Preparation and Properties of Gel Polymer Electrolytes with Li1.5Al0.5Ge1.5(PO4)3 and Li6.46La3Zr1.46Ta0.54O12 by UV Curing Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of LAGP and LLZTO
2.2. Preparation of Gel Polymer Electrolytes
2.3. Characterization and Testing Methods for GPEs
2.4. Electrochemical Properties
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, M.; Huang, G.; Wang, S.; Wang, Y.; Wang, H. High safety separators for rechargeable lithium batteries. Sci. China Chem. 2021, 64, 1131–1156. [Google Scholar] [CrossRef]
- Li, J.; Meng, L.C. Electrolyte using blend salts of LiTFSI and LLZO for long-term high-safety lithium ion battery. J. Indian Chem. Soc. 2023, 100, 101009. [Google Scholar] [CrossRef]
- Liu, R.; Lai, X.; Xue, J.; Chen, H.; Xie, L.; Qiu, Y.; Yin, W. Anionic Anchoring Enhanced Quasi Solid Composite Polymer Electrolytes for High Performance Lithium Metal Battery. Polymers 2023, 15, 4716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, K.; Ding, F.; Liu, X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174. [Google Scholar] [CrossRef]
- An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small 2022, 18, 2103617. [Google Scholar] [CrossRef]
- Hoang Huy, V.P.; So, S.; Hur, J. Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries. Nanomaterials 2021, 11, 614. [Google Scholar] [CrossRef]
- Mahamood, M.A.H.; Norjeli, M.F.; Abu Bakar, A.A.; Abdullah, S.M.; Tamchek, N.; Noor, I.S.M.; Sabeeh, A.H.; Alforidi, A.F.; Khawaji, I.H.; Ghazali, M.I.M. Electrical, Thermal, and Structural Characterization of Plant-Based 3D Printed Gel Polymer Electrolytes for Future Electrochemical Applications. Polymers 2023, 15, 4713. [Google Scholar] [CrossRef]
- Dong, G.X.; Li, H.J.; Wang, Y.; Jiang, W.J.; Ma, Z.S. Electrospun PAN/cellulose composite separator for high performance lithium-ion battery. Ionics 2021, 27, 2955–2965. [Google Scholar] [CrossRef]
- Tang, L.; Wu, Y.; He, D.; Lei, Z.; Liu, N.; He, Y.; De Guzman, M.R.; Chen, J. Electrospun PAN membranes toughened and strengthened by TPU/SHNT for high-performance lithium-ion batteries. J. Electroanal. Chem. 2023, 931, 117181. [Google Scholar] [CrossRef]
- Yu, C.; Gong, X.; Wang, M.; Li, L.; Ren, S. Hyper-Cross-Linked Nanoparticle Reinforced Composite Polymer Electrolytes with Enhanced Ionic Conductivity and Thermal Stability for Lithium-Ion Batteries. ACS Appl. Polym. Mater. 2023, 5, 1509–1519. [Google Scholar] [CrossRef]
- Xiao, J.; Huang, Y.; Zheng, W.; Liu, B.; Li, X.; Wang, M.; Lin, Y.; Guo, B. A strategy of adding LDPE particles to enhance the high-temperature endurance of PMMA-based GPE for lithium-ion battery. Bull. Mater. Sci. 2023, 46, 87. [Google Scholar] [CrossRef]
- Li, L.; Zhao, B.; Hang, G.; Gao, Y.; Hu, J.; Zhang, T.; Zheng, S. Polyhydroxyurethane and Poly(ethylene oxide) Multiblock Copolymer Networks: Crosslinking with Polysilsesquioxane, Reprocessing and Solid Polyelectrolyte Properties. Polymers 2023, 15, 4634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Y. Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. Nanoscale Res. Lett. 2019, 14, 366. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Shen, J.Q.; Shi, J.H.; Li, Y.; You, J.; Bian, F. Crystallization-templated high-performance PVDF separator used in lithium-ion batteries. J. Membr. Sci. 2023, 670, 121359. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Li, M.X.; Chang, Z.; Wang, Y.; Gao, J.; Zhu, Y.; Wu, Y.; Huang, W. A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery. Electrochim. Acta 2017, 245, 752–759. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Wen, B.; Wang, Y.; Lei, Z.; Yin, C.; Fan, L.; Yang, G. Enhanced ionic conductivity and cycle performance by ZIF-8 nanoparticles into PVDF-HFP electrolyte for Li-ions batteries. J. Mater. Sci. Mater. Electron. 2023, 34, 938. [Google Scholar] [CrossRef]
- Tong, R.; Chen, L.; Fan, B.; Shao, G.; Liu, R.; Wang, C.-A. Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries. ACS Appl. Energy Mater. 2021, 4, 11802–11812. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and prospscts of PVDF based polymer electrolytes. J. Energy Chem. 2022, 64, 62–84. [Google Scholar] [CrossRef]
- Ratsameetammajak, N.; Autthawong, T.; Khunpakdee, K.; Haruta, M.; Chairuangsri, T.; Sarakonsri, T. Insight into the Role of Conductive Polypyrrole Coated on Rice Husk-Derived Nanosilica-Reduced Graphene Oxide as the Anodes: Electrochemical Improvement in Sustainable Lithium-Ion Batteries. Polymers 2023, 15, 4638. [Google Scholar] [CrossRef]
- Gu, D.P.; Wang, G.Q.; Chen, X.F.; Liu, Z.Y.; Chen, S.W.; Xie, H. SiO2 shell thickness affects the tribological properties of Si3N4@SiO2/PEEK core–shell composite prepared by cold sintering. Mater. Lett. 2023, 345, 134488. [Google Scholar] [CrossRef]
- Yan, W.; Wang, J.; Hu, Q.; Fu, J.; Albolkany, M.K.; Zhang, T.; Lu, X.; Ye, F.; Liu, B. Approaching the theoretical capacity of TiO2 anode in a photo-rechargeable lithium-ion battery. Nano Res. 2023. [Google Scholar] [CrossRef]
- Li, J.; Cai, Y.G.; Zhang, F.G.; Cui, Y.; Fang, W.; Da, H.; Zhang, H.; Zhang, S. Exceptional interfacial conduction and LiF interphase for ultralong life PEO-based all-solid-state batteries. Nano Energy 2023, 118, 108985. [Google Scholar] [CrossRef]
- Zhang, H.; Dubey, R.; Inniger, M.; Okur, F.; Wullich, R.; Parrilli, A.; Karabay, D.T.; Neels, A.; Kravchyk, K.V.; Kovalenko, M.V. Ultrafast-sintered self-standing LLZO membranes for high energy density lithium-garnet solid-state batteries. Cell Rep. Phys. Sci. 2023, 4, 101473. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Zhang, Z.; Gao, H.; Li, C. Li6.7La3Zr1.7Ta0.3O12 Reinforced PEO/PVDF-HFP Based Composite Solid Electrolyte for All Solid-State Lithium Metal Battery. Energy Fuels 2020, 34, 15011–15018. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, B.; Zhang, Y.; Cui, J.; Zhang, L.; Su, Y.; Wu, F. A promising composite solid electrolyte of garnet-type LLZTO and succinonitrile in thermal polyurethane matrix for all-solid-state lithium-ion batteries. Electrochem. Commun. 2023, 150, 107472. [Google Scholar] [CrossRef]
- Hung, I.-M.; Mohanty, D. Preparation and characterization of LLZO-LATP composite solid electrolyte for solid-state lithium-ion battery. Solid State Commun. 2023, 364, 115135. [Google Scholar] [CrossRef]
- Luo, T.; Liu, B.; Han, W.; Zhu, G.; Liang, J.; Wang, L.; Yang, J.; Wang, L.; Liu, S. Enhanced ion-electron mixing interface for high energy solid-state lithium metal batteries. J. Colloid Interface Sci. 2023, 652, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Kum, L.W.; Vallo, N.; Singh, D.K.; Kumar, J. Precise Cathode Interfacial Engineering for Enhanced Electrochemical and Thermal Stability of Lithium-Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 2999–3009. [Google Scholar] [CrossRef]
- Tian, C.; Tang, J.; Wang, L.; Huang, R.; Ai, C.; Cao, H.; Huang, T.; Yu, A. Effect of Residual Solvents on Properties of Composite Solid Electrolytes. ACS Sustain. Chem. Eng. 2023, 11, 10164–10171. [Google Scholar] [CrossRef]
- Kotobuki, M.; Koishi, M. Sol–gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. Ceram. Int. 2015, 41, 8562–9567. [Google Scholar] [CrossRef]
- Zhang, X.; Oh, T.; Fergus, J.W. Densification of Ta-Doped Garnet-Type Li6.75La3Zr1.75Ta0.25O12 Solid Electrolyte Materials by Sintering in a Lithium-Rich Air Atmosphere. J. Electrochem. Soc. 2019, 166, A3753. [Google Scholar] [CrossRef]
- Shi, J.L.; Xia, S.J.; Han, S.J.; Fang, L.F.; Pan, M.Z.; Xu, X.X.; Liu, Z.P. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic–organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries. J. Power Sources 2015, 273, 389–395. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Ma, K.; Li, P.; Wang, Z.; Li, X.; Zhang, Y. Suppressing Dendrites via Interfacial Ionic Conductivity Regulation in Lithium Metal Batteries. Energy Fuels 2021, 35, 5333–5341. [Google Scholar] [CrossRef]
- Xu, K.; Xu, C.; Jiang, Y.; Cai, J.; Ni, J.; Lai, C. Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries. Ionics 2022, 28, 3243–3253. [Google Scholar] [CrossRef]
- Li, J.; Hu, R.; Zhou, H.; Tao, S.; Wang, Y. Nano-SiO2@PMMA-doped composite polymer PVDF-HFP/PMMA/PEO electrolyte for lithium metal batteries. J. Mater. Sci. Mater. Electron. 2020, 31, 2708–2719. [Google Scholar] [CrossRef]
Gel Polymer Electrolytes | I0 (μA) | Is (μA) | R0 (Ω) | Rs (Ω) | tLi+ |
---|---|---|---|---|---|
PLA 10% | 8.11 | 7.17 | 1025.462 | 1058.558 | 0.6 |
PLL 10% | 12.79 | 11.568 | 671.729 | 691.406 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Hun, Q.; Lan, L.; Zhang, B.; Chen, Z.; Wang, Y. Preparation and Properties of Gel Polymer Electrolytes with Li1.5Al0.5Ge1.5(PO4)3 and Li6.46La3Zr1.46Ta0.54O12 by UV Curing Process. Polymers 2024, 16, 464. https://doi.org/10.3390/polym16040464
Liang X, Hun Q, Lan L, Zhang B, Chen Z, Wang Y. Preparation and Properties of Gel Polymer Electrolytes with Li1.5Al0.5Ge1.5(PO4)3 and Li6.46La3Zr1.46Ta0.54O12 by UV Curing Process. Polymers. 2024; 16(4):464. https://doi.org/10.3390/polym16040464
Chicago/Turabian StyleLiang, Xinghua, Qiankun Hun, Lingxiao Lan, Bing Zhang, Zhikun Chen, and Yujiang Wang. 2024. "Preparation and Properties of Gel Polymer Electrolytes with Li1.5Al0.5Ge1.5(PO4)3 and Li6.46La3Zr1.46Ta0.54O12 by UV Curing Process" Polymers 16, no. 4: 464. https://doi.org/10.3390/polym16040464
APA StyleLiang, X., Hun, Q., Lan, L., Zhang, B., Chen, Z., & Wang, Y. (2024). Preparation and Properties of Gel Polymer Electrolytes with Li1.5Al0.5Ge1.5(PO4)3 and Li6.46La3Zr1.46Ta0.54O12 by UV Curing Process. Polymers, 16(4), 464. https://doi.org/10.3390/polym16040464