The Influence of the Flexibility of a Polymeric Adhesive Layer on the Mechanical Response of a Composite Reinforced Concrete Slab and a Reinforced Concrete Beam Girder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flexible Polyurethanes
2.2. The Experimental Setup and Testing Procedures
2.3. The Results of the Uniaxial Tension Test
2.4. The Studied Case
3. Analytical Model
3.1. Governing Equations
3.2. Analytical Solutions for a Simply Supported Beam under a Uniformly Distributed Load
- Maximal deflection:
- Extremal compressive stress in the top bent layer (in the middle of the span):
- Extremal tensile stress in the bottom bent layer (in the middle of the span):
- Maximum shear stress in the adhesive layer (in the support area):
3.3. Accounting for the Cracking of Concrete in the Linear Analytical Model
4. Finite Element Analysis
4.1. Geometry, Supports, and Loads
4.2. The Mechanical Propereties of Materials
5. Results
6. Discussion
- Uniaxial tensile tests show a dependence of the strain increment speed and the change in properties of the analyzed polyurethane materials—higher strain rates result in larger values of the initial tangent Young’s modulus. Analyzing the short-term load at a strain rate of 1000%/min, the material’s initial tangent Young’s modulus E was 118% larger than that of the long-term load at a strain rate of 0.1%/min for PM polyurethane;
- The analytical model underestimates the maximal deflection. The relative difference is 5–20%. The greatest discrepancies may be observed for stiff polyurethanes;
- The analytical model underestimates the maximal distortional strain in the adhesive layer. The relative difference is ca. 15–50%. There are two main reasons for such a large discrepancy. The first is that maximal shear stress occurs in the support zone in which the strain state becomes a complex three-dimensional state—it cannot be properly modelled by a one-dimensional beam model. The second reason is that, in the beam model, it is assumed that the adhesive layer undergoes pure shear only, so the volumetric response of the adhesive is totally neglected;
- The analytical model overestimates the stresses both in the adhesive and the concrete. Regarding the shear stress in the adhesive, the relative difference in most cases of flexible adhesives is ca. 5–20%; however, in the case of stiff polyurethanes (PSTF-S, PT), the difference may be as high as 30–80%. Regarding concrete, the relative difference is approximately 10–30% for maximal tensile and minimal compressive stress in the plate. It is less than 10% for both maximal tensile stress and minimal compressive stress in the beam in the case of more flexible adhesives; however, in the case of more stiff polyurethanes, the differences in compressive stresses may be as high as 25%. Some individual cases fall beyond these general estimates. Qualitatively similar findings regarding normal stress in bent layers were reported in [32,37];
- An overestimation of the stresses in the analytical model results in the fact that cracking occurs for smaller magnitudes of the ULD, compared to the FEA; however, both estimates are similar;
- The use of more stiff adhesives results in smaller deflection, smaller distortional strain in the adhesive, larger shear stress in the adhesive, and smaller normal stresses in concrete—this relation is reproduced by both the analytical model and FEA. This conclusion concerns both the change in the adhesive’s stiffness related with the type of polymer, as well as with the strain rate;
- In case of the investigated case of the deformation of the cracked girder, the iterative solution of the linear problem with the use of an analytical model, assuming the constant reduction of the flexural stiffness over the whole beam length, gives a fair approximation of the deflection calculated with the use of the nonlinear FEM model. The stress estimates are of much lower accuracy.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayer, O. Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angew. Chem. 1947, 59, 257–272. [Google Scholar] [CrossRef]
- Tian, S. Recent advances in functional polyurethane and its application in leather manufacture: A review. Polymers 2020, 12, 1996. [Google Scholar] [CrossRef]
- Melby, E.G. Polyurethane Structural Adhesives for Automotive Applications. In Advances in Urethane; CRC Press: Boca Raton, FL, USA, 1998; ISBN 9780367811679. [Google Scholar]
- Kwiecień, K.; Kwiecień, A.; Stryszewska, T.; Szumera, M.; Dudek, M. Durability of PS-Polyurethane Dedicated for Composite Strengthening Applications in Masonry and Concrete Structures. Polymers 2020, 12, 2830. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein, M.F. Introduction to Polyurethane Chemistry. In Polyurethanes: Science, Technology, Markets, and Trends; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Jutrzenka-Trzebiatowska, P.; Santamaria-Echart, A.; Calvo-Correas, T.; Eceiza, A.; Datta, J. The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Prog. Org. Coat. 2018, 115, 41–48. [Google Scholar] [CrossRef]
- Kojio, K.; Nozaki, S.; Takahara, A.; Yamasaki, S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: A review. J. Polym. Res. 2020, 27, 64–67. [Google Scholar] [CrossRef]
- Hepburn, C. Polyurethane Elastomers; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 978-94-011-2924-4. [Google Scholar]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 2016, 87, 92–119. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnama, N.; Yuvarajc, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef]
- De Santis, S.; Stryszewska, T.; Bandini, S.; de Felice, G.; Hojdys, Ł.; Krajewski, P.; Kwiecień, A.; Roscini, F.; Zając, B. Durability of steel reinforced polyurethane-to-substrate bond. Compos. Part B Eng. 2018, 153, 194–204. [Google Scholar] [CrossRef]
- Al-Lebban, Y. Polyurethane Fiber Reinforced Polymer Strengthening of Shear Deficient Reinforced Concrete Beams Deficient Reinforced Concrete Beam. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2017. [Google Scholar]
- Wen, J.; Sun, Z.; Xiang, J.; Fan, H.; Chen, Y.; Yan, J. Preparation and characteristics of waterborne polyurethane with various lengths of fluorinated side chains. Appl. Surf. Sci. 2019, 494, 610–618. [Google Scholar] [CrossRef]
- Chen, G.; Ouyang, S.; Deng, Y.; Chen, M.; Zhao, Y.; Zou, W.; Zhao, Q. Improvement of self-cleaning waterborne polyurethane-acrylate with cationic TiO2/reduced graphene oxide. RSC Adv. 2019, 9, 18652–18662. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Du, X.; Jiang, Y.; Du, Z.; Pan, P.; Cheng, X.; Wang, H. Thermal-Driven Self-Healing and Recyclable Waterborne Polyurethane Films Based on Reversible Covalent Interaction. ACS Sustain. Chem. Eng. 2018, 6, 14490–14500. [Google Scholar] [CrossRef]
- Pochopień, J.; Szeptyński, P.; Kwiecień, A. Parametric approach to the joint in the bridge structure for various characteristics of the flexible joint. In Proceedings of the 68th Krynicka Scientific Conference of the Committee of Civil and Water Engineering of the Polish Academy of Sciences and the Science Committee PZITB, Gliwice, Poland, 24–28 September 2023. [Google Scholar]
- Shim, C.S.; Lee, P.G.; Chang, S.P. Design of shear connection in composite steel and concrete bridges with precast decks. J. Constr. Steel Res. 2001, 57, 203–219. [Google Scholar] [CrossRef]
- Al-Saadi, N.T.K.; Mohammed, A.; Al-Mahaidi, R.; Sanjayan, J. A state-of-the-art review: Near-surface mounted FRP composites for reinforced concrete structures. Constr. Build. Mater. 2019, 209, 748–769. [Google Scholar] [CrossRef]
- Modesti, L.A.; de Vargas, A.S.; Schneider, E.L. Repairing concrete with epoxy adhesives. Int. J. Adhes. Adhes. 2020, 101, 102645. [Google Scholar] [CrossRef]
- Rashid, K.; Ahmad, M.; Ueda, T.; Deng, J.; Aslam, K.; Nazir, I.; Azam Sarwar, M. Experimental investigation of the bond strength between new to old concrete using different adhesive layers. Constr. Build. Mater. 2020, 249, 118798. [Google Scholar] [CrossRef]
- de Waal, L.; Fernando, D.; Nguyen, V.T.; Cork, R.; Foote, J. FRP strengthening of 60 year old pre-stressed concrete bridge deck units. Eng. Struct. 2017, 143, 346–357. [Google Scholar] [CrossRef]
- Haber, Z. On The Use Of Polyurethane Matrix Carbon Fiber Composites For Strengthening Concrete Structures Strengthening Concrete Structure. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 2010. [Google Scholar]
- Amalraj, E.F.P.; Ilangovan, P. Experimental Behavior of High-Strength Concrete Reinforced with Aramid Fiber and Polyurethane Resin. Buildings 2023, 13, 1713. [Google Scholar] [CrossRef]
- Hussain, H.K.; Zhang, L.Z.; Liu, G.W. An experimental study on strengthening reinforced concrete T-beams using new material poly-urethane-cement (PUC). Constr. Build. Mater. 2013, 40, 104–117. [Google Scholar] [CrossRef]
- Baek, S.-Y.; Song, Y.-J.; Yu, S.-H.; Kim, D.-H.; Hong, S.-I. Bending of CLT-concrete slabs. BioResources 2021, 16, 8227–8238. [Google Scholar] [CrossRef]
- Kanócz, J.; Bajzecerová, V. Timber—Concrete composite elements with various composite connections part 3: Adhesive connection. Wood Res. 2015, 60, 939–952. [Google Scholar]
- Eisenhut, L.; Seim, W.; Kühlborn, S. Adhesive-bonded timber-concrete composites—Experimental and numerical investigation of hygrothermal effects. Eng. Struct. 2016, 125, 167–178. [Google Scholar] [CrossRef]
- Bajzecerová, V.; Kanócz, J.; Rovňák, M.; Kováč, M. Prestressed CLT-concrete composite panels with adhesive shear connection. J. Build. Eng. 2022, 56, 104785. [Google Scholar] [CrossRef]
- Yousef, R.F.; Al-Rubaye, M.M.; Muteb, H.H. Mechanical and chemical bond for composite action of precast beams. Curved Layer. Struct. 2022, 9, 304–319. [Google Scholar] [CrossRef]
- Alwash, N.A.; Abd Al-Radha, D.A. Theoretical Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab. Int. J. Civ. Eng. Technol. 2015, 6, 08–21. [Google Scholar]
- Daneshvar, D.; Behnood, A.; Robisson, A. Interfacial bond in concrete-to-concrete composites: A review. Constr. Build. Mater. 2022, 359, 129195. [Google Scholar] [CrossRef]
- Szeptyński, P. Closed-form analytical solution to the problem of bending of a multilayer composite beam—Derivation and verification. Compos. Struct. 2022, 291, 115611. [Google Scholar] [CrossRef]
- Śliwa-Wieczorek, K.; Szeptyński, P.; Kozik, T.; Gubert, M. Creep Behavior of CLT Beams with Finite Thickness Layers of Flexible Adhesives. Materials 2023, 16, 4484. [Google Scholar] [CrossRef] [PubMed]
- Falborski, T.; Jankowski, R. Experimental study on effectiveness of a prototype seismic isolation system made of polymeric bearings. Appl. Sci. 2017, 7, 808. [Google Scholar] [CrossRef]
- Śliwa-Wieczorek, K.; Zając, B. PUFJ (PolyUrethane Flexible Joints) as an innovative polyurethane system for structural and non-structural bonding of timber elements. J. Phys. Conf. Ser. 2023, 2423, 012015. [Google Scholar] [CrossRef]
- PN-EN ISO 527-1:2020-01; Plastics—Determination of Mechanical Properties under Static Stretching—Part 1: General Principles. Polish Committee for Standardization: Warsaw, Poland, 2020.
- Szeptyński, P. Comparison and experimental verification of simplified one-dimensional linear elastic models of multilayer sandwich beams. Compos. Struct. 2020, 241, 112088. [Google Scholar] [CrossRef]
- Li, D. Layerwise Theories of Laminated Composite Structures and Their Applications: A Review. Arch. Comput. Methods Eng. 2021, 28, 577–600. [Google Scholar] [CrossRef]
- Abrate, S.; Di Sciuva, M. Equivalent single layer theories for composite and sandwich structures: A review. Compos. Struct. 2017, 179, 482–494. [Google Scholar] [CrossRef]
- University of Oslo Lecture Notes on Generalized Eigenvectors for Systems with Repeated Eigenvalues. Dostępne na. Available online: https://www.uio.no/studier/emner/matnat/math/MAT2440/v11/undervisningsmateriale/genvectors.pdf (accessed on 31 October 2023).
- Szeptyński, P. Influence of non-uniformity of cracking on calculation of deflection of reinforced-concrete elements, according to Eurocode 2. Tech. Trans. 2017, Y.114, 131–142. [Google Scholar]
- Karpiesiuk, J. Young’s Modulus and Poisson’s Ratio of Polyurethane Adhesive in Lightweight Floor System. Mod. Approaches Mater. Sci. 2020, 2, 251–255. [Google Scholar] [CrossRef]
- Tsukinovsky, D.; Zaretsky, E.; Rutkevich, I. Material behavior in plane polyurethane-polyurethane impact with velocities from 10 to 400 m/sec. J. Phys. IV Proc. 1997, 7, C3-335–C3-339. [Google Scholar] [CrossRef]
- Delale, F.; Erdogan, F.; Aydinoglu, M.N. Stresses in Adhesively Bonded Joints: A Closed-Form Solution. J. Compos. Mater. 1980, 15, 249–271. [Google Scholar] [CrossRef]
- Król, P.; Pilch-Pitera, B. Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers. J. Appl. Polym. Sci. 2007, 104, 1464–1474. [Google Scholar] [CrossRef]
- Chen, H.; Lu, H.; Zhou, Y.; Zheng, M.; Ke, C.; Zeng, D. Study on thermal properties of polyurethane nanocomposites based on organo-sepiolite. Polym. Degrad. Stab. 2012, 97, 242–247. [Google Scholar] [CrossRef]
- Sarkar, S.; Adhikari, B. Thermal stability of lignin–hydroxy-terminated polybutadiene copolyurethanes. Polym. Degrad. Stab. 2001, 73, 169–175. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Z.; Huang, H.; Chen, H. Thermal degradation of polyurethane based on IPDI. J. Anal. Appl. Pyrolysis 2009, 84, 89–94. [Google Scholar] [CrossRef]
- Nakajima-Kambe, T.; Shigeno-Akutsu, Y.; Nomura, N.; Onuma, F.; Nakahara, T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 1999, 51, 134–140. [Google Scholar] [CrossRef]
- Yang, X.F.; Vang, C.; Tallman, D.E.; Bierwagen, G.P.; Croll, S.G.; Rohlik, S. Weathering degradation of a polyurethane coating. Polym. Degrad. Stab. 2001, 74, 341–351. [Google Scholar] [CrossRef]
- Rutkowska, M.; Krasowska, K.; Heimowska, A.; Steinka, I.; Janik, H. Degradation of polyurethanes in sea water. Polym. Degrad. Stab. 2002, 76, 233–239. [Google Scholar] [CrossRef]
- Junco, C.; Gadea, J.; Rodríguez, A.; Gutiérrez-González, S.; Calderón, V. Durability of lightweight masonry mortars made with white recycled polyurethane foam. Cem. Concr. Compos. 2012, 34, 1174–1179. [Google Scholar] [CrossRef]
- Gadea, J.; Rodríguez, A.; Campos, P.L.; Garabito, J.; Calderón, V. Lightweight mortar made with recycled polyurethane foam. Cem. Concr. Compos. 2010, 32, 672–677. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J.M.; Laycock, B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019, 90, 211–268. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- EN 1994-1-2; Eurocode 4—Design of Composite Steel and Concrete Structures—Part 1–2: General Rules—Structural Fire Design. EN: Brussels, Belgium, 1994.
PM | PTS | PST | PSTF-W | PS | PSTF-S | PT | |
---|---|---|---|---|---|---|---|
1000%/min | 10.326 | 18.864 | 16.286 | 23.759 | 27.97 | 505.44 | 1128.9 |
100%/min | 7.252 | 18.021 | 16.346 | 22.951 | 26.719 | 402.98 | 952.18 |
10%/min | 5.5109 | 15.347 | 15.958 | 21.707 | 25.774 | 282.19 | 927.52 |
1%/min | 5.3612 | 13.493 | 15.044 | 21.909 | 24.53 | 263.3 | 888.87 |
0.1%/min | 4.7335 | 11.822 | 14.877 | 20.425 | 24.101 | 252.74 | 779.74 |
PM | PTS | PST | PSTF-W | PS | PSTF-S | PT | |
---|---|---|---|---|---|---|---|
118 | 60 | 9 | 16 | 16 | 100 | 45 |
Model | PM | PTS | PST | PSTF-W | PS | PSTF-S | PT |
---|---|---|---|---|---|---|---|
Analytical | 5.0 | 6.4 | 6.2 | 7.0 | 7.4 | 16.5 | 17.9 |
FEM | 6.0 | 7.0 | 7.5 | 8.0 | 8.5 | 15.8 | 18.5 |
Model | wmax [mm] | τmax [kPa] | σ1,max [MPa] | σ1,min [MPa] | σ2,min [MPa] |
---|---|---|---|---|---|
Analytical | 1.00 | 501 | −0.342 | −2.017 | −0.0129 |
FEM | 0.88 | 370 (260) * | −0.507 | −1.547 | −0.639 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szeptyński, P.; Pochopień, J.G.; Jasińska, D.; Kwiecień, A. The Influence of the Flexibility of a Polymeric Adhesive Layer on the Mechanical Response of a Composite Reinforced Concrete Slab and a Reinforced Concrete Beam Girder. Polymers 2024, 16, 444. https://doi.org/10.3390/polym16030444
Szeptyński P, Pochopień JG, Jasińska D, Kwiecień A. The Influence of the Flexibility of a Polymeric Adhesive Layer on the Mechanical Response of a Composite Reinforced Concrete Slab and a Reinforced Concrete Beam Girder. Polymers. 2024; 16(3):444. https://doi.org/10.3390/polym16030444
Chicago/Turabian StyleSzeptyński, Paweł, Jan Grzegorz Pochopień, Dorota Jasińska, and Arkadiusz Kwiecień. 2024. "The Influence of the Flexibility of a Polymeric Adhesive Layer on the Mechanical Response of a Composite Reinforced Concrete Slab and a Reinforced Concrete Beam Girder" Polymers 16, no. 3: 444. https://doi.org/10.3390/polym16030444
APA StyleSzeptyński, P., Pochopień, J. G., Jasińska, D., & Kwiecień, A. (2024). The Influence of the Flexibility of a Polymeric Adhesive Layer on the Mechanical Response of a Composite Reinforced Concrete Slab and a Reinforced Concrete Beam Girder. Polymers, 16(3), 444. https://doi.org/10.3390/polym16030444