On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy–Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Test Specimen
2.2. Test Method
3. Theoretical Aspects
3.1. Overview
3.2. The Appropriate Crack-Tip Parameters
3.3. The Hartman-Schijve Methodology
3.4. The Simple-Scaling Methodology
4. Results and Discussion
4.1. Overview
4.2. The Experimentally Measured FCG Curves
4.3. The Hartman-Schijve Master Relationship
4.4. The Computed FCG Curves
4.5. The Worst-Case, Upper-Bound FCG Curve Deduced via the Hartman-Schijve Methodology
4.6. The Worst-Case, Upper-Bound FCG Rate Curve Deduced via the Simple-Scaling Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | total crack (delamination) length, measured from the loading line |
ao | length of the initial delamination in the DCB test specimen, i.e., the length of the (thin) film used as a starter crack, measured from the loading line |
ap | length of the pre-crack (pre-delamination), measured from the loading line, in the test DCB test specimen prior to any cyclic-fatigue fracture measurements being taken |
ap-ao | pre-crack (i.e., pre-delamination) extension length in the DCB test specimen prior to any cyclic-fatigue fracture measurements being undertaken |
A | constant in the Hartman-Schijve equation |
CFRP | carbon-fibre-reinforced plastic |
da/dN | rate of fatigue crack (i.e., delamination) growth (FCG) per cycle |
D | intercept in the Hartman-Schijve crack growth equation |
DCB | double cantilever beam |
Empa | Swiss Federal Laboratories for Materials Science and Technology |
FCG | fatigue crack growth |
G | energy release rate |
quasi-static value of the Mode I (tensile) interlaminar fracture energy at the onset of crack growth | |
maximum value of the applied energy release rate in the fatigue cycle | |
minimum value of the applied energy release rate in the fatigue cycle | |
the value of at a crack growth rate of da/dN = 10−10 m/cycle | |
quasi-static fracture energy as a function of the length of the propagating crack, a | |
range of the applied energy release rate in the fatigue cycle, as defined below | |
range of the applied energy release rate in the fatigue cycle, as defined below | |
the value of corresponding to an FCG rate of da/dN = 10−10 m/cycle | |
the value of corresponding to an FCG rate of da/dN = 10−8 m/cycle | |
range of the fatigue threshold value of , as defined below | |
threshold value of | |
threshold value of | |
value of for the worst-case FCG rate curve as calculated using the simple-scaling methodology | |
stress-intensity factor | |
maximum value of the applied stress-intensity factor in the fatigue cycle | |
minimum value of the applied stress-intensity factor in the fatigue cycle | |
range of the applied stress-intensity factor in the fatigue cycle, as defined below | |
LEFM | linear elastic fracture mechanics |
n | exponent in the Hartman-Schijve crack growth equation |
N | number of fatigue cycles |
NASA | North American Space Administration |
Pmax | maximum load applied during the fatigue test |
Pmin | minimum load applied during the fatigue test |
load ratio (= Pmin/Pmax) | |
R2 | coefficient of determination |
SCF | scaling factor |
UCD | University College Dublin, Ireland |
US | United States |
USAF | United States Air Force |
US DoD | United States Department of Defense |
δ | displacement |
Δκ | crack driving force, i.e., the similitude parameter |
σ | standard deviation |
Appendix A. The Relationship between and
References
- SAE International. Polymer Matrix Composites Materials Usage, Design and analysis. In Composite Materials Handbook; CMH-17-3G; SAE International: Wichita, KS, USA, 2012; Volume 3. [Google Scholar]
- Loss of Rudder in Flight Air Transat Airbus A310-308 C-GPAT, Miami, Florida, 90 nm S, 6 March 2005. Transportation Safety Board of Canada, Report Number A05F0047. Available online: https://www.tsb.gc.ca/eng/rapports-reports/aviation/2005/a05f0047/a05f0047.html (accessed on 19 December 2023).
- Mueller, E.M.; Starnes, S.; Strickland, N.; Kenny, P.; William, C. The detection, inspection, and failure analysis of a composite wing skin defect on a tactical aircraft. Compos. Struct. 2016, 145, 186–193. [Google Scholar] [CrossRef]
- Department of Defense Joint Service Specification Guide. Aircraft Structures, JSSG-2006. October 1998. Available online: http://everyspec.com/USAF/USAF-General/JSSG-2006_10206/ (accessed on 5 December 2023).
- MIL-STD-1530D. Department of Defense Standard Practice, Washington, DC, USA, 2016. Available online: http://everyspec.com/MIL-STD/MIL-STD-1500-1599/MIL-STD-1530D_55392/#:~:text=%2DAUG%2D2016)-,MIL%2DSTD%2D1530D%2C%20DEPARTMENT%20OF%20DEFENSE%20STANDARD%20PRACTICE%3A,while%20managing%20cost%20and%20schedule (accessed on 5 December 2023).
- NASA-HDBK-5010. Fracture Control Handbook for Payloads, Experiments, and Similar Hardware. May 2005, Revalidated 2012. Available online: https://standards.nasa.gov/standard/nasa/nasa-hdbk-5010 (accessed on 26 December 2023).
- Griffith, A.A. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. 1920, A221, 163–198. [Google Scholar]
- Irwin, G.R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 1957, 24, 361–364. [Google Scholar] [CrossRef]
- Paris, P.C. A brief history of the crack tip stress intensity factor and its applications. Meccanica 2014, 49, 759–764. [Google Scholar] [CrossRef]
- Jones, R.; Kinloch, A.J.; Hu, W. Cyclic-fatigue crack growth in composite and adhesively-bonded structures: The FAA slow crack growth approach to certification and the problem of similitude. Int. J. Fatigue 2016, 88, 10–18. [Google Scholar] [CrossRef]
- Jones, R.; Chandwani, R.; Timbrell, C.; Kinloch, A.J.; Peng, D. Thoughts on the importance of similitude and multi-axial loads when assessing the durability and damage tolerance of adhesively-bonded doublers and repairs. Aerospace 2023, 10, 946. [Google Scholar] [CrossRef]
- Yao, L.; Alderliesten, R.; Zhao, M.; Benedictus, R. Bridging effect on Mode I fatigue delamination behavior in composite laminates. Composites A 2014, 63, 103–109. [Google Scholar] [CrossRef]
- Yao, L.; Alderliesten, R.; Jones, R.; Kinloch, A.J. Delamination fatigue growth in polymer-matrix fibre composites: A methodology for determining the design and lifing allowables. Compos. Struct. 2018, 196, 8–20. [Google Scholar] [CrossRef]
- Jones, R.; Kinloch, A.J.; Michopoulos, J.G.; Brunner, A.J.; Phan, N. Delamination growth in polymer-matrix fibre composites and the use of fracture mechanics data for material characterisation and life prediction. Compos. Struct. 2017, 180, 316–333. [Google Scholar] [CrossRef]
- Khudiakova, A.; Brunner, A.J.; Wolfahrt, M.; Pinter, G. Quantification approaches for fatigue crack resistance of thermoplastic tape layered composites with multiple delaminations. Materials 2021, 14, 1476. [Google Scholar] [CrossRef]
- Riedl, G.; Pugstaller, R.; Wallner, G.M. Development and implementation of a simultaneous fatigue crack growth test setup for polymeric hybrid laminates. Eng. Fract. Mech. 2022, 267, 108468. [Google Scholar] [CrossRef]
- Arhant, M.; Lolive, E.; Bonnemains, T.; Davies, P. Effect of aging on the fatigue crack growth properties of carbon-polyamide 6 thermoplastic composites using the multi ΔG-control method. Compos. Part A 2022, 161, 107105. [Google Scholar] [CrossRef]
- Hartman, A.; Schijve, J. The effects of environment and load frequency on the crack propagation law for macro FCG in aluminum alloys. Eng. Fract. Mechs. 1970, 1, 615–631. [Google Scholar] [CrossRef]
- ISO 15024:2001; Fibre-Reinforced Plastic Composites -Determination of Mode I Interlaminar Fracture Toughness, GIC, for Unidirectionally Reinforced Materials. International Test Standard (ISO): Geneva, Switzerland, 2001.
- Alderliesten, R.; Brunner, A.J. Determination of Mode I Fatigue Delamination Propagation in Unidirectional Fibre-Reinforced Polymer Composites, ESIS TC4 Round Robin Protocol (Version 3.1, pp. 1–14). 2020; Available on request from [email protected]. [Google Scholar]
- ASTM E647-13; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM: Philadelphia, PA, USA, 2013.
- Paris, P.C.; Erdogan, F. Critical analysis of crack growth propagation laws. ASME Trans. J. Basic Eng. 1963, 85D, 528–534. [Google Scholar] [CrossRef]
- Paris, P.C.; Gomez, R.E.; Anderson, W.E. A rational analytic theory of fatigue. Trend Eng. 1961, 13/1, 9–14. [Google Scholar]
- Irwin, G.R. Fracture Dynamics, Fracturing of Metals; American Society for Metals: Cleveland, OH, USA, 1948; pp. 147–166. [Google Scholar]
- Sih, G.C.; Paris, P.C.; Irwin, G.R. On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mechs. 1965, 1, 189–203. [Google Scholar] [CrossRef]
- Rans, C.; Alderliesten, R.C.; Benedictus, R. Misinterpreting the results: How similitude can improve our understanding of fatigue delamination growth. Compos. Sci. Technol. 2011, 71, 230–238. [Google Scholar] [CrossRef]
- Jones, R.; Peng, D.; Sing Raman, R.K.; Kinloch, A.J.; Michopoulos, J. Thoughts on two approaches for accounting for the scatter in fatigue delamination growth curves. Compos. Struct. 2021, 258, 113175. [Google Scholar] [CrossRef]
- Available online: https://www.swri.org/consortia/nasgro (accessed on 19 December 2023).
- Schwalbe, K.H. On the beauty of analytical models for fatigue crack propagation and fracture—A personal historical review. J. ASTM Int. 2010, 7, 3–73. [Google Scholar] [CrossRef]
- Rouchon, J. Fatigue and Damage Tolerance Evaluation of Structures: The Composite Materials Response. In Proceedings of the 22nd Plantema Memorial Lecture, Rotterdam, The Netherlands, 27 May 2009; Technical Report NLR-TP-2009-221. National Aerospace Laboratory: Amsterdam, The Netherlands, 2009. Available online: https://reports.nlr.nl/server/api/core/bitstreams/3e778d79-b884-4948-833e-1e6aa175492d/content (accessed on 20 May 2017).
- Niu, M.C.Y. Composite Airframe Structures: Practical Design Information and Data; Conmilit Press: Hong Kong, China, 1992. [Google Scholar]
- Poursartip, A. The characterization of edge delamination growth in laminates under fatigue loading. In Toughened Composites; Johnston, N.J., Ed.; American Society for Testing and Materials: Philadelphia, PA, USA, 1987; Volume 937, pp. 222–241. [Google Scholar]
- Murri, G.B. Effect of data reduction and fiber-bridging on Mode I delamination characterization of unidirectional composites. J. Compos. Mater. 2014, 48, 2413–2424. [Google Scholar] [CrossRef]
- Chen, H.; Shivakumar, K.; Abali, F. A comparison of total fatigue life models for composite laminates. Fatigue Fract. Eng. Mater. Struct. 2006, 1, 31–39. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, J.; Zhao, L.; Bao, R.; Yang, H.; Fei, B. Mode I delamination growth of multidirectional composite laminates under fatigue loading. J. Compos. Mater. 2011, 45, 1077–1090. [Google Scholar] [CrossRef]
- Yao, L.; Sun, Y.; Guo, L.; Zhao, M.; Jia, L.; Alderliesten, R.C. A modified Paris relation for fatigue delamination with fibre bridging in composite laminates. Compos. Struct. 2017, 176, 556–564. [Google Scholar] [CrossRef]
- Al-Khudairi, O.; Hadavinia, H.; Waggott, A.; Lewis, E.; Little, C. Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates. Mater. Des. 2015, 66, 93–102. [Google Scholar] [CrossRef]
- Simon, I.; Banks-Sills, L.; Fourman, V. Mode I delamination propagation and R-ratio effects in woven DCB specimens for a multi-directional layup. Int. J. Fatigue 2017, 96, 237–251. [Google Scholar] [CrossRef]
- Yao, L.; Chuia, M.; Li, H.; Chen, X.; Quan, D.; Alderliesten, R.C.; Beyens, M. Temperature effects on fatigue delamination behavior in thermoset composite laminates. Eng. Fract. Mech. 2024, 295, 109799. [Google Scholar] [CrossRef]
- Jones, R.; Kinloch, A.J. A way forward for industry to determine valid cyclic-fatigue relationships for polymer-matrix fibre composites. Procedia Struct. Integr. 2020, 28, 26–38. [Google Scholar] [CrossRef]
- Iliopoulos, A.; Michopoulos, J.G.; Jones, R.; Kinloch, A.J.; Peng, D. A framework for automating the parameter determination of crack growth models. Int. J. Fatigue 2022, 169, 07490. [Google Scholar] [CrossRef]
- Gallagher, J.P.; Giessler, F.J.; Berens, A.P.; Engle, R.M. USAF Damage Tolerance Design Handbook: Guidelines for the Analysis and Design of Damage Tolerant Aircraft; AFWAL-TR-82-3073. Air Force Research Laboratory: Wright-Patterson Air Force Base, OR, USA, 1985.
- Torres-Dominguez, V.M.; Viramontes-Gamboa, G.; Rivera, J.L. Interfacial forces in free-standing layers of melted polyethylene, from critical to nanoscopic thicknesses. Polymers 2022, 14, 3865. [Google Scholar]
- Marcuello, C.; Chabbert, B.; Berzin, F.; Bercu, N.B.; Molinari, M.; Aguié-Béghin, V. Influence of surface chemistry of fiber and lignocellulosic materials on adhesion properties with polybutylene succinate at nanoscale. Materials 2023, 16, 2440. [Google Scholar] [CrossRef]
(√(J/m2)) | (√(J/m2)) | (J/m2) | Std. Dev., σ (J/m2) | D | n |
---|---|---|---|---|---|
10.53 | ±2.15 | 250 | ±45 | 1.23 × 10−10 | 4.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michel, S.; Murphy, N.; Kinloch, A.J.; Jones, R. On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy–Polymer Composites. Polymers 2024, 16, 435. https://doi.org/10.3390/polym16030435
Michel S, Murphy N, Kinloch AJ, Jones R. On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy–Polymer Composites. Polymers. 2024; 16(3):435. https://doi.org/10.3390/polym16030435
Chicago/Turabian StyleMichel, Silvain, Neal Murphy, Anthony J. Kinloch, and Rhys Jones. 2024. "On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy–Polymer Composites" Polymers 16, no. 3: 435. https://doi.org/10.3390/polym16030435
APA StyleMichel, S., Murphy, N., Kinloch, A. J., & Jones, R. (2024). On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy–Polymer Composites. Polymers, 16(3), 435. https://doi.org/10.3390/polym16030435