Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development
Abstract
:1. Intelligent Designs from Nature
2. Woody Biomass—A Natural Smart Material
3. Kraft Pulping—How the First Industrial Revolution Caused the Emergence of a New Industry
4. Ongoing Environmental and Economic Sustainability Issues
4.1. Operational Challenges
4.2. Environmental Problems
4.3. Low-Quality Co-Products
5. The Industry’s Efforts to Sustain Convention and the Bottom Line
5.1. “Drop-In” Chemicals to Shift Towards “Bio-Based” Solutions
5.2. Greenwashing
6. A Responsible Future for the Pulp and Paper Industry
6.1. Artificial Intelligence: The Answer to Every Chronic Problem
6.2. Sustainable Feedstock Supply
6.3. Disruptive Innovations in Wood Pulping
Biomass Source | Pulping Conditions | Mw of lignin (Da) a | Ref. |
---|---|---|---|
Lignin-first Biorefining | |||
Pine | 235 °C, 53% w/w methanol, 180 min, Pd/C catalyst | 150–550 | [172] |
Hemicellulose-first Biorefining | |||
Eucalyptus | 180 °C, 5% solid loading, 40 min, liquid hot water soluble | 560 | [173] |
Sugar maple | 160 °C, 25% solid loading, 45 min, liquid hot water insoluble | 2946 | [174] |
Organosolv Pulping | |||
Birch, Spruce | 183 °C, 50–60% v/v ethanol, 60 min | 4200–4600 | [175] |
Pinus radiata | 170–200 °C, 40–60 wt.% ethanol, 50–100 min | 1650–10,700 | [176] |
Beech, birch | Acetosolv Fabiola™ process, Fraunhofer CBP | ~3500 | [177] |
Norway spruce | 195 °C, 50 wt.% acetone, 1 wt.% H2SO4, 80–30 min | 3300 | [178] |
Ionosolv Process | |||
Miscanthus | Finely ground biomass, 10–20 wt.% loadings, [TEA][HSO4] IL/water, T = 120 °C | 4620–4900 | [179] |
Miscanthus | Medium-size ground biomass, 10–20 wt.% loadings, [TEA][HSO4] IL/water, T = 120 °C | 5720–5760 | [179] |
Miscanthus | Coarse biomass, 10–20 wt.% loadings, [TEA][HSO4] IL/water, T = 120 °C | 5600–6500 | [179] |
Rice husk | 1.5% loading, [C3SO3Hmim]Cl, T = 100 °C | 13,800 | [180] |
Miscanthus | [DMBA][HSO4], 80 wt.% in water, precipitated with 0.5 and 1 equiv. water b, 90% total yield | 18,200–39,700 | [181] |
Miscanthus | [DMBA][HSO4][H2SO4]0.3 c, 80 wt.% in water, precipitated with 0.25 and 0.5 equiv. water b, 88% total yield | 151,800–207,000 | [181] |
Willow | [DMBA][HSO4], 80 wt.% in water, precipitated with 1 and 1.5 equiv. water b, 86% total yield | 4400–14,400 | [181] |
Pine | [DMBA][HSO4], 80 wt.% in water, precipitated with 0.5 and 1 equiv. water b, 91% total yield | 20,900–75,200 | [181] |
Ionosolv/Organosolv Hybrid | |||
Miscanthus, pine | 10–50 wt.% loadings, [TEA][HSO4]/Ethanol (80%), T = 120 °C d | ~7700 | [182] |
Miscanthus, pine | 10–50 wt.% loadings, [TEA][HSO4]/Butanol (80%), T = 120 °C d | ~7000 | [182] |
Eutectic mixtures e-based fractionation | |||
Poplar | Choline chloride/Lactic acid (1:9 molar ratio) e, wood chips cooked at T = 120 °C | 11,374 | [183] |
Poplar | Choline chloride/Lactic acid (1:9 molar ratio) e, wood chips cooked at T = 150 °C | 5044 | [183] |
7. Sustainability Is Hard, but When Do the Hard Decisions Get Made?
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Alexander, J. Casein, Its Preparation, Chemistry and Technical Utilization. J. Chem. Educ. 1927, 4, 132–133. [Google Scholar] [CrossRef]
- Knight, L. A Brief History of Plastics, Natural and Synthetic. BBC News. 17 May 2014. Available online: https://www.bbc.com/news/magazine-27442625/ (accessed on 21 January 2024).
- Chin, T. The Invention of the Silk Road, 1877. Crit. Inq. 2013, 40, 194–219. [Google Scholar] [CrossRef]
- Wang, Y.; Naleway, S.E.; Wang, B. Biological and Bioinspired Materials: Structure Leading to Functional and Mechanical Performance. Bioact. Mater. 2020, 5, 745–757. [Google Scholar] [CrossRef]
- Kim, K.; Kang, M. Mechanical and Microstructural Characteristics of 1.5 GPa-Grade Boron Steel by High Frequency Induction of Eddy Currents. Metals 2023, 13, 1810. [Google Scholar] [CrossRef]
- Kobayashi, J.; Ina, D.; Futamura, A.; Sugimoto, K.-I. Fracture Toughness of an Advanced Ultrahigh-Strength TRIP-aided Steel. ISIJ Int. 2014, 54, 955–962. [Google Scholar] [CrossRef]
- Powers, A. Spider Silk Stronger Than Steel? Nature’s Supermaterial. Berkeley Sci. J. 2013, 18, 46–49. [Google Scholar] [CrossRef]
- Zhang, M.; Jiao, D.; Tan, G.; Zhang, J.; Wang, S.; Wang, J.; Liu, Z.; Zhang, Z.; Ritchie, R.O. Strong, Fracture-Resistant Biomimetic Silicon Carbide Composites with Laminated Interwoven Nanoarchitectures Inspired by the Crustacean Exoskeleton. ACS Appl. Nano Mater. 2019, 2, 1111–1119. [Google Scholar] [CrossRef]
- Paillet, M.; Dufresne, A. Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules 2001, 34, 6527–6530. [Google Scholar] [CrossRef]
- Chitin: Product Description. Chemical Book. (CAS RN: 1398-61-4). Available online: https://www.chemicalbook.com/chemicalproductproperty_us_cb9853096.aspx (accessed on 10 September 2024).
- Agarwal, B.D.; Broutman, L.J. Analysis and Performance of Fiber Composites, 2nd ed.; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Arumugam, N.; Chelliapan, S.; Kamyab, H.; Thirugnana, S.; Othman, N.; Nasri, N.S. Treatment of Wastewater Using Seaweed: A Review. Int. J. Environ. Res. Public Health 2018, 15, 2851. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Yoo, C.G.; Meng, X.; Pu, Y.; Ragauskas, A.J. Advances in Lignocellulosic Biomass Fractionation Processes. Bioresour. Technol. 2020, 301, 122784. [Google Scholar] [CrossRef]
- Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and Biomass: A Negative Correlation for Wood Formation in Trees. Plant Physiol. 2010, 154, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial Lignocellulosic Biomass a Key to Unlock the Future Bio-energy: A Brief Review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Clarke, A.J. Biodegradation of Cellulose: Enzymology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1996; p. 272. [Google Scholar]
- Parresol, B.R.; Cao, F. An Investigation of Crystalline Intensity of the Wood of Poplar Clones Grown in Jiangsu Province, China; United States Forest Service: Ashville, NC, USA, 1998; p. 7. [Google Scholar]
- Morrison, I.M. Plant and Algal Polysaccharides. Carbohydr. Chem. 1972, 15, 21–69. [Google Scholar] [CrossRef]
- Jahan, M.S.; Mun, S.P. Effect of Tree Age on the Cellulose Structure of Nalita Wood (Trema orientalis). Wood Sci. Technol. 2005, 39, 367–373. [Google Scholar] [CrossRef]
- Timell, T.E. Chain Length and Chain-Length Distribution of Untreated Cotton, Flax, and Ramie Celluloses. Ind. Eng. Chem. 1955, 47, 2166–2172. [Google Scholar] [CrossRef]
- Usmanov, K.U.; Sushkevitch, T.I. Study of Polydispersity of Cotton Cellulose According to Molecular Weight. J. Polym. Sci. 1962, 58, 1325–1331. [Google Scholar] [CrossRef]
- U.S. Congress. Biopolymers: Making Materials Nature’s Way-Background Paper; U.S. Government Printing Office: Washington, DC, USA, 1993; p. 86. Available online: https://ota.fas.org/reports/9313.pdf (accessed on 5 December 2024).
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef]
- Li, K.; Zhong, W.; Li, P.; Ren, J.; Jiang, K.; Wu, W. Antibacterial Mechanism of Lignin and Lignin-Based Antimicrobial Materials in Different Fields. Int. J. Biol. Macromol. 2023, 1, 126281. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Ragauskas, A. Lignin as a UV Light Blocker—A Review. Polymers 2020, 12, 1134. [Google Scholar] [CrossRef]
- Britannica. 2023. Available online: https://www.britannica.com/biography/Hugh-Burgess (accessed on 10 September 2024).
- Watt, C.; Burgess, H. Improvement in the Manufacture of Paper from Wood. U.S. Patent 11343A, 18 July 1854. [Google Scholar]
- Tilghman, B. Improved Mode of Treating Vegetable Substances for Making Paper-Pulp. U.S. Patent 70485A, 5 November 1867. [Google Scholar]
- Biermann, C.J. Essentials of Pulping and Papermaking; Academic Press, Inc.: San Diego, CA, USA, 1993; p. 472. [Google Scholar]
- Dahl, C.F. Process of Manufacturing Cellulose from Wood. U.S. Patent 296,935, 15 April 1884. [Google Scholar]
- Vakkilainen, E.K. Black Liquor Dry Solids. In Steam Generation from Biomass Construction and Design of Large Boilers; Vakkilainen, E.K., Ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 2017; pp. 242–245. [Google Scholar] [CrossRef]
- Tomlinson, G.H. Method of Treating Pulp Mill Waste Cooking Liquors. Patent GB397787A, 31 August 1933. [Google Scholar]
- IEA Bioenergy. Available online: https://www.ieabioenergy.com/wp-content/uploads/2013/10/Black-Liquor-Gasification-summary-and-conclusions1.pdf (accessed on 10 September 2024).
- CNBM International Pulp & Paper. 2 Typical Pulp Digesters of Continuous Cooking: Tower Type and Tubular Digester. Available online: https://paperpulpingmachine.com/pulp-digester-continuous-cooking/ (accessed on 27 November 2024).
- NAF. Recovery Boiler. Available online: https://naf.se/applications/chemical-pulping/recovery-process/recovery-boiler/ (accessed on 26 November 2024).
- CEPI. Key Statistics; Confederation of European Paper Industries: Brussels, Belgium, 2022; Available online: https://www.cepi.org/wp-content/uploads/2023/07/2022-Key-Statistics-FINAL.pdf (accessed on 5 December 2024).
- NCASI. Available online: https://www.ncasi.org/pulp-paper-manufacturing/ (accessed on 10 September 2024).
- GIZ. Indian Pulp and Paper Sector; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: New Delhi, India, 2021; pp. 1–72. [Google Scholar]
- China Briefing. China’s Pulp and Paper Industry—Opportunities for Foreign Investors. Available online: https://www.china-briefing.com/news (accessed on 10 September 2024).
- IBIS World. Paper Mills in the US—Number of Businesses. Available online: https://www.ibisworld.com/industry-statistics/number-of-businesses/paper-mills-united-states/ (accessed on 10 September 2024).
- Statista. Number of Paper Mill Businesses in the United States from 2010 to 2023. Available online: https://www.statista.com/statistics/1137373/number-of-paper-mill-businesses-in-the-us/ (accessed on 10 September 2024).
- U.S. EPA. CH 10.2: Chemical Wood Pulping. Available online: https://www3.epa.gov/ttnchie1/ap42/ch10/final/c10s02.pdf (accessed on 18 January 2024).
- Statista. Paper Consumption Worldwide from 2021 to 2032. Available online: https://www.statista.com/statistics/1089078/demand-paper-globally-until-2030 (accessed on 10 September 2024).
- Statista. Production of Chemical Wood Pulp Worldwide from 1961 to 2022. Available online: https://www.statista.com/statistics/1178289/production-of-chemical-pulp-worldwide (accessed on 10 September 2024).
- Kim, C.-H.; Lee, J.-Y.; Park, S.-H.; Moon, S.-O. Global Trends and Prospects of Black Liquor as Bioenergy. J. Korea TAPPI 2019, 51, 3–15. [Google Scholar] [CrossRef]
- Pola, L.; Collado, S.; Oulego, P.; Díaz, M. Kraft Black Liquor as a Renewable Source of Value-Added Chemicals. Chem. Eng. J. 2022, 448, 137728. [Google Scholar] [CrossRef]
- U.S. BLS. Incidence Rates of Nonfatal Occupational Injuries and Illnesses by Industry and Case Types. 2022. Available online: https://www.bls.gov/web/osh/table-1-industry-rates-national.htm (accessed on 10 September 2024).
- U.S. Department of Labor. Available online: https://fraser.stlouisfed.org/files/docs/publications/bls/bls_1036_1952.pdf (accessed on 10 September 2024).
- Clarke, T. Intercon Mill rocked by Dec. 13 incident that damaged dissolving tanks. 13 January 2023. Available online: https://www.princegeorgecitizen.com/local-news/intercon-mill-rocked-by-dec-13-incident-that-damaged-dissolving-tanks-6377363 (accessed on 10 September 2024).
- Lopez, T. Paper Mill Workers Upset Over Safety Concerns. Available online: https://www.wsls.com/news/2017/10/10/paper-mill-workers-upset-over-safety-concerns/ (accessed on 10 September 2024).
- Pelton, T. Cleaning Up Paper Mill Waste Subsidies and “Black Liquor” Pollution. 8 April 2021. Available online: https://www.wypr.org/show/the-environment-in-focus/2021-04-08/cleaning-up-paper-mill-waste-subsidies-and-black-liquor-pollution (accessed on 10 September 2024).
- Bernard, J.-T.; Hussain, J.; Sinha, M.M. Survival of the Cleanest? Evidence from a Plant-Level Analysis of Pollutant Emissions in Canadian Pulp and Paper Industry, 2005–2013. Environ. Econ. Pol. Stud. 2020, 22, 109–126. [Google Scholar] [CrossRef]
- Center for Biological Diversity. Available online: https://www.biologicaldiversity.org/programs/climate_law_institute/global_warming_litigation/clean_air_act/pdfs/Fact_Sheet_07-22-2010.pdf (accessed on 10 September 2024).
- Tran, H.; Vakkilainen, E.K. The Kraft Chemical Recovery Process; TAPPI: Peachtree Corners, GA, USA, 2016; p. 8. [Google Scholar]
- Sousa, A.M.; Pinto, I.S.S.; Machado, L.; Gando-Ferreira, L.; Quina, M.J. Sustainability of Kraft Pulp Mills: Bleaching Technologies and Sequences with Reduced Water Use. J. Ind. Eng. Chem. 2023, 125, 58–70. [Google Scholar] [CrossRef]
- NREL. Closed-Cycle Bleach Kraft Pulp Production. Available online: https://www.nrel.gov/docs/fy01osti/26867.pdf (accessed on 10 September 2024).
- Kunhikrishnan, A.; Bolan, N.S.; Müller, K.; Laurenson, S.; Naidu, R.; Kim, W.-I. The Influence of Wastewater Irrrigation on the Transformation and Bioavaialbility of Heavy Metal(loid)s in Soil. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2012; Volume 115, pp. 215–297. [Google Scholar] [CrossRef]
- Ali, M.; Sreekrishnan, T.R. Aquatic Toxicity from Pulp and Paper Mill Effluents: A Review. Adv. Environ. Res. 2001, 5, 175–196. [Google Scholar] [CrossRef]
- Ahirwar, M.K.; Kirar, N.K.; Gupta, G.S. Mercury Contamination from Pulp and Paper Mill Untreated Effluent and Solid Waste in India: A Review. J. Ind. Environ. Chem. 2023, 7, 135. Available online: https://www.alliedacademies.org/articles/mercury-contamination-from-pulp-cum-paper-mill-untreated-effluent-and-solid-waste-in-india-a-review.pdf (accessed on 5 December 2024).
- U.S. EPA. Toxicity of Pulp and Paper Mill Effluent: A Literature Review; U.S. Environmental Protection Agency: Corvallis, OR, USA, 1979; p. 52.
- Byrne, R.J. Utilities and Effluent Treatment | Design and Operation of Dairy Effluent Treatment Plants. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 619–630. [Google Scholar] [CrossRef]
- U.S. EPA. Pulp and Paper Production (MACT I & III). Available online: https://www.epa.gov/stationary-sources-air-pollution/pulp-and-paper-production-mact-i-iii-national-emissions-standards (accessed on 10 September 2024).
- U.S. EPA. Pulp, Paper, and Paperboard Effluent Guidelines. Available online: https://www.epa.gov/eg/pulp-paper-and-paperboard-effluent-guidelines (accessed on 10 September 2024).
- EIPPC. Integrated Pollution Prevention and Control. Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-03/superseded_ppm_bref-1201.pdf (accessed on 10 September 2024).
- Juhrich, K.; Kuenen, J.; Deslauriers, M.; Trozzi, C.; Woodfield, M.; Reichart, A. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023; European Environment Agency: Copenhagen, Denmark, 2023; p. 30.
- Government of Canada. Pulp and Paper Effluent Regulations: Overview. Available online: https://www.canada.ca/en/environment-climate-change/services/managing-pollution/sources-industry/pulp-paper-effluent.html (accessed on 10 September 2024).
- Pynn, L. In Coastal Communities, the Toxic Legacy of Pulp and Paper Mills. 28 November 2022. Available online: https://undark.org/2022/11/28/in-coastal-communities-the-toxic-legacy-of-pulp-and-paper-mills (accessed on 10 September 2024).
- Kunkle, F. Maryland Environmental Officials Investigate Leak in Upper Potomac River near Shuttered Paper Mill. 25 October 2019. Available online: https://www.washingtonpost.com/dc-md-va/2019/10/25/maryland-environmental-officials-investigate-leak-upper-potomac-river-near-shuttered-paper-mill/ (accessed on 10 September 2024).
- Kays, H. What’s Left Behind: Canton Mill Closure Leaves Complex Environmental Footprint. 28 June 2023. Available online: https://smokymountainnews.com/archives/item/35886-what-s-left-behind-canton-mill-closure-leaves-complex-environmental-footprint (accessed on 10 September 2024).
- Scott, P.S.; Andrew, J.P.; Bundy, B.A.; Grimm, B.K.; Hamann, M.A.; Ketcherside, D.T.; Li, J.; Manangquil, M.Y.; Nuñez, L.A.; Pittman, D.L.; et al. Observations of Volatile Organic and Sulfur Compounds in Ambient Air and Health Risk Assessment Near a Paper Mill in Rural Idaho, U.S.A. Atmos. Pollut. Res. 2020, 11, 1870–1881. [Google Scholar] [CrossRef]
- Dionne, J.; Walker, T.R. Air Pollution Impacts from a Pulp and Paper Mill Facility Located in Adjacent Communities, Edmundston, New Brunswick, Canada and Madawaska, Maine, United States. Environ. Chall. 2021, 5, 100245. [Google Scholar] [CrossRef]
- Bergquist, A.-K.; Söderholm, K. Sustainable Energy Transition: The Case of the Swedish Pulp and Paper Industry 1973–1990. Energy Effic. 2016, 9, 1179–1192. [Google Scholar] [CrossRef]
- Furszyfer, D.D.; Rio, D.; Sovacool, B.K.; Griffiths, S.; Bazilian, M.; Kim, J.; Foley, A.M.; Rooney, D. Decarbonizing the Pulp and Paper Industry: A Critical and Systematic Review of Sociotechnical Developments and Policy Options. Renew. Sustain. Energy Rev. 2022, 167, 112706. [Google Scholar] [CrossRef]
- van Ewijk, S.; Stegemann, J.A.; Ekins, P. Limited Climate Benefits of Global Recycling of Pulp And Paper. Nat. Sustain. 2021, 4, 180–187. [Google Scholar] [CrossRef]
- Dai, M.; Sun, M.; Chen, B.; Shi, L.; Jin, M.; Man, Y.; Liang, Z.; de Almeida, C.M.V.B.; Li, J.; Zhang, P.; et al. Country-Specific Net-Zero Strategies of the Pulp and Paper Industry. Nature 2023, 626, 327–334. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency, Office of Enforcement and Compliance Assurance Office of Compliance Manufacturing, Energy and Transportation Division. Kraft Pulp Mill Compliance Assessment Guide (CAA, CWA, RCRA and EPCRA). Available online: https://archive.epa.gov/compliance/resources/publications/assistance/sectors/web/pdf/kraftpulp.pdf (accessed on 26 November 2024).
- Cluster Rule Review. Available online: www.environair.com/anglais/interface/technicalpapers/pdf/CRReview.pdf (accessed on 26 November 2024).
- Questions and Answers on Implementation of the Integrated Pollution Prevention and Control Directive. Available online: https://ec.europa.eu/commission/presscorner/detail/fr/memo_07_441 (accessed on 26 November 2024).
- Canadian Environmental Protection Act, 1999 (S.C. 1999, c. 33). Available online: https://laws-lois.justice.gc.ca/eng/acts/c-15.31/ (accessed on 26 November 2024).
- India. Country Commercial Guide. Available online: https://www.trade.gov/country-commercial-guides/india-environmental-technology (accessed on 26 November 2024).
- He, Z.; Lu, W.; Guo, X.; Shen, W.; Wang, X.; Li, C.; Li, W. Analysis of environmental regulation policy for Chinese paper enterprises. BioResources 2020, 15, 9894–9916. [Google Scholar] [CrossRef]
- Baheti, P. How Is Plastic Made? A Simple Step-By-Step Explanation; British Plastics Federation: London, UK, 2024; Available online: https://www.bpf.co.uk/plastipedia/how-is-plastic-made.aspx (accessed on 26 November 2024).
- Rødsrud, G. One of the World’s Most Advanced Biorefineries. SusValueWaste. 7 September 2017. Available online: https://www.susvaluewaste.no/2017/09/07/one-of-the-worlds-most-advanced-biorefineries (accessed on 26 November 2024).
- Shamshina, J.L.; Berton, P.; Rogers, R.D. Advances in Functional Chitin Materials: A Review. ACS Sustain. Chem. Eng. 2019, 7, 6444–6457. [Google Scholar] [CrossRef]
- Aravamudhan, A.; Ramos, D.M.; Ahmed, A.; Nada, A.A.; Kumbar, S.G. Natural Polymers: Polysaccharides and their Derivatives for Biomedical Applications. In Natural and Synthetic Biomedical Polymers; Kumbar, S.G., Laurencin, C.T., Deng, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 67–89. [Google Scholar]
- Wigell, A.; Brelid, H.; Theliander, H. Degradation/Dissolution of Softwood Hemicellulose during Alkaline Cooking at Different Temperatures and Alkali Concentrations. Nord. Pulp Pap. Res. J. 2007, 22, 488–494. [Google Scholar] [CrossRef]
- Chen, R.P.; Beatson, K.; Tam, P.; Bicho, H.L.; Trajano, H.L. Kraft Pulping of Softwood Chips with Mild Hot Water Pre-Hydrolysis to Understand the Effects of Wood Chip thickness. BioResources 2022, 17, 6303–6324. [Google Scholar] [CrossRef]
- Niemelä, K.; Alén, R. Characterization of Pulping Liquors. In Analytical Methods in Wood Chemistry, Pulping, and Papermaking; Sjöström, E., Alén, R., Eds.; Springer: Heidelberg, Germany, 1999; pp. 193–231. [Google Scholar]
- Sharma, M.; Mendes, C.V.T.; Alves, P.; Gando-Ferreira, L.M. Optimization of Hemicellulose Recovery from Black Liquor using ZnO/PES Ultrafiltration Membranes in Crossflow Mode. J. Ind. Eng. Chem. 2022, 114, 254–262. [Google Scholar] [CrossRef]
- Yi, G.; Zhang, Y. One-Pot Selective Conversion of Hemicellulose (Xylan) to Xylitol under Mild Conditions. ChemSusChem 2012, 5, 1383–1387. [Google Scholar] [CrossRef]
- Yong, K.J.; Wu, T.Y.; Lee, C.B.T.L.; Lee, Z.J.; Liu, Q.; Md Jahim, J.; Zhou, Q.; Zhang, L. Furfural Production from Biomass Residues: Current Technologies, Challenges and Future Prospects. Biomass Bioenergy 2022, 161, 106458. [Google Scholar] [CrossRef]
- Todorovic, T.; Malmström, E.; Fogelström, L. Effect of Hemicellulose Molecular Weight on Bonding Properties in Biobased Wood Adhesives. ACS Sustain. Chem. Eng. 2022, 10, 15372–15379. [Google Scholar] [CrossRef]
- Huang, L.-Z.; Ma, M.-G.; Ji, X.X.; Choi, S.I. Recent Developments and Applications of Hemicellulose from Wheat Straw: A Review. Front. Bioeng. Biotechnol. 2021, 9, 690773. [Google Scholar] [CrossRef] [PubMed]
- Mun, J.S.; Pe, J.A.; Mun, S.P. Chemical Characterization of Kraft Lignin Prepared from Mixed Hardwoods. Molecules 2021, 26, 4861. [Google Scholar] [CrossRef] [PubMed]
- Björkman, A. Isolation of Lignin from finely divided Wood with Neutral Solvents. Nature 1954, 174, 1057–1058. [Google Scholar] [CrossRef]
- Mondal, A.K.; Qin, C.; Ragauskas, A.J.; Ni, Y.; Huang, F. Preparation and Characterization of Various Kraft Lignins and Impact on their Pyrolysis Behaviors. Ind. Eng. Chem. Res. 2020, 59, 3310–3320. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A Concise Review of Current Lignin Production, Applications, Products, and their Environmental Impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Verified Market Research. Global Hemicellulose Market Size by Type, by Source, by End-User Industry, by Geographic Scope and Forecast. September 2024. Available online: https://www.verifiedmarketresearch.com/product/hemicellulose-market (accessed on 26 November 2024).
- Battestini-Vives, M.; Thuvander, J.; Arkell, A.; Lipnizki, F. Pilot-Scale Nanofiltration and Techno-Economic Evaluation of Lignin Recovery from Kraft Black Liquor. J. Wood Chem. Technol. 2024, 44, 363–376. [Google Scholar] [CrossRef]
- Olgun, Ç.; Ateş, S. Characterization and Comparison of some Kraft Lignins Isolated from Different Sources. Forests 2023, 14, 882. [Google Scholar] [CrossRef]
- Mazar, A.; Paleologou, M. New approach to Recycle and Valorize the First Filtrate of the LignoForce System™: Lignin Extraction and its Use in Rigid Lignin-Based Polyurethane Foams. Int. J. Biol. Macromol. 2023, 244, 125346. [Google Scholar] [CrossRef]
- Paper Industry Facts. Available online: https://www.paperstudies.org/resources/industryfacts/today.htm#_edn8 (accessed on 10 September 2024).
- Gebart, R. Improvement Potential in Chemical Pulping: Black Liquor Gasification. In Proceedings of the IEA-WBCSD Workshop on Energy Efficient Technologies and CO2 Reduction Potentials in the Pulp and Paper Industry, Paris, France, 9 October 2006. [Google Scholar]
- We Are Building for a Sustainable Future—The New Recovery Boiler in Frövi Is Approaching Commissioning. Billerud. 2 June 2023. Available online: https://www.billerud.com/press--news/news/2023/we-are-building-for-a-sustainable-future---the-new-recovery-boiler-in-frovi-is-approaching-commissioning (accessed on 26 November 2024).
- Recovery Boiler Combustion Optimisation. InssumAdvantage. 2023. Available online: https://anssum.com/recovery-boiler-combustion-optimisation (accessed on 26 November 2024).
- Valmet. Valmet to Deliver a New Recovery Boiler and an Ash Crystallization Plant to Klabin’s Monte Alegre Mill Modernization Project in Brazil; Valmet Oyj: Espoo, Finland, 2024; Available online: https://www.valmet.com/media/news/press-releases/2024/valmet-to-deliver-a-new-recovery-boiler-and-an-ash-crystallization-plant-to-klabins-monte-alegre-mill-modernization-project-in-brazil/ (accessed on 26 November 2024).
- Salmenoja, K. Development of Kraft Recovery Boilers—What Have Been the Main Development Steps? 2019. Available online: https://www.tappi.org/content/Events/19PEERS/19PEE59.pdf (accessed on 26 November 2024).
- Andritz. OKI—All Set to Take on the World. Spectrum Now. 2024. Available online: https://www.andritz.com/spectrum-en/latest-issues/issue-37/oki (accessed on 26 November 2024).
- Raghuveer, S. Need for Efficient Kraft Chemical Recovery Boilers to Generate Green Power. IPPTA 2012, 24, 97–100. Available online: https://ippta.co/wp-content/uploads/2021/01/2012_Issue_4_IPPTA_Articel_03.pdf (accessed on 26 November 2024).
- Qi, X.; Li, X.; Liu, F.; Lu, L.; Jin, H.; Wei, W.; Chen, Y.; Guo, L. Hydrogen Production by Kraft Black Liquor Supercritical Water Gasification: Reaction Pathway and Kinetic. Energy 2023, 282, 128839. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Y.; Chen, J.; E, J.; Leng, E.; Zhang, F.; Liao, G. Performance Comparison of Black Liquor Gasification and Oxidation in Supercritical Water from Thermodynamic, Environmental, and Techno-Economic Perspectives. Fuel 2023, 334, 126787. [Google Scholar] [CrossRef]
- NETL. Black Liquor Gasification. Available online: https://netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/blackliquor (accessed on 26 November 2024).
- Tomani, P. The Lignoboost process. Cellulose Chem. Technol. 2010, 44, 53–58. [Google Scholar]
- Hamaguchi, M.; Cardoso, M.; Vakkilainen, E. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects. Energies 2012, 5, 2288–2309. [Google Scholar] [CrossRef]
- Bajpai, P. Wood-based Products and Chemicals. In Biermann’s Handbook of Pulp and Paper; Bajpai, P., Ed.; Elsevier: Oxford, UK, 2018; pp. 233–247. [Google Scholar] [CrossRef]
- McCoy, M. Has Lignin’s Time Finally Come? 3 October 2016. Available online: https://cen.acs.org/articles/94/i39/lignins-time-finally-come.html (accessed on 10 September 2024).
- Jassal, V.; Dou, C.; Sun, N.; Singh, S.; Simmons, B.A.; Choudhary, H. Finding Values in Lignin: A Promising yet under-utilized Component of the Lignocellulosic Biomass. Front. Chem. Eng. 2022, 4, 1059305. [Google Scholar] [CrossRef]
- UPM Biochemicals. Available online: https://www.upm.com/about-us/for-media/releases/2020/12/upm-biochemicals-grows-lignin-business-with-new-domtar-supply-agreement/ (accessed on 10 September 2024).
- FPInnovations. Available online: https://web.fpinnovations.ca/lignin-from-black-liquor/ (accessed on 10 September 2024).
- Öhman, F.; Theliander, H.; Norgren, M.; Tomani, P.; Axegård, P. Method for Separating Lignin from a Lignin-Containing Liquid/Slurry. Patent US20080051566A1, 28 February 2008. [Google Scholar]
- Kouisni, L.; Paleologou, M. Method for Separating Lignin from Black Liquor. Patent WO2011150508A1, 8 December 2011. [Google Scholar]
- Lake, M.A.; Blackburn, J.C. SLRPTM—An Innovative Lignin Recovery Technology. Cellulose Chem. Technol. 2014, 48, 799–804. [Google Scholar]
- Wikberg, H.; Ohra-Aho, T.; Leppävuori, J.; Liitiä, T. Method for Activating and Precipitating Lignin. Patent BR112017028110B1, 28 August 2018. [Google Scholar]
- Fitzgerald, C.L.; Thies, M.C. Continuous Recovery of High-Purity Kraft Lignin from Black Liquor via Simultaneous, Liquid-Phase Acidification and Purification. Ind. Crops Prod. 2022, 184, 115084. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Ma, C.; Mei, X.; Fan, Y.; Zhang, Z. Oxidative Depolymerization of Kraft Lignin and its Application in the Synthesis of Lignin-Phenol-Formaldehyde Resin. Bioresources 2018, 13, 1223–1234. [Google Scholar] [CrossRef]
- Suhas; Carrott, P.J.M.; Carrott, M.M.L.R. Lignin—From Natural Adsorbent to Activated Carbon: A Review. Bioresour. Technol. 2007, 98, 2301–2312. [Google Scholar] [CrossRef]
- Rajan, K.; Mann, J.K.; English, E.; Harper, D.P.; Carrier, D.J.; Rials, T.G.; Labbé, N.; Chmely, S.C. Sustainable Hydrogels Based on Lignin-Methacrylate Copolymers with Enhanced Water Retention and Tunable Material Properties. Biomacromolecules 2018, 19, 2665–2672. [Google Scholar] [CrossRef]
- Li, Y.; Wu, M.; Wang, B.; Wu, Y.; Ma, M.G.; Zhang, X. Synthesis of Magnetic Lignin-Based Hollow Microspheres: A Highly Adsorptive and Reusable Adsorbent Derived from Renewable Resources. ACS Sustain. Chem. Eng. 2016, 4, 5523–5532. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, F.; Yang, Y.; Ge, B.C.; Meng, F.Z. Research and Application Progress of Lignin-Based Composite Membrane. J. Polym. Eng. 2021, 41, 245–258. [Google Scholar] [CrossRef]
- Nguyen, N.A.; Bowland, C.C.; Naskar, A.K. General Method to Improve 3D-Printability and Inter-Layer Adhesion in Lignin-Based Composites. Appl. Mater. Today 2018, 12, 138–152. [Google Scholar] [CrossRef]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic Conversion of Lignocellulosic Biomass into Chemicals and Fuels. Green Energy Environ. 2023, 8, 101–114. [Google Scholar] [CrossRef]
- Alonso, D.M.; Hakim, S.H.; Zhou, S.; Won, W.; Hosseinaei, O.; Tao, J.; Garcia-Negron, V.; Motagamwala, A.H.; Mellmer, M.A.; Huang, K.; et al. Increasing the Revenue from Lignocellulosic Biomass: Maximizing Feedstock Utilization. Sci. Adv. 2017, 3, e1603301. [Google Scholar] [CrossRef]
- Future Market Insights. Available online: https://www.futuremarketinsights.com/reports/biodegradable-paper-and-plastic-packaging-market (accessed on 10 September 2024).
- EPPA. Available online: https://eppa-eu.org/lca-study-on-takeaway (accessed on 10 September 2024).
- Wang, L.; Templer, R.; Murphy, R.J. A Life Cycle Assessment (LCA) Comparison of Three Management Options for Waste Papers: Bioethanol Production, Recycling, and Incineration with Energy Recovery. Bioresour. Technol. 2012, 120, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A.; Wenzel, H. Paper Waste—Recycling, Incineration or Landfilling? A Review of Existing Life Cycle Assessments. Waste Manag. 2007, 27, S29–S46. [Google Scholar] [CrossRef] [PubMed]
- Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of Life Cycle Assessments of Lignin and Derived Products: Lessons Learned. Sci. Total Environ. 2021, 770, 144656. [Google Scholar] [CrossRef]
- Almonti, D.; Baiocco, G.; Ucciardello, N. Pulp and Paper Characterization by Means of Artificial Neural Networks for Effluent Solid Waste Minimization—A Case Study. J. Process Control 2021, 105, 283–291. [Google Scholar] [CrossRef]
- McKinsey & Company. Available online: https://www.mckinsey.com/industries/packaging-and-paper/our-insights/tapping-digitals-full-potential-in-pulp-and-paper-process-optimization (accessed on 10 September 2024).
- Jauhar, S.K.; Raj, P.V.R.P.; Kamble, S.; Pratap, S.; Gupta, S.; Belhadi, A. A Deep Learning-Based Approach for Performance Assessment and Prediction: A Case Study of Pulp and Paper Industries. Ann. Oper. Res. 2024, 332, 405–431. [Google Scholar] [CrossRef]
- NSF. Available online: https://www.nsf.org/sustainability/paper-packaging-forestry (accessed on 10 September 2024).
- Treefree Solutions™. Available online: https://www.treefreesolutions.com (accessed on 10 September 2024).
- Tofani, G.; Cornet, I.; Tavernier, S. Separation and Recovery of Lignin and Hydrocarbon Derivatives from Cardboard. Biomass Convers. Biorefin. 2022, 12, 3409–3424. [Google Scholar] [CrossRef]
- Adu, C.; Jolly, M.; Thakur, V.K. Exploring New Horizons for Paper Recycling: A Review of Biomaterials and Biorefinery Feedstocks Derived from Wastepaper. Curr. Opin. Green Sustain. Chem. 2018, 13, 21–26. [Google Scholar] [CrossRef]
- EPA. Plastics: Material-Specific Data; EPA: Washington, DC, USA, 2023. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data (accessed on 10 September 2024).
- Dai, M.; Sun, M.; Chen, B.; Xie, H.; Zhang, D.; Han, Z.; Yang, L.; Wang, Y. Advancing Sustainability in China’s Pulp and Paper Industry Requires Coordinated Raw Material Supply and Wastepaper Management. Resour. Conserv. Recycl. 2023, 198, 107162. [Google Scholar] [CrossRef]
- Johansen, G.L. Lignin First: The Borregaard Approach to Lignocellulosic Sugars and Bioethanol. In Proceedings of the EU-India Conference on Advanced Biofuel, New Delhi, India, 7–8 March 2018; p. 12. [Google Scholar]
- Godard, H.P.; McCarthy, J.L.; Hibbert, H. Hydrogenation of Wood. J. Am. Chem. Soc. 1940, 62, 988. [Google Scholar] [CrossRef]
- De Santi, A.; Galkin, M.V.; Lahive, C.W.; Deuss, P.J.; Barta, K. Lignin-First Fractionation of Softwood Lignocellulose Using a Mild Dimethyl Carbonate and Ethylene Glycol Organosolv Process. ChemSusChem 2020, 13, 4468–4477. [Google Scholar] [CrossRef]
- Parsell, T.; Yohe, S.; Degenstein, J.; Jarrell, T.; Klein, I.; Gencer, E.; Hewetson, B.; Hurt, M.; Kim, J.I.; Choudhari, H.; et al. A Synergistic Biorefinery Based on Catalytic Conversion of Lignin Prior to Cellulose Starting from Lignocellulosic Biomass. Green Chem. 2015, 17, 1492–1499. [Google Scholar] [CrossRef]
- Luterbacher, J.S.; Shuai, L. Production of Monomers from Lignin during Depolymerization of Lignocellulose-Containing Composition. Patent WO2017178513A1, 19 October 2017. [Google Scholar]
- Tschulkow, M.; Pizzol, M.; Compernolle, T.; Van den Bosch, S.; Sels, B.; Van Passel, S. The environmental impacts of the lignin-first biorefineries: A consequential life cycle assessment approach. Resour. Conserv. Recycl. 2024, 204, 107466. [Google Scholar] [CrossRef]
- Abu-Omar, M.M.; Barta, K.; Beckham, G.T.; Luterbacher, J.S.; Ralph, J.; Rinaldi, R.; Román-Leshkov, Y.; Samec, J.S.M.; Sels, B.F.; Wang, F. Guidelines for Performing Lignin-First Biorefining. Energy Environ. Sci. 2021, 14, 262–292. [Google Scholar] [CrossRef]
- Beckham, G.T. Lignin-First. Biorefinery Development; National Renewable Energy Laboratory: Golden, CO, USA, 2021; p. 25. [Google Scholar]
- van Heiningen, A. Converting a Kraft Pulp Mill into an Integrated Forest Biorefinery. Pulp Pap. Can. 2006, 107, 38–43. [Google Scholar]
- Amidon, T.E.; Liu, S. Water-based Woody Biorefinery. Biotechnol. Adv. 2009, 27, 542–550. [Google Scholar] [CrossRef]
- API. Available online: https://www.americanprocess.com/doc/Press-Release-APIFirstCommercialImplementationGreenBoxPlus-22062015.pdf (accessed on 10 September 2024).
- Hamaguchi, M.; Kautto, J.; Vakkilainen, E. Effects of Hemicellulose Extraction on the Kraft Pulp Mill Operation and Energy Use: Review and Case Study With Lignin Removal. Chem. Eng. Res. Des. 2013, 91, 1284–1291. [Google Scholar] [CrossRef]
- Kleinert, T. Organosolv Pulping and Recovery Process. Patent US3585104A, 15 June 1971. [Google Scholar]
- Tofani, G.; Jasiukaitytė-Grojzdek, E.; Grilc, M.; Likozar, B. Organosolv Biorefinery: Resource-based Process Optimization, Pilot Technology Scale-up and Economics. Green Chem. 2024, 26, 186–201. [Google Scholar] [CrossRef]
- Luo, H.; Abu-Omar, M. Sustainable Energy Technologies & Sustainable Chemical Processes. In Encyclopedia of Sustainable Technologies; Elsevier: Oxford, UK, 2017; p. 681. [Google Scholar]
- Mielenz, J.R. Small-scale approaches for evaluating biomass bioconversion for fuels and chemicals. In Bioenergy; Dahiya, A., Ed.; Academic Press: San Diego, CA, USA, 2020; pp. 545–571. [Google Scholar]
- Rodríguez, A.; Espinosa, E.; Domínguez-Robles, J.; Sánchez, R.; Bascón, I.; Rosal, A. Different Solvents for Organosolv Pulping; InTech Open: London, UK, 2017. [Google Scholar] [CrossRef]
- Fraunhofer CBP. Extension of the Organosolv Pilot Plant. Available online: https://www.cbp.fraunhofer.de/en/reference-projects/extension-of-organosolv-pilot-plant.html (accessed on 10 September 2024).
- Fortum. Available online: https://www.fortum.com/ (accessed on 6 December 2024).
- Bloom. Available online: https://www.bloombiorenewables.com/technology (accessed on 10 September 2024).
- CORDIS EU. Available online: https://cordis.europa.eu/project/id/101023202 (accessed on 10 September 2024).
- Lumpkin, R.E. Rapid Pretreatment. Patent WO2016094594A1, 16 June 2016. [Google Scholar]
- Hämäläinen, V.; Grönroos, T.; Suonpää, A.; Heikkilä, M.W.; Romein, B.; Ihalainen, P.; Malandra, S.; Birikh, K.R. Enzymatic Processes to Unlock the Lignin Value. Front. Bioeng. Biotechnol. 2018, 6, 20. [Google Scholar] [CrossRef]
- Van Aelst, K.; Van Sinay, E.; Vangeel, T.; Cooreman, E.; Van den Bossche, G.; Renders, T.; Van Aelst, J.; Van den Bosch, S.; Sels, B.F. Reductive Catalytic Fractionation of Pine Wood: Elucidating and Quantifying the Molecular Structures in the Lignin Oil. Chem. Sci. 2020, 11, 11498–11508. [Google Scholar] [CrossRef]
- Xu, F.; Ma, Z.; Wang, X.; Wang, Q.; Han, Y.; Li, Y.; Sun, G. From Liquid Hot Water Pretreatment Solution to Lignin-Based Hydrophobic Deep Eutectic Solvent for Highly Efficient Extraction of Cr (VI). Int. J. Biol. Macromol. 2022, 208, 883–889. [Google Scholar] [CrossRef]
- Bujanovic, B. Effect of Hot-Water Extraction of Sugar Maple on Organosolv Delignification and Lignin Recovery. J. Bioresour. Bioprod. 2016, 1, 22–29. [Google Scholar]
- Hrůzová, K.; Kolman, K.; Matsakas, L.; Nordberg, H.; Christakopoulos, P.; Rova, U. Characterization of Organosolv Lignin Particles and their Affinity to Sulfide Mineral Surfaces. ACS Appl. Nano Mater. 2023, 6, 17387–17396. [Google Scholar] [CrossRef]
- Domínguez, J.C.; Santos, T.M.; Rigual, V.; Oliet, M.; Alonso, M.V.; Rodriguez, F. Thermal Stability, Degradation Kinetics and Molecular Weight of Organosolv Lignins from Pinus radiata. Ind. Crops Prod. 2018, 111, 889–898. [Google Scholar] [CrossRef]
- Duval, A.; Layrac, G.; van Zomeren, A.; Smit, A.T.; Pollet, E.; Avérous, L. Isolation of Low Dispersity Fractions of Acetone Organosolv Lignins to Understand their Reactivity: Towards Aromatic Building Blocks for Polymers Synthesis. ChemSusChem 2020, 14, 387–397. [Google Scholar] [CrossRef]
- Tanase-Opedal, M.; Ruwoldt, J. Organosolv Lignin as a Green Sizing Agent for Thermoformed Pulp Products. ACS Omega 2022, 7, 46583–46593. [Google Scholar] [CrossRef]
- Chambon, C.L.; Verdía, P.; Fennell, P.S.; Hallett, J.P. Process intensification of the IonoSolv Pretreatment: Effects of Biomass Loading, Particle Size, and Scale-Up from 10 mL to 1 L. Sci. Rep. 2021, 11, 15383. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.M.; Idris, A.; Chandrasekaram, K.; Darji, D.; Alias, Y. Rice Husk Lignin to Vanillin: IonoSolv as a Way Forward for Value-Added Biomass Depolymerization. BioResources 2023, 18, 5385–5398. [Google Scholar] [CrossRef]
- Tocco, D.; Carucci, C.; Monduzzi, M.; Salis, A.; Sanjust, E. Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2021, 9, 2412–2432. [Google Scholar] [CrossRef]
- Chen, M.; Malaret, F.; Firth, A.E.; Verdia, P.; Abouelela, A.R.; Chen, Y.; Hallett, J.P. Design of a Combined IonoSolv-Organosolv Biomass Fractionation Process for Biofuel Production and High Value-Added Lignin Valorization. Green Chem. 2020, 22, 5161–5178. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, J.; Gou, S.; Chen, Y.; Fan, Y.; Wang, Z. Direct fractionation of wood chips by deep eutectic solvent facilitated pulping technology and application for enzyme hydrolysis. Ind. Crops Prod. 2021, 171, 113927. [Google Scholar] [CrossRef]
- Abouelela, A.R.; Tan, S.-y.; Kelsall, G.H.; Hallett, J.P. Toward a Circular Economy: Decontamination and Valorization of Postconsumer Waste Wood Using the IonoSolv Process. ACS Sustain. Chem. Eng. 2020, 8, 14441–14461. [Google Scholar] [CrossRef]
- Brandt, A.; Ray, M.J.; To, T.Q.; Leak, D.J.; Murphy, R.J.; Welton, T. Ionic Liquid Pretreatment of Lignocellulosic Biomass with Ionic Liquid–Water Mixtures. Green Chem. 2011, 13, 2489–2499. [Google Scholar] [CrossRef]
- Chen, L.; Sharifzadeh, M.; Dowell, N.; Welton, T.; Shah, N.; Hallett, J.P. Inexpensive Ionic Liquids: [HSO4]−-based Solvent Production at Bulk Scale. Green Chem. 2014, 16, 3098. [Google Scholar] [CrossRef]
- Abouelela, A.R.; Gschwend, F.V.; Malaret, F.; Hallett, J.P. Commercial aspects of Biomass Deconstruction with Ionic Liquids. In Commercial Applications of Ionic Liquids; Shiflett, M.B., Ed.; Springer International: Berlin, Germany, 2020; pp. 87–127. [Google Scholar]
- Baaqel, H.; Díaz, I.; Tulus, V.; Chachuat, B.; Guillén-Gosálbez, G.; Hallett, H.P. Role of Life-Cycle Externalities in the Valuation of Protic Ionic Liquids—A Case Study in Biomass Pretreatment Solvents. Green Chem. 2020, 22, 3132–3140. [Google Scholar] [CrossRef]
- Hanabusa, H.; Izgorodina, E.I.; Suzuki, S.; Takeoka, Y.; Rikukawa, M.; Yoshizawa-Fujita, M. Cellulose-Dissolving Protic Ionic Liquids as Low-Cost Catalysts for Direct Transesterification Reactions of Cellulose. Green Chem. 2018, 20, 1412–1422. [Google Scholar] [CrossRef]
- Achinivu, E.C.; Howard, R.M.; Li, G.; Gracz, H.; Henderson, W.A. Lignin Extraction from Biomass with Protic Ionic Liquids. Green Chem. 2014, 16, 1114–1119. [Google Scholar] [CrossRef]
- Hossain, M.M.; Rawal, A.; Aldous, L. Aprotic vs Protic Ionic Liquids for Lignocellulosic Biomass Pretreatment: Anion Effects, Enzymatic Hydrolysis, Solid-State NMR, Distillation, and Recycle. ACS Sustain. Chem. Eng. 2019, 7, 11928–11936. [Google Scholar] [CrossRef]
- Brandt-Talbot, A.; Gschwend, F.J.V.; Fennell, P.S.; Lammens, T.M.; Tan, B.; Weale, J.; Hallett, J.P. An Economically Viable Ionic Liquid for the Fractionation of Lignocellulosic Biomass. Green Chem. 2017, 19, 3078–3102. [Google Scholar] [CrossRef]
- Gschwend, F.J.V.; Malaret, F.; Shinde, S.; Brandt-Talbot, A.; Hallett, J.P. Rapid Pretreatment of Miscanthus Using the Low-Cost Ionic Liquid Triethylammonium Hydrogen Sulfate at Elevated Temperatures. Green Chem. 2018, 20, 3486–3498. [Google Scholar] [CrossRef]
- Chambon, C.L.; Mkhize, T.Y.; Reddy, P.; Brandt-Talbot, A.; Deenadayalu, N.; Fennell, P.S.; Hallett, J.P. Pretreatment of South African Sugarcane Bagasse Using a Low-Cost Protic Ionic Liquid: A Comparison of Whole, Depithed, Fibrous and Pith Bagasse Fractions. Biotechnol. Biofuels 2018, 11, 247. [Google Scholar] [CrossRef]
- Gschwend, F.J.; Chambon, C.L.; Biedka, M.; Brandt-Talbot, A.; Fennell, P.S.; Hallett, J.P. Quantitative Glucose Release from Softwood After Pretreatment with Low-Cost Ionic Liquids. Green Chem. 2019, 21, 692–703. [Google Scholar] [CrossRef]
- Weigand, L.; Mostame, S.; Brandt-Talbot, A.; Welton, T.; Hallett, J.P. Effect of Pretreatment Severity on the Cellulose and Lignin Isolated from Salix Using IonoSolv Pretreatment. Faraday Discuss. 2017, 202, 331–349. [Google Scholar] [CrossRef]
- Shi, J.; Balamurugan, K.; Parthasarathi, R.; Sathitsuksanoh, N.; Zhang, S.; Stavila, V.; Subramanian, V.; Simmons, B.A.; Singh, S. Understanding the Role of water during Ionic Liquid Pretreatment of Lignocellulose: Co-Solvent or Anti-Solvent? Green Chem. 2014, 16, 3830–3840. [Google Scholar] [CrossRef]
- Gschwend, F.J.; Brandt-Talbot, A.; Chambon, C.L.; Hallett, J.P. Ultra-low Cost Ionic Liquids for the Delignification of Biomass. In Ionic Liquids: Current State and Future Directions; American Chemical Society: Washington, DC, USA, 2017; pp. 209–223. [Google Scholar] [CrossRef]
- Chambon, C.L.; Fitriyanti, V.; Verdía, P.; Yang, S.M.; Hérou, S.; Titirici, M.M.; Brandt-Talbot, A.; Fennell, P.S.; Hallett, J.P. Fractionation by Sequential Antisolvent Precipitation of Grass, Softwood, and Hardwood Lignins Isolated Using Low-Cost Ionic Liquids and Water. ACS Sustain. Chem. Eng. 2020, 8, 3751–3761. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Rogers, R.D. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev. 2023, 123, 11894–11953. [Google Scholar] [CrossRef] [PubMed]
- Fiskari, J.; Ferritsius, R.; Osong, S.H.; Persson, A.; Höglund, T.; Immerzeel, P.; Norgren, M. Deep eutectic solvent delignification to low-energy mechanical pulp to produce papermaking fibers. BioResources 2020, 15, 6023–6032. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique Low-Molecular-Weight Lignin with High Purity Extracted from Wood by Deep Eutectic Solvents (DES): A Source of Lignin for Valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Chang, J.; Liu, J.; Guo, S.-J.; Wang, X.F.Y. Investigation into Selective Separation of Lignin in Novel Deep Eutectic Solvent. J. South China Univ. Technol. 2016, 44, 14–20. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Kamenská, L.; Vrška, M.; Šima, J. Deep Eutectic Solvents: Fractionation of Wheat Straw. BioResources 2015, 10, 8039–8047. [Google Scholar] [CrossRef]
- Zhang, C.-W.; Xia, S.-Q.; Ma, P.-S. Facile Pretreatment of Lignocellulosic Biomass Using Deep Eutectic Solvents. Bioresour. Technol. 2016, 219, 1–5. [Google Scholar] [CrossRef]
- Li, A.-L.; Hou, X.-D.; Lin, K.-P.; Zhang, X.; Fu, M.-H. Rice Straw Pretreatment Using Deep Eutectic Solvents with Different Constituents Molar Ratios: Biomass Fractionation, Polysaccharides Enzymatic Digestion and Solvent Reuse. J. Biosci. Bioeng. 2018, 126, 346–354. [Google Scholar] [CrossRef]
- Smink, D.; Juan, A.; Schuur, B.; Kersten, S.R.A. Understanding the Role of Choline Chloride in Deep Eutectic Solvents Used for Biomass Delignification. Ind. Eng. Chem. Res. 2019, 58, 16348–16357. [Google Scholar] [CrossRef]
- Use of Deep Eutectic Solvents in the Production of Paper. EP2876202A1, 2013. Available online: https://patents.google.com/patent/EP2876202A1/en (accessed on 26 November 2024).
- Provides. Institute for Sustainable Process Technology, DES-20-01, 7 January 2015. Available online: https://ispt.eu/projects/provides/ (accessed on 26 November 2024).
- PRIDES. Institute for Sustainable Process Technology, DES-20-04, 1 May 2019. Available online: https://ispt.eu/projects/deep-eutectic-solvents/ (accessed on 26 November 2024).
- Lyu, G.; Li, T.; Ji, X.; Yang, G.; Liu, Y.; Lucia, L.A.; Chen, J. Characterization of Lignin Extracted from Willow by Deep Eutectic Solvent Treatments. Polymers 2018, 10, 869. [Google Scholar] [CrossRef]
Source | Pulping Conditions | MW After Pulping (Da) | Ref. |
---|---|---|---|
Anatolian black pine | 170 °C, 18% AA a, 30% sulfidity, 180 min | 6395 | [101] |
Poplar | 170 °C, 16% AA, 26% sulfidity, 150 min | 4061 | [101] |
Pine and Spruce (LignoForce™) | 170 °C, 17.5% EA b, 120 min | 4836 | [102] |
Acacia spp. and Quercus spp. | 160–165 °C, 21–23% EA, 23% sulfidity | 3041 | [95] |
Loblolly pine | 170 °C, 13.4% AA, 30 min | 3350–4400 | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajan, K.; Berton, P.; Rogers, R.D.; Shamshina, J.L. Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers 2024, 16, 3438. https://doi.org/10.3390/polym16233438
Rajan K, Berton P, Rogers RD, Shamshina JL. Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers. 2024; 16(23):3438. https://doi.org/10.3390/polym16233438
Chicago/Turabian StyleRajan, Kalavathy, Paula Berton, Robin D. Rogers, and Julia L. Shamshina. 2024. "Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development" Polymers 16, no. 23: 3438. https://doi.org/10.3390/polym16233438
APA StyleRajan, K., Berton, P., Rogers, R. D., & Shamshina, J. L. (2024). Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers, 16(23), 3438. https://doi.org/10.3390/polym16233438