023, 28, 176–189. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Marques, S.; das Neves, J.; Sarmento, B. Amorphous Solid Dispersions: Rational Selection of a Manufacturing Process. Adv. Drug Deliv. Rev. 2016, 100, 85–101. [Google Scholar] [CrossRef]
- Zheng, Y.; Pokorski, J.K. Hot Melt Extrusion: An Emerging Manufacturing Method for Slow and Sustained Protein Delivery. WIREs Nanomed. Nanobiotechnology 2021, 13, e1712. [Google Scholar] [CrossRef]
- Kallakunta, V.R.; Sarabu, S.; Bandari, S.; Tiwari, R.; Patil, H.; Repka, M.A. An Update on the Contribution of Hot-Melt Extrusion Technology to Novel Drug Delivery in the Twenty-First Century: Part I. Expert Opin. Drug Deliv. 2019, 16, 539–550. [Google Scholar] [CrossRef]
- Chavan, R.B.; Thipparaboina, R.; Yadav, B.; Shastri, N.R. Continuous Manufacturing of Co-Crystals: Challenges and Prospects. Drug Deliv. Transl. Res. 2018, 8, 1726–1739. [Google Scholar] [CrossRef]
- Tiwari, R.V.; Patil, H.; Repka, M.A. Contribution of Hot-Melt Extrusion Technology to Advance Drug Delivery in the 21st Century. Expert Opin. Drug Deliv. 2016, 13, 451–464. [Google Scholar] [CrossRef]
- Chivate, A.; Garkal, A.; Dhas, N.; Mehta, T. Hot-Melt Extrusion: An Emerging Technique for Solubility Enhancement of Poorly Water-Soluble Drugs. PDA J. Pharm. Sci. Technol. 2021, 75, 357–373. [Google Scholar] [CrossRef]
- AL-Japairai, K.; Hamed Almurisi, S.; Mahmood, S.; Madheswaran, T.; Chatterjee, B.; Sri, P.; Azra Binti Ahmad Mazlan, N.; Al Hagbani, T.; Alheibshy, F. Strategies to Improve the Stability of Amorphous Solid Dispersions in View of the Hot Melt Extrusion (HME) Method. Int. J. Pharm. 2023, 647, 123536. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shi, C.; Mei, B.; Yuan, R.; Fu, Z. Research on the Technology and the Mechanical Properties of the Microwave Processing of Polymer. J. Mater. Process Technol. 2003, 137, 156–158. [Google Scholar] [CrossRef]
- Sarabu, S.; Bandari, S.; Kallakunta, V.R.; Tiwari, R.; Patil, H.; Repka, M.A. An Update on the Contribution of Hot-Melt Extrusion Technology to Novel Drug Delivery in the Twenty-First Century: Part II. Expert Opin. Drug Deliv. 2019, 16, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Maniruzzaman, M.; Nair, A.; Renault, M.; Nandi, U.; Scoutaris, N.; Farnish, R.; Bradley, M.S.A.; Snowden, M.J.; Douroumis, D. Continuous Twin-Screw Granulation for Enhancing the Dissolution of Poorly Water Soluble Drug. Int. J. Pharm. 2015, 496, 52–62. [Google Scholar] [CrossRef]
- Singh, R.; Ierapetritou, M.; Ramachandran, R. An Engineering Study on the Enhanced Control and Operation of Continuous Manufacturing of Pharmaceutical Tablets via Roller Compaction. Int. J. Pharm. 2012, 438, 307–326. [Google Scholar] [CrossRef]
- Elemento, O. The Future of Precision Medicine: Towards a More Predictive Personalized Medicine. Emerg. Top. Life Sci. 2020, 4, 175–177. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Alzoubi, L.; Aljabali, A.A.A.; Tambuwala, M.M. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023, 24, 228. [Google Scholar] [CrossRef]
- Dumpa, N.; Butreddy, A.; Wang, H.; Komanduri, N.; Bandari, S.; Repka, M.A. 3D Printing in Personalized Drug Delivery: An Overview of Hot-Melt Extrusion-Based Fused Deposition Modeling. Int. J. Pharm. 2021, 600, 120501. [Google Scholar] [CrossRef]
- Deshkar, S.; Rathi, M.; Zambad, S.; Gandhi, K. Hot Melt Extrusion and Its Application in 3D Printing of Pharmaceuticals. Curr. Drug Deliv. 2021, 18, 387–407. [Google Scholar] [CrossRef]
- Bhatt, U.; Malakar, T.K.; Murty, U.S.; Banerjee, S. 3D Printing of Immediate-Release Tablets Containing Olanzapine by Filaments Extrusion. Drug Dev. Ind. Pharm. 2021, 47, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Hozdić, E.; Hozdić, E. Comparative Analysis of the Influence of Mineral Engine Oil on the Mechanical Parameters of FDM 3D-Printed PLA, PLA+CF, PETG, and PETG+CF Materials. Materials 2023, 16, 6342. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.; Jung, S. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs. Molecules 2015, 20, 19620–19646. [Google Scholar] [CrossRef]
- Haggag, Y.; Abd Elrahman, A.; Ulber, R.; Zayed, A. Fucoidan in Pharmaceutical Formulations: A Comprehensive Review for Smart Drug Delivery Systems. Mar. Drugs 2023, 21, 112. [Google Scholar] [CrossRef]
- Gullapalli, R.P.; Mazzitelli, C.L. Gelatin and Non-Gelatin Capsule Dosage Forms. J. Pharm. Sci. 2017, 106, 1453–1465. [Google Scholar] [CrossRef]
- Paoletti, L.; Baschieri, F.; Migliorini, C.; Di Meo, C.; Monasson, O.; Peroni, E.; Matricardi, P. 3D Printing of Gellan-dextran Methacrylate IPNs in Glycerol and Their Bioadhesion by RGD Derivatives. J. Biomed. Mater. Res. A 2024, 112, 1107–1123. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Chen, Y. Direct 3D Printing of Thermosensitive AOP127-Oxidized Dextran Hydrogel with Dual Dynamic Crosslinking and High Toughness. Carbohydr. Polym. 2022, 291, 119616. [Google Scholar] [CrossRef]
- Rajabi, M.; McConnell, M.; Cabral, J.; Ali, M.A. Chitosan Hydrogels in 3D Printing for Biomedical Applications. Carbohydr. Polym. 2021, 260, 117768. [Google Scholar] [CrossRef]
- Fukuda, M.; Peppas, N.A.; McGinity, J.W. Properties of Sustained Release Hot-Melt Extruded Tablets Containing Chitosan and Xanthan Gum. Int. J. Pharm. 2006, 310, 90–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Y.; Wang, H.; He, H. Synergistic Modification of Hot-Melt Extrusion and Nobiletin on the Multi-Scale Structures, Interactions, Thermal Properties, and in Vitro Digestibility of Rice Starch. Front. Nutr. 2024, 11, 1398380. [Google Scholar] [CrossRef]
- Yeung, C.-W.; Rein, H. Hot-Melt Extrusion of Sugar-Starch-Pellets. Int. J. Pharm. 2015, 493, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Mora-Castaño, G.; Millán-Jiménez, M.; Niederquell, A.; Schönenberger, M.; Shojaie, F.; Kuentz, M.; Caraballo, I. Amorphous Solid Dispersion of a Binary Formulation with Felodipine and HPMC for 3D Printed Floating Tablets. Int. J. Pharm. 2024, 658, 124215. [Google Scholar] [CrossRef]
- Chung, S.; Zhang, P.; Repka, M.A. Fabrication of Timed-Release Indomethacin Core–Shell Tablets for Chronotherapeutic Drug Delivery Using Dual Nozzle Fused Deposition Modeling (FDM) 3D Printing. Eur. J. Pharm. Biopharm. 2023, 188, 254–264. [Google Scholar] [CrossRef]
- González, K.; Larraza, I.; Berra, G.; Eceiza, A.; Gabilondo, N. 3D Printing of Customized All-Starch Tablets with Combined Release Kinetics. Int. J. Pharm. 2022, 622, 121872. [Google Scholar] [CrossRef]
- Larsen, B.S.; Kissi, E.; Nogueira, L.P.; Genina, N.; Tho, I. Impact of Drug Load and Polymer Molecular Weight on the 3D Microstructure of Printed Tablets. Eur. J. Pharm. Sci. 2024, 192, 106619. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Topuz, F.; Rostamabadi, H. Dialdehyde Carbohydrates—Advanced Functional Materials for Biomedical Applications. Carbohydr. Polym. 2023, 321, 121276. [Google Scholar] [CrossRef]
- Su, L.; Feng, Y.; Wei, K.; Xu, X.; Liu, R.; Chen, G. Carbohydrate-Based Macromolecular Biomaterials. Chem. Rev. 2021, 121, 10950–11029. [Google Scholar] [CrossRef]
- Pignatello, R.; Corsaro, R.; Bonaccorso, A.; Zingale, E.; Carbone, C.; Musumeci, T. Soluplus® Polymeric Nanomicelles Improve Solubility of BCS-Class II Drugs. Drug Deliv. Transl. Res. 2022, 12, 1991–2006. [Google Scholar] [CrossRef]
- Zhang, J.; Thakkar, R.; Kulkarni, V.R.; Zhang, Y.; Lu, A.; Maniruzzaman, M. Investigation of the Fused Deposition Modeling Additive Manufacturing I: Influence of Process Temperature on the Quality and Crystallinity of the Dosage Forms. AAPS PharmSciTech 2021, 22, 258. [Google Scholar] [CrossRef]
- Thiry, J.; Broze, G.; Pestieau, A.; Tatton, A.S.; Baumans, F.; Damblon, C.; Krier, F.; Evrard, B. Investigation of a Suitable in Vitro Dissolution Test for Itraconazole-Based Solid Dispersions. Eur. J. Pharm. Sci. 2016, 85, 94–105. [Google Scholar] [CrossRef]
- Shi, N.-Q.; Wang, S.-R.; Zhang, Y.; Huo, J.-S.; Wang, L.-N.; Cai, J.-H.; Li, Z.-Q.; Xiang, B.; Qi, X.-R. Hot Melt Extrusion Technology for Improved Dissolution, Solubility and “Spring-Parachute” Processes of Amorphous Self-Micellizing Solid Dispersions Containing BCS II Drugs Indomethacin and Fenofibrate: Profiles and Mechanisms. Eur. J. Pharm. Sci. 2019, 130, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhou, J.; Chang, J.; Liu, X.; Xue, H.; Wang, R.; Li, Z.; Li, C.; Wang, J.; Liu, C. Soluplus-Mediated Diosgenin Amorphous Solid Dispersion with High Solubility and High Stability: Development, Characterization and Oral Bioavailability. Drug Des. Dev. Ther. 2020, 14, 2959–2975. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.Q.; Feng, X.; Zhang, J.; Zhang, F.; Repka, M.A. Dual Mechanism of Microenvironmental PH Modulation and Foam Melt Extrusion to Enhance Performance of HPMCAS Based Amorphous Solid Dispersion. Int. J. Pharm. 2018, 550, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Prasad, L.K.; Smyth, H. 3D Printing Technologies for Drug Delivery: A Review. Drug Dev. Ind. Pharm. 2016, 42, 1019–1031. [Google Scholar] [CrossRef]
- Öblom, H.; Zhang, J.; Pimparade, M.; Speer, I.; Preis, M.; Repka, M.; Sandler, N. 3D-Printed Isoniazid Tablets for the Treatment and Prevention of Tuberculosis—Personalized Dosing and Drug Release. AAPS PharmSciTech 2019, 20, 52. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Mohammed, A.A.; Ahmad, J.; Saleh, E. Development of a 3D Printed Coating Shell to Control the Drug Release of Encapsulated Immediate-Release Tablets. Polymers 2020, 12, 1395. [Google Scholar] [CrossRef]
- Vo, A.Q.; Zhang, J.; Nyavanandi, D.; Bandari, S.; Repka, M.A. Hot Melt Extrusion Paired Fused Deposition Modeling 3D Printing to Develop Hydroxypropyl Cellulose Based Floating Tablets of Cinnarizine. Carbohydr. Polym. 2020, 246, 116519. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.; Vo, A.Q.; Feng, X.; Ye, X.; Kim, D.W.; Repka, M.A. Hydroxypropyl Methylcellulose-Based Controlled Release Dosage by Melt Extrusion and 3D Printing: Structure and Drug Release Correlation. Carbohydr. Polym. 2017, 177, 49–57. [Google Scholar] [CrossRef]
Group | Solubility (μg/mL) | Times |
---|---|---|
ITZ | 5.5 | 1.0 |
PM-soluplus® + ITZ | 22.9 | 4.1 * |
PM-HPC-EF + ITZ | 8.4 | 1.5 |
PM-XL-10 + ITZ | 11.1 | 2.0 |
PM-PVP-K90 + ITZ | 5.6 | 1.0 |
PM-HPMC-AS + ITZ | 6.7 | 1.2 |
EXT-soluplus® + ITZ | 236.2 | 42.6 ** |
EXT-HPC-EF + ITZ | 119.9 | 21.6 ** |
EXT-XL-10 + ITZ | 329.1 | 59.3 ** |
EXT-PVP-K90 + ITZ | 54.8 | 9.9 |
EXT-HPMC-AS + ITZ | 26.8 | 4.8 |
# | Shell (mm) | Infill % | Diameter (mm) | * Variation % | Height (mm) | * Variation % | Weight (mg) | ** Variation % | Density (mg/mm3) |
---|---|---|---|---|---|---|---|---|---|
EXT | 0 | 100 | 12.00 ± 0.01 | 0.00 | 2.45 ± 0.01 | 0.24 | 401.67 ± 3.79 | 0.94 | 1.45 |
T1 | 0.4 | 90 | 12.08 ± 0.03 | 0.69 | 3.98 ± 0.04 | 1.25 | 397.63 ± 5.33 | 1.34 | 0.87 |
T2 | 0.8 | 82 | 12.07 ± 0.01 | 0.56 | 3.98 ± 0.06 | 0.75 | 392.83 ± 2.42 | 0.62 | 0.87 |
T3 | 1.6 | 76 | 12.09 ± 0.04 | 0.78 | 3.99 ± 0.08 | 1.75 | 401.23 ± 2.17 | 0.54 | 0.87 |
T4 | 2.4 | 68 | 12.06 ± 0.03 | 0.50 | 3.97 ± 0.03 | 0.25 | 402.37 ± 5.90 | 1.47 | 0.88 |
T5 | 3.2 | 60 | 12.09 ± 0.02 | 0.72 | 3.99 ± 0.01 | 0.25 | 412.07 ± 5.98 | 1.45 | 0.90 |
Mathematical Models | Formula | Definition |
---|---|---|
Zero-order | Qt: the amount of drug released in time t Q0: the initial amount of drug in the solution K0: the zero-order release constant | |
First-order | C: the amount of drug at time t : the initial concentration k: the first-order rate constant | |
Higuchi | Qt: the drug released at time t : the drug loading of the dosage K: Higuchi constant | |
Korsmeyer–Peppas | Qt: the drug released at time t : the drug loading of the dosage k: the rate constant n: the release exponent | |
Peppas–Sahlin | Qt: drug released at time t is the drug loading of the dosage k1/k2: the kinetic constant m: the release exponent |
# | Zero-Order | First-Order | Higuchi | Korsmeyer–Peppas | Peppas–Sahlin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K0 | R2 | k | R2 | k | R2 | kkp | n | R2 | k1 | k2 | m | R2 | |
EXT | 0.003 | 0.9963 | 0.000031 | 0.9963 | 0.027 | 0.8722 | 0.004 | 0.949 | 0.9973 | −0.021 | 0.014 | 0.373 | 0.9991 |
T1 | 0.002 | 0.9989 | 0.000025 | 0.9989 | 0.021 | 0.8601 | 0.003 | 0.994 | 0.9989 | −0.002 | 0.003 | 0.473 | 0.9990 |
T2 | 0.003 | 0.9975 | 0.000031 | 0.9974 | 0.024 | 0.8361 | 0.002 | 1.061 | 0.9988 | −0.005 | 0.004 | 0.476 | 0.9991 |
T3 | 0.004 | 0.9988 | 0.000042 | 0.9988 | 0.037 | 0.8603 | 0.004 | 0.989 | 0.9988 | −0.019 | 0.012 | 0.410 | 0.9998 |
T4 | 0.006 | 0.9814 | 0.000055 | 0.9818 | 0.049 | 0.9248 | 0.016 | 0.812 | 0.9992 | 0.014 | 0.005 | 0.472 | 0.9995 |
T5 | 0.006 | 0.9411 | 0.000065 | 0.9417 | 0.058 | 0.9563 | 0.024 | 0.703 | 0.9946 | 0.029 | 0.005 | 0.460 | 0.9955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Guo, J.; Li, Y.; Yang, W.; Ni, W.; Jia, Y.; Yu, M.; Zhang, J. Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies. Polymers 2024, 16, 3302. https://doi.org/10.3390/polym16233302
Huang L, Guo J, Li Y, Yang W, Ni W, Jia Y, Yu M, Zhang J. Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies. Polymers. 2024; 16(23):3302. https://doi.org/10.3390/polym16233302
Chicago/Turabian StyleHuang, Lianghao, Jingjing Guo, Yusen Li, Weiwei Yang, Wen Ni, Yaru Jia, Mingchao Yu, and Jiaxiang Zhang. 2024. "Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies" Polymers 16, no. 23: 3302. https://doi.org/10.3390/polym16233302
APA StyleHuang, L., Guo, J., Li, Y., Yang, W., Ni, W., Jia, Y., Yu, M., & Zhang, J. (2024). Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies. Polymers, 16(23), 3302. https://doi.org/10.3390/polym16233302