Water-Based Generators with Cellulose Acetate: Uncovering the Mechanisms of Power Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of a Cellulose Acetate Column Generator (CACG)
2.2. Characteristic and Electrical Measurement of the CACG
3. Results and Discussion
3.1. Characterization of the Conductive Materials, CAC and CACG
3.2. Mechanism of the CACG for Electricity Generation
3.2.1. Mechanism of the CACG Energy by Physical Properties
3.2.2. Mechanism of the CACG Energy by Cation Effect
3.2.3. Mechanism of the CACG Energy by Relative Humidity and Multiple Connections
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Szucs, M.; Vahsen, M.L.; Melbourne, B.A.; Hoover, C.; Weiss-Lehman, C.; Hufbauer, R.A. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl. Acad. Sci. USA 2017, 114, 13501–13506. [Google Scholar] [CrossRef] [PubMed]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef]
- Devabhaktuni, V.; Alam, M.; Depuru, S.S.S.R.; Green, R.C., II; Nims, D.; Near, C. Solar energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2013, 19, 555–564. [Google Scholar] [CrossRef]
- Aziz, M.S.; Ahmed, S.; Saleem, U.; Mufti, G.M. Wind-hybrid power generation systems using renewable energy sources—A review. Int. J. Renew. Energy Res. 2017, 7, 111–127. [Google Scholar]
- Wang, Z.L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567. [Google Scholar] [CrossRef]
- Su, Y.; Yang, Y.; Zhong, X.; Zhang, H.; Wu, Z.; Jiang, Y.; Wang, Z.L. Fully enclosed cylindrical single-electrode-based triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2014, 6, 553–559. [Google Scholar] [CrossRef]
- Qi, J.; Ma, N.; Yang, Y. Photovoltaic–pyroelectric coupled effect based nanogenerators for self-powered photodetector system. Adv. Mater. Interfaces 2018, 5, 1701189. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei, W.; Xue, M.; Wang, Q.; Zhou, J.; Guo, W. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhang, X.; Lou, C.-W.; Lin, J.-H.; Li, T.-T. Preparation and study of bark-like MXene based high output power hydroelectric generator. Chem. Eng. J. 2023, 465, 142582. [Google Scholar] [CrossRef]
- Shen, D.; Duley, W.W.; Peng, P.; Xiao, M.; Feng, J.; Liu, L.; Zou, G.; Zhou, Y.N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tian, B.; Fang, S.; Guo, W.; Zhang, Z. Probing the interaction of water molecules with oxidized graphene by first principles. J. Phys. Chem. C 2021, 125, 4580–4587. [Google Scholar] [CrossRef]
- Ma, Q.; He, Q.; Yin, P.; Cheng, H.; Cui, X.; Yun, Q.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Liu, X.; Fu, S.; Woodard, T.; Gao, H.; Lovley, D.R.; Yao, J. Self-sustained green neuromorphic interfaces. Nat. Commun. 2021, 12, 3351. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shi, J.; Li, Y.; Ma, B.; Yan, X.; Liu, M.; Jin, H.; Li, D.; Jing, D.; Guo, L. Recent progress of energy harvesting and conversion coupled with atmospheric water gathering. Energy Convers. Manag. 2021, 246, 114668. [Google Scholar] [CrossRef]
- Cai, H.; Guo, Y.; Guo, W. Synergistic effect of substrate and ion-containing water in graphene based hydrovoltaic generators. Nano Energy 2021, 84, 105939. [Google Scholar] [CrossRef]
- Jin, H.; Yoon, S.G.; Lee, W.H.; Cho, Y.H.; Han, J.; Park, J.; Kim, Y.S. Identification of water-infiltration-induced electrical energy generation by ionovoltaic effect in porous CuO nanowire films. Energy Environ. Sci. 2020, 13, 3432–3438. [Google Scholar] [CrossRef]
- Dolez, P.I. Energy harvesting materials and structures for smart textile applications: Recent progress and path forward. Sensors 2021, 21, 6297. [Google Scholar] [CrossRef]
- Cao, S.; Rathi, P.; Wu, X.; Ghim, D.; Jun, Y.S.; Singamaneni, S. Cellulose nanomaterials in interfacial evaporators for desalination: A “natural” choice. Adv. Mater. 2021, 33, 2000922. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, B.; Hu, N.; Wang, H. Low-cost and facile fabrication of a candle soot/adsorbent cotton 3D-interfacial solar steam generation for effective water evaporation. Sol. Energy Mater. Sol. Cells 2021, 221, 110876. [Google Scholar] [CrossRef]
- Wu, Y.-G.; Xue, C.-H.; Guo, X.-J.; Huang, M.-C.; Wang, H.-D.; Ma, C.-Q.; Wang, X.; Shao, Z.-Y. Highly efficient solar-driven water evaporation through a cotton fabric evaporator with wettability gradient. Chem. Eng. J. 2023, 471, 144313. [Google Scholar] [CrossRef]
- Das, S.S.; Pedireddi, V.M.; Bandopadhyay, A.; Saha, P.; Chakraborty, S. Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation. Nano Lett. 2019, 19, 7191–7200. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, S.H.; Lee, J.; Lee, S.J. Solar evaporation-based energy harvesting using a leaf-inspired energy-harvesting foam. ACS Sustain. Chem. Eng. 2021, 9, 5027–5037. [Google Scholar] [CrossRef]
- Li, J.; Cui, Y.; Xiu, H.; Wang, W.; Du, M.; Yang, X.; Xu, Q.; Kozliak, E.; Ji, Y. An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation. Cellulose 2022, 29, 2461–2477. [Google Scholar] [CrossRef]
- Bae, J.; Kim, M.S.; Oh, T.; Suh, B.L.; Yun, T.G.; Lee, S.; Hur, K.; Gogotsi, Y.; Koo, C.M.; Kim, I.-D. Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators. Energy Environ. Sci. 2022, 15, 123–135. [Google Scholar] [CrossRef]
- Bae, J.; Yun, T.G.; Suh, B.L.; Kim, J.; Kim, I.-D. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 2020, 13, 527–534. [Google Scholar] [CrossRef]
- Sparreboom, W.; van den Berg, A.; Eijkel, J.C. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Daiguji, H.; Yang, P.; Szeri, A.J.; Majumdar, A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 2004, 4, 2315–2321. [Google Scholar] [CrossRef]
- Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501. [Google Scholar] [CrossRef]
- Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zhang, L.L.; MacDonald, A.H.; Ruoff, R.S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317. [Google Scholar] [CrossRef]
- Kalluri, R.; Ho, T.; Biener, J.; Biener, M.; Striolo, A. Partition and structure of aqueous NaCl and CaCl2 electrolytes in carbon-slit electrodes. J. Phys. Chem. C 2013, 117, 13609–13619. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Shao, B.; Song, Z.; Wang, Y.; Qiao, J.; Di, J.; Wei, W.; Song, T.; Sun, B. Asymmetric charged conductive porous films for electricity generation from water droplets via capillary infiltrating. ACS Appl. Mater. Interfaces 2021, 13, 17902–17909. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, H.; Ward, J.E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D.R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, S.; Yeh, M.H.; Pan, C.; Lin, L.; Yu, R.; Zhang, Y.; Zheng, L.; Jiao, Z.; Wang, Z.L. A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems. Adv. Mater. 2015, 27, 6482–6487. [Google Scholar] [CrossRef] [PubMed]
- Youm, J.; Lee, S.-H.; Cho, I.; Jeong, D.-W.; Bang, J.; Park, H.-H.; Kim, M.-S. Highly increased hydrovoltaic power generation via surfactant optimization of carbon black solution for cellulose microfiber cylindrical generator. Surf. Interfaces 2023, 38, 102853. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W. Waving potential in graphene. Nat. Commun. 2014, 5, 3582. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Song, Z.; Chen, X.; Wu, Y.; Li, Y.; Song, C.; Yang, F.; Song, T.; Wang, Y.; Lee, S.-T. Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output. ACS Nano 2021, 15, 7472–7481. [Google Scholar] [CrossRef]
- Saka, E.; Güler, C. The effects of electrolyte concentration, ion species and pH on the zeta potential and electrokinetic charge density of montmorillonite. Clay Miner. 2006, 41, 853–861. [Google Scholar] [CrossRef]
- Malepe, L.; Ndungu, P.; Ndinteh, D.T.; Mamo, M.A. Nickel oxide-carbon soot-cellulose acetate nanocomposite for the detection of mesitylene vapour: Investigating the sensing mechanism using an LCR meter coupled to an FTIR spectrometer. Nanomaterials 2022, 12, 727. [Google Scholar] [CrossRef]
- Vinhas, S.; Sarraguça, M.; Moniz, T.; Reis, S.; Rangel, M. A New Microwave-Assisted Protocol for Cellulose Extraction from Eucalyptus and Pine Tree Wood Waste. Polymers 2023, 16, 20. [Google Scholar] [CrossRef]
- Pena, J.; Allen, N.; Edge, M.; Liauw, C.; Valange, B.; Santamaría, F. The use of microwave and FTIR spectroscopy for the characterisation of carbon blacks modified with stabilisers. Polym. Degrad. Stab. 2001, 74, 1–24. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Korchagina, A.A.; Gismatulina, Y.A.; Gladysheva, E.K.; Budaeva, V.V.; Sakovich, G.V. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers 2023, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wu, C.; Xu, H. Particle size and zeta potential of carbon black in liquid media. Carbon 2007, 45, 2806–2809. [Google Scholar] [CrossRef]
- Sis, H.; Birinci, M. Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids Surf. A Physicochem. Eng. Asp. 2009, 341, 60–67. [Google Scholar] [CrossRef]
- Sehaqui, H.; Zhou, Q.; Ikkala, O.; Berglund, L.A. Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 2011, 12, 3638–3644. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.G.; Bae, J.; Rothschild, A.; Kim, I.-D. Transpiration driven electrokinetic power generator. ACS Nano 2019, 13, 12703–12709. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Osterle, J. Electrokinetic energy conversion. J. Appl. Mech. 1964, 31, 161–164. [Google Scholar] [CrossRef]
- Olthuis, W.; Schippers, B.; Eijkel, J.; van den Berg, A. Energy from streaming current and potential. Sens. Actuators B Chem. 2005, 111, 385–389. [Google Scholar] [CrossRef]
- Ho Choi, S.; Kim, B.; Frisbie, C.D. Electrical resistance of long conjugated molecular wires. Science 2008, 320, 1482–1486. [Google Scholar] [CrossRef]
- Zhang, Y.; Narayanan, A.; Mugele, F.; Stuart, M.A.C.; Duits, M.H. Charge inversion and colloidal stability of carbon black in battery electrolyte solutions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 489, 461–468. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, D.; Liu, F.; Li, W.; Lin, J. Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 2020, 8, 5853–5858. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Lee, H.-W.; Baek, S.H.; Yun, J.; Kwon, Y.; Song, Y.; Kim, B.S.; Choa, Y.-H.; Jeong, D.-W. Water-Based Generators with Cellulose Acetate: Uncovering the Mechanisms of Power Generation. Polymers 2024, 16, 433. https://doi.org/10.3390/polym16030433
Lee S-H, Lee H-W, Baek SH, Yun J, Kwon Y, Song Y, Kim BS, Choa Y-H, Jeong D-W. Water-Based Generators with Cellulose Acetate: Uncovering the Mechanisms of Power Generation. Polymers. 2024; 16(3):433. https://doi.org/10.3390/polym16030433
Chicago/Turabian StyleLee, Seung-Hwan, Hyun-Woo Lee, So Hyun Baek, Jeungjai Yun, Yongbum Kwon, Yoseb Song, Bum Sung Kim, Yong-Ho Choa, and Da-Woon Jeong. 2024. "Water-Based Generators with Cellulose Acetate: Uncovering the Mechanisms of Power Generation" Polymers 16, no. 3: 433. https://doi.org/10.3390/polym16030433
APA StyleLee, S. -H., Lee, H. -W., Baek, S. H., Yun, J., Kwon, Y., Song, Y., Kim, B. S., Choa, Y. -H., & Jeong, D. -W. (2024). Water-Based Generators with Cellulose Acetate: Uncovering the Mechanisms of Power Generation. Polymers, 16(3), 433. https://doi.org/10.3390/polym16030433