Experimental and Numerical Study on the Impact Response of Composite Sandwich Structures with Different Cores
Abstract
:1. Introduction
2. Experimental Method
2.1. Material and Fabrication
2.2. Low-Velocity Impact Test
3. Finite Element Modelling
3.1. Damage Model of Composite Panel
3.1.1. Damage Initiation Criteria
3.1.2. Damage Evolution
3.2. Finite Element Implementation
3.3. Finite Element Model
4. Results and Discussion
4.1. Impact Experimental Results of Simple GFRP
4.1.1. Contact Force and Tip Displacement Histories
4.1.2. Contact Force vs. Displacement Response
4.1.3. Evolution of Impact Energy and Its Absorption
4.2. Impact Responses for Sandwich Structures
4.2.1. Contact Force and Tip Displacement Histories
4.2.2. Contact Force vs. Displacement Response
4.3. Validation of the Finite Model
4.4. Comparison of Damage Initiation and Evolution
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Politano, G.G.; Cazzanelli, E.; Versace, C.; Castriota, M.; Desiderio, G.; Davoli, M.; Vena, C.; Bartolino, R. Micro-Raman investigation of Ag/graphene oxide/Au sandwich structure. Mater. Res. Express 2019, 6, 075605. [Google Scholar] [CrossRef]
- Elamin, M.; Li, B.; Tan, K. Impact damage of composite sandwich structures in arctic condition. Compos. Struct. 2018, 192, 422–433. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, B.; Ma, L.; Wu, L.; Pan, S.; Yang, J. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Compos. Struct. 2014, 108, 304–310. [Google Scholar] [CrossRef]
- Rong, Y.; Liu, J.; Luo, W.; He, W. Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels. Compos. Part B Eng. 2018, 152, 324–335. [Google Scholar] [CrossRef]
- Fu, K.; Wang, H.; Chang, L.; Foley, M.; Friedrich, K.; Ye, L. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels. Compos. Sci. Technol. 2018, 165, 74–83. [Google Scholar] [CrossRef]
- Morada, G.; Ouadday, R.; Vadean, A.; Boukhili, R. Low-velocity impact resistance of ATH/epoxy core sandwich composite panels: Experimental and numerical analyses. Compos. Part B Eng. 2017, 114, 418–431. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Lin, Y.; Xiang, Y.; Jiang, Y.; Sun, Q.; Song, C. Low-velocity impact responses of UHMWPE fiber/epoxy laminates with plasma treatment and polypyrrole grafting. Mater. Lett. 2024, 362, 136199. [Google Scholar] [CrossRef]
- Yang, S.; Luo, H.; Wang, L.; Mu, Y.; Wu, L. Effect of core structure on the quasi-static bending behaviors and failure mechanisms of aluminum foam sandwiches at elevated temperatures. Mater. Charact. 2024, 208, 113638. [Google Scholar] [CrossRef]
- Brekken, K.A.; Bakk, M.S.; Dey, S.; Berstad, T.; Reyes, A.; Børvik, T. On the ballistic perforation resistance of a sandwich structure with aluminium skins and aluminium foam core. Mater. Lett. 2023, 351, 135083. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, L.; Bian, W.; Leng, J.; Liu, Y. Bending performance and failure behavior of 3D printed continuous fiber reinforced composite corrugated sandwich structures with shape memory capability. Compos. Struct. 2021, 262, 113626. [Google Scholar] [CrossRef]
- Yıldız, B.K.; Yıldız, A.S.; Kul, M.; Tür, Y.K.; Işık, E.; Duran, C.; Yılmaz, H. Mechanical properties of 3D-printed Al2O3 honeycomb sandwich structures prepared using the SLA method with different core geometries. Ceram. Int. 2024, 50, 2901–2908. [Google Scholar] [CrossRef]
- Kumar, A.; Narayanan, R.G.; Muthu, N. Manufacture of honeycomb core sandwich structures by hybrid approaches: Analysis using lab scale experiments and numerical simulation. Thin Wall. Struct. 2024, 198, 111739. [Google Scholar] [CrossRef]
- Zhu, Y.; Polyzos, E.; Pyl, L. Stiffness optimisation of sandwich structures with elastically isotropic lattice core. Thin Wall. Struct. 2024, 195, 111408. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Ghannadpour, S.; Nedjad, K.H. Functionally graded multi-morphology lattice structures as an optimized sandwich core via digital light processing additive manufacturing. Mater. Des. 2024, 238, 112710. [Google Scholar] [CrossRef]
- Sun, G.; Wang, E.; Wang, H.; Xiao, Z.; Li, Q. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores. Mater. Des. 2018, 160, 1117–1136. [Google Scholar] [CrossRef]
- Sun, G.; Huo, X.; Wang, H.; Hazell, P.J.; Li, Q. On the structural parameters of honeycomb-core sandwich panels against low-velocity impact. Compos. Part B Eng. 2021, 216, 108881. [Google Scholar] [CrossRef]
- Sun, H.; Yuan, H.; Zhang, J.; Zhang, J.; Du, J.; Huang, W. Dynamic response of multilayer sandwich beams with foam-filled trapezoidal corrugated and foam cores under low-velocity impact. Eng. Struct. 2023, 286, 116080. [Google Scholar] [CrossRef]
- Mocian, O.A.; Constantinescu, D.M.; Sorohan, S.; Sandu, M. Low velocity failure and integrity assessment of foam core sandwich panels. Frat. Integrità Strutt. 2019, 13, 230–241. [Google Scholar] [CrossRef]
- Zhu, S.; Chai, G.B. Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact. Compos. Struct. 2013, 101, 204–214. [Google Scholar] [CrossRef]
- Park, J.H.; Ha, S.K.; Kang, K.-W.; Kim, C.W.; Kim, H.-S. Impact damage resistance of sandwich structure subjected to low velocity impact. J. Mater. Process. Technol. 2008, 201, 425–430. [Google Scholar] [CrossRef]
- Mazzuca, P. Flexural behaviour of GFRP sandwich panels with eco-friendly PET foam core for the rehabilitation of building floors. Structures 2024, 60, 105815. [Google Scholar] [CrossRef]
- Wang, H.; Ramakrishnan, K.R.; Shankar, K. Experimental study of the medium velocity impact response of sandwich panels with different cores. Mater. Des. 2016, 99, 68–82. [Google Scholar] [CrossRef]
- Huo, X.; Liu, H.; Luo, Q.; Sun, G.; Li, Q. On low-velocity impact response of foam-core sandwich panels. Int. J. Mech. Sci. 2020, 181, 105681. [Google Scholar] [CrossRef]
- Mahdian, M.; Ebrahimi, H. Analytical and Numerical Analysis of Low Velocity Impact on Metallic Sandwich Panel with Polyurethane Foam Core. In Proceedings of the International Conference in New Research of Industrial and Mechanical Engineering, Tehran, Iran, 17 September 2015. [Google Scholar]
- Zhang, X.; Xu, F.; Zang, Y.; Feng, W. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact. Compos. Struct. 2020, 236, 111882. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, S.; Fu, K.; Han, X.; Ye, L. Low-velocity impact response of composite sandwich structures: Modelling and experiment. Compos. Struct. 2017, 168, 322–334. [Google Scholar] [CrossRef]
- Pan, X.; Chen, L.; Deng, J.; Zhao, W.; Jin, S.; Du, B.; Chen, Y.; Li, W.; Liu, T. Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core. Compos. Struct. 2023, 324, 117574. [Google Scholar] [CrossRef]
- Santiuste, C.; Sánchez-Sáez, S.; Barbero, E. A comparison of progressive-failure criteria in the prediction of the dynamic bending failure of composite laminated beams. Compos. Struct. 2010, 92, 2406–2414. [Google Scholar] [CrossRef]
- Liu, B.; Cao, S.; Gao, N.; Cheng, L.; Liu, Y.; Zhang, Y.; Feng, D. Thermosetting CFRP interlaminar toughening with multi-layers graphene and MWCNTs under mode I fracture. Compos. Sci. Technol. 2019, 183, 107829. [Google Scholar] [CrossRef]
- Chairi, M.; El Bahaoui, J.; Hanafi, I.; Favaloro, F.; Borsellino, C.; Galantini, F.; Di Bella, G. The effect of span length on the flexural properties of glass and basalt fiber reinforced sandwich structures with balsa wood core for sustainable shipbuilding. Compos. Struct. 2024, 340, 118187. [Google Scholar] [CrossRef]
- ASTM D7136/D7136M; Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM: West Conshohocken, PA, USA, 2015.
- Miranda, I.; Pereira, H. Cork Façades as an Innovative and Sustainable Approach in Architecture: A Review of Cork Materials, Properties and Case Studies. Materials 2024, 17, 4414. [Google Scholar] [CrossRef]
- Bishop, N. Analysis of the Damping Properties of Sandwich Panels with Different Skin and Core Materials. UNSW Canberra ADFA J. Undergrad. Eng. Res. 2012, 5, 1–13. [Google Scholar]
- Ramakrishnan, K.R.; Shankar, K.; Viot, P.; Guerard, S. A numerical study of the impact properties of sandwich panels with different cores. In Proceedings of the 7th Australasian Congress on Applied Mechanics (ACAM 7), Adelaide, Australia, 9–12 December 2012; Curran Associates, Inc.: New York, NY, USA, 2017; pp. 915–924. [Google Scholar]
- Deka, L.; Vaidya, U. LS-DYNA impact simulation of composite sandwich structures with balsa wood core. In Proceedings of the 10th International LSDYNA Users’ Conference, Detroit, MI, USA, 8–10 June 2008; Available online: https://www.dynalook.com/conferences/international-conf-2008/ImpactAnalysis-2.pdf/view (accessed on 30 December 2008).
- Tang, N.; Lei, D.; Huang, D.; Xiao, R. Mechanical performance of polystyrene foam (EPS): Experimental and numerical analysis. Polym. Test. 2019, 73, 359–365. [Google Scholar] [CrossRef]
- Atas, C.; Akgun, Y.; Dagdelen, O.; Icten, B.M.; Sarikanat, M. An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes. Compos. Struct. 2011, 93, 1178–1186. [Google Scholar] [CrossRef]
- Wang, C.; Su, D.; Xie, Z.; Zhang, K.; Wu, N.; Han, M.; Zhou, M. Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres. Polym. Test. 2021, 101, 107314. [Google Scholar] [CrossRef]
- Rahman, A.S.; Mathur, V.; Asmatulu, R. Effect of nanoclay and graphene inclusions on the low-velocity impact resistance of Kevlar-epoxy laminated composites. Compos. Struct. 2018, 187, 481–488. [Google Scholar] [CrossRef]
Materials | Face-Sheet (E-Glass) [22,34,35] | Wood (Cork Core) [22,32,33] | Foam (Polystyrene (PS) Core) [22,33,36] | |
---|---|---|---|---|
Density (kg/m3) | ρ | 1850 | 150.4 | 32.4 |
Young’s Modulus (GPa) | E1 | 27.1 | 0.013 | 0.016 |
E2 | 27.1 | 0.013 | 0.016 | |
E3 | 12 | 0.021 | 0.016 | |
Poisson’s Ratio | υ12 | 0.11 | 0.1 | 0.3 |
υ23 | 0.18 | 0.1 | 0.3 | |
υ31 | 0.18 | 0.1 | 0.3 | |
Shear Modulus (GPa) | G12 | 2.9 | 0.0044 | 0.0025 |
G23 | 2.14 | 0.0044 | 0.0025 | |
G31 | 2.14 | 0.0044 | 0.0025 | |
Strength (MPa) | tensile | 604 (in-plane), 58 (out-of-plane) | 0.6 | 0.5 |
compressive | 291 | 0.3 | 0.3 | |
shear | 75 (matrix), 85 (fiber) | 5.9 | 4.5 |
Specimen | Front_x 1 (mm) | Front_y 2 (mm) | Back_x (mm) | Back_y (mm) |
---|---|---|---|---|
GFRP_20 J | 17.98 | 15.65 | 25.7 | 26.25 |
GFRP_40 J | 28.76 | 31.53 | 45.92 | 42.95 |
GFRP_60 J | 33.74 | 32.32 | 41.75 | 43.01 |
GFRP_80 J | 35.67 | 35.88 | 44.53 | 43.99 |
GFRP_100 J | 51.88 | 50.76 | 57.94 | 57.82 |
PS foam_100 J | 41.08 | 39.83 | 49.76 | 41.08 |
Wood_100 J | 42.32 | 33.61 | 43.56 | 44.81 |
Cork Wood Core | PS Foam Core | |
---|---|---|
Experiment contact force (N) | 5794 | 5213 |
Simulation contact force (N) | 5329 | 5120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, G.; Xiao, C.; Liu, B.; Zhang, H.; Jia, P.; Wang, C. Experimental and Numerical Study on the Impact Response of Composite Sandwich Structures with Different Cores. Polymers 2024, 16, 3436. https://doi.org/10.3390/polym16233436
Feng G, Xiao C, Liu B, Zhang H, Jia P, Wang C. Experimental and Numerical Study on the Impact Response of Composite Sandwich Structures with Different Cores. Polymers. 2024; 16(23):3436. https://doi.org/10.3390/polym16233436
Chicago/Turabian StyleFeng, Guangshuo, Chunlu Xiao, Bo Liu, Haitao Zhang, Peipei Jia, and Caizheng Wang. 2024. "Experimental and Numerical Study on the Impact Response of Composite Sandwich Structures with Different Cores" Polymers 16, no. 23: 3436. https://doi.org/10.3390/polym16233436
APA StyleFeng, G., Xiao, C., Liu, B., Zhang, H., Jia, P., & Wang, C. (2024). Experimental and Numerical Study on the Impact Response of Composite Sandwich Structures with Different Cores. Polymers, 16(23), 3436. https://doi.org/10.3390/polym16233436