PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Surface Free Energy
2.4. Mechanical Properties
2.5. Roughness
2.6. Swelling
2.7. Water Content
2.8. In Vitro Hemo- and Cyto-Compatibility Testing
2.9. Biocidal Activity
2.10. Biofilm Analysis
2.11. Biodegradation of PVA/STO Films and Enzymatic Activity in Compost
2.12. Statistical Analysis
3. Results and Discussion
3.1. Surface Free Energy
3.2. Mechanical Properties
3.3. Roughness
3.4. Swelling
3.5. Water Content
3.6. In Vitro Hemo- and Cyto-Compatibility Testing
3.7. Biocidal Properties of PVA/STO Films
3.8. Quantitative and Enzymatic Biofilm Analysis
3.9. Biodegradation of PVA/STO Films in the Compost
3.10. Effect of PVA Films with STO on the Change in Enzyme Activity in Compost
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Percival, N.J. Classification of Wounds and Their Management. Surgery 2002, 20, 114–117. [Google Scholar] [CrossRef]
- Sheokand, B.; Vats, M.; Kumar, A.; Srivastava, C.M.; Bahadur, I.; Pathak, S.R. Natural Polymers Used in the Dressing Materials for Wound Healing: Past, Present and Future. J. Polym. Sci. 2023, 61, 1389–1414. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1451–1457. [Google Scholar] [CrossRef]
- Gaaz, T.; Sulong, A.; Akhtar, M.; Kadhum, A.; Mohamad, A.; Al-Amiery, A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Massarelli, E.; Silva, D.; Pimenta, A.F.R.; Fernandes, A.I.; Mata, J.L.G.; Armês, H.; Salema-Oom, M.; Saramago, B.; Serro, A.P. Polyvinyl Alcohol/Chitosan Wound Dressings Loaded with Antiseptics. Int. J. Pharm. 2021, 593, 120110. [Google Scholar] [CrossRef]
- Razzak, M.T.; Darwis, D.; Zainuddin; Sukirno. Irradiation of Polyvinyl Alcohol and Polyvinyl Pyrrolidone Blended Hydrogel for Wound Dressing. Radiat. Phys. Chem. 2001, 62, 107–113. [Google Scholar] [CrossRef]
- Deng, W.; Zhou, Y.; Libanori, A.; Chen, G.; Yang, W.; Chen, J. Piezoelectric Nanogenerators for Personalized Healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhou, Z.; Zhu, Z.; Huang, G.; Zhang, Z. Mechanical Stimulation of Cells with Electroactive Polymer-Based Soft Actuators. Eur. Phys. J. Spec. Top. 2023, 232, 2695–2708. [Google Scholar] [CrossRef]
- Palza, H.; Zapata, P.; Angulo-Pineda, C. Electroactive Smart Polymers for Biomedical Applications. Materials 2019, 12, 277. [Google Scholar] [CrossRef] [PubMed]
- Prokhorov, E.; Luna-Barcenas, G.; Limón, J.M.Y.; Saldaña, J.M. Flexoelectricity and Piezoelectric Effects in Poly (Vinyl Alcohol)-SrTiO3 Nanocomposites. Mater. Res. Bull. 2023, 166, 112361. [Google Scholar] [CrossRef]
- Marino, S.; Joshi, G.M.; Lusuardi, A.; Cuberes, M.T. Ultrasonic Force Microscopy on Poly(Vinyl Alcohol)/SrTiO3 Nano-Perovskites Hybrid Films. Ultramicroscopy 2014, 142, 32–39. [Google Scholar] [CrossRef]
- Taha, T.A.; Alzara, M.A.A. Synthesis, Thermal and Dielectric Performance of PVA-SrTiO3 Polymer Nanocomposites. J. Mol. Struct. 2021, 1238, 130401. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Dhar, D.; Ghangrekar, M.M.; Banerjee, R. TiO2-Si- or SrTiO3-Si-Impregnated PVA–Based Low-Cost Proton Exchange Membranes for Application in Microbial Fuel Cell. Ionics 2020, 26, 6195–6205. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.; Lan, J.; Li, Y.; Xie, L.; Huang, X.; Zhang, A.; Qiao, H.; Chang, X.; Lin, H.; et al. Surface Modification of Titanium Implants by Silk Fibroin/Ag Co-Functionalized Strontium Titanate Nanotubes for Inhibition of Bacterial-Associated Infection and Enhancement of in Vivo Osseointegration. Surf. Coat. Technol. 2021, 405, 126700. [Google Scholar] [CrossRef]
- Escobar, A.; Muzzio, N.; Angelomé, P.C.; Bordoni, A.V.; Martínez, A.; Bindini, E.; Coy, E.; Andreozzi, P.; Grzelczak, M.; Moya, S.E. Strontium Titanate (SrTiO3) Mesoporous Coatings for Enhanced Strontium Delivery and Osseointegration on Bone Implants. Adv. Eng. Mater. 2019, 21, 1801210. [Google Scholar] [CrossRef]
- Ghalib, A.; Al-Ramadhan, Z.; Hashim, A. Investigation of Antibacterial Application of (PVA/PAA/SrTiO3) New Nanocomposites Films. Mustansiriyah J. Sci. Educ. 2021, 22, 59–62. [Google Scholar]
- Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L. Study on the Surface Energy of Graphene by Contact Angle Measurements. Langmuir 2014, 30, 8598–8606. [Google Scholar] [CrossRef]
- International Standard for Blood Banks & Blood Transfusion Services; NACO: New Delhi, India, 2007.
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- JIS Z 2801; Antibacterial Products–Test for Antibacterial Activity and Efficacy. Japanese Standards Association: Tokyo, Japan, 2010.
- Souli, M.; Galani, I.; Plachouras, D.; Panagea, T.; Armaganidis, A.; Petrikkos, G.; Giamarellou, H. Antimicrobial Activity of Copper Surfaces against Carbapenemase-Producing Contemporary Gram-Negative Clinical Isolates. J. Antimicrob. Chemother. 2013, 68, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Sela, S.; Frank, S.; Belausov, E.; Pinto, R. A Mutation in the LuxS Gene Influences Listeria Monocytogenes Biofilm Formation. Appl. Environ. Microbiol. 2006, 72, 5653–5658. [Google Scholar] [CrossRef]
- Kroupitski, Y.; Pinto, R.; Brandl, M.T.; Belausov, E.; Sela, S. Interactions of Salmonella Enterica with Lettuce Leaves. J. Appl. Microbiol. 2009, 106, 1876–1885. [Google Scholar] [CrossRef]
- Swiontek Brzezinka, M.; Richert, A.; Kalwasińska, A.; Świątczak, J.; Deja-Sikora, E.; Walczak, M.; Michalska-Sionkowska, M.; Piekarska, K.; Kaczmarek-Szczepańska, B. Microbial Degradation of Polyhydroxybutyrate with Embedded Polyhexamethylene Guanidine Derivatives. Int. J. Biol. Macromol. 2021, 187, 309–318. [Google Scholar] [CrossRef]
- Niemi, R.M.; Vepsäläinen, M. Stability of the Fluorogenic Enzyme Substrates and PH Optima of Enzyme Activities in Different Finnish Soils. J. Microbiol. Methods 2005, 60, 195–205. [Google Scholar] [CrossRef]
- Hoppe, H.-G. Significance of Exoenzymatic Activities in the Ecology of Brackish Water: Measurements by Means of Methylumbelliferyl-Substrates. Mar. Ecol. Prog. Ser. 1983, 11, 299–308. [Google Scholar] [CrossRef]
- Freeman, C.; Liska, G.; Ostle, N.J.; Jones, S.E.; Lock, M.A. The Use of Fluorogenic Substrates for Measuring Enzyme Activity in Peatlands. Plant Soil 1995, 175, 147–152. [Google Scholar] [CrossRef]
- Bednarek, R.; Dziadowiec, H. Badania Ekologiczno-Gleboznawcze; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2004. [Google Scholar]
- Borbolla-Jiménez, F.V.; Peña-Corona, S.I.; Farah, S.J.; Jiménez-Valdés, M.T.; Pineda-Pérez, E.; Romero-Montero, A.; Del Prado-Audelo, M.L.; Bernal-Chávez, S.A.; Magaña, J.J.; Leyva-Gómez, G. Films for Wound Healing Fabricated Using a Solvent Casting Technique. Pharmaceutics 2023, 15, 1914. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, S.M.; Noronha, C.M.; da Rosa, C.G.; Sganzerla, W.G.; Bellettini, I.C.; Nunes, M.R.; Bertoldi, F.C.; Manique Barreto, P.L. PVA Antioxidant Nanocomposite Films Functionalized with Alpha-Tocopherol Loaded Solid Lipid Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123793. [Google Scholar] [CrossRef]
- Popescu, M.-C. Structure and Sorption Properties of CNC Reinforced PVA Films. Int. J. Biol. Macromol. 2017, 101, 783–790. [Google Scholar] [CrossRef]
- Al Sawaftah, N.M.; Pitt, W.G.; Husseini, G.A. Incorporating Nanoparticles in 3D Printed Scaffolds for Bone Cancer Therapy. Bioprinting 2023, 36, e00322. [Google Scholar] [CrossRef]
- Nofar, M.; Salehiyan, R.; Ray, S.S. Influence of Nanoparticles and Their Selective Localization on the Structure and Properties of Polylactide-Based Blend Nanocomposites. Compos. B Eng. 2021, 215, 108845. [Google Scholar] [CrossRef]
- Akhila, V.; Badwaik, L.S. Recent Advancement in Improvement of Properties of Polysaccharides and Proteins Based Packaging Film with Added Nanoparticles: A Review. Int. J. Biol. Macromol. 2022, 203, 515–525. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Rouzé, R.; Quilty, B.; Alves, G.G.; Soares, G.D.A.; Thiré, R.M.S.M.; McGuinness, G.B. Mechanical Properties and in Vitro Characterization of Polyvinyl Alcohol-Nano-Silver Hydrogel Wound Dressings. Interface Focus 2014, 4, 20130049. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, K. Surface Properties of Chitosan Composites with Poly(Vinyl Alcohol) and Hydroxyapatite. Prog. Chem. Appl. Chitinits Deriv. 2015, XX, 177–182. [Google Scholar] [CrossRef]
- Ousey, K.; Cutting, K.F.; Rogers, A.A.; Rippon, M.G. The Importance of Hydration in Wound Healing: Reinvigorating the Clinical Perspective. J. Wound Care 2016, 25, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yang, D.; Tu, J.; Zheng, Q.; Cai, L.; Wang, L. Strontium Enhances Osteogenic Differentiation of Mesenchymal Stem Cells and In Vivo Bone Formation by Activating Wnt/Catenin Signaling. Stem Cells 2011, 29, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xia, L.; Li, H.; Jiang, X.; Pan, H.; Xu, Y.; Lu, W.W.; Zhang, Z.; Chang, J. Enhanced Osteoporotic Bone Regeneration by Strontium-Substituted Calcium Silicate Bioactive Ceramics. Biomaterials 2013, 34, 10028–10042. [Google Scholar] [CrossRef] [PubMed]
- Frasnelli, M.; Cristofaro, F.; Sglavo, V.M.; Dirè, S.; Callone, E.; Ceccato, R.; Bruni, G.; Cornaglia, A.I.; Visai, L. Synthesis and Characterization of Strontium-Substituted Hydroxyapatite Nanoparticles for Bone Regeneration. Mater. Sci. Eng. C 2017, 71, 653–662. [Google Scholar] [CrossRef]
- Sahoo, S.; Sinha, A.; Balla, V.K.; Das, M. Synthesis, Characterization, and Bioactivity of SrTiO3-Incorporated Titanium Coating. J. Mater. Res. 2018, 33, 2087–2095. [Google Scholar] [CrossRef]
- Amudha, S.; Ramya, J.R.; Arul, K.T.; Deepika, A.; Sathiamurthi, P.; Mohana, B.; Asokan, K.; Dong, C.-L.; Kalkura, S.N. Enhanced Mechanical and Biocompatible Properties of Strontium Ions Doped Mesoporous Bioactive Glass. Compos. B Eng. 2020, 196, 108099. [Google Scholar] [CrossRef]
- Sahoo, S.; Sinha, A.; Das, M. Synthesis, Characterization and in Vitro Biocompatibility Study of Strontium Titanate Ceramic: A Potential Biomaterial. J. Mech. Behav. Biomed. Mater. 2020, 102, 103494. [Google Scholar] [CrossRef]
- Rivera-Hernández, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; Sánchez, M.L. Polyvinyl Alcohol Based-Drug Delivery Systems for Cancer Treatment. Int. J. Pharm. 2021, 600, 120478. [Google Scholar] [CrossRef]
- Abdal-hay, A.; Makhlouf, A.S.H.; Vanegas, P. A Novel Approach for Facile Synthesis of Biocompatible PVA-Coated PLA Nanofibers as Composite Membrane Scaffolds for Enhanced Osteoblast Proliferation. In Handbook of Nanoceramic and Nanocomposite Coatings and Materials; Elsevier: Amsterdam, The Netherlands, 2015; pp. 87–113. [Google Scholar]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Birck, C.; Degoutin, S.; Tabary, N.; Miri, V.; Bacquet, M. New Crosslinked Cast Films Based on Poly(Vinyl Alcohol): Preparation and Physico-Chemical Properties. Express. Polym. Lett. 2014, 8, 941–952. [Google Scholar] [CrossRef]
- Patro, T.U.; Wagner, H.D. Layer-by-Layer Assembled PVA/Laponite Multilayer Free-Standing Films and Their Mechanical and Thermal Properties. Nanotechnology 2011, 22, 455706. [Google Scholar] [CrossRef]
- Hu, D.; Wang, L. Preparation and Characterization of Antibacterial Films Based on Polyvinyl Alcohol/Quaternized Cellulose. React. Funct. Polym. 2016, 101, 90–98. [Google Scholar] [CrossRef]
- Ravikumar, S.; Ramasamy, G. The Inhibitory Effect of Metal Oxide Nanoparticles against Poultry Pathogens. Int. J. Pharm. Sci. Drug Res. 2012, 4, 157–159. [Google Scholar]
- Zhang, L.; Tan, P.Y.; Chow, C.L.; Lim, C.K.; Tan, O.K.; Tse, M.S.; Sze, C.C. Antibacterial Activities of Mechanochemically Synthesized Perovskite Strontium Titanate Ferrite Metal Oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 456, 169–175. [Google Scholar] [CrossRef]
- Souli, M.; Antoniadou, A.; Katsarolis, I.; Mavrou, I.; Paramythiotou, E.; Papadomichelakis, E.; Drogari-Apiranthitou, M.; Panagea, T.; Giamarellou, H.; Petrikkos, G.; et al. Reduction of Environmental Contamination With Multidrug-Resistant Bacteria by Copper-Alloy Coating of Surfaces in a Highly Endemic Setting. Infect. Control Hosp. Epidemiol. 2017, 38, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ying, Y.; Liu, Y.; Zhang, H.; Huang, J. Preparation of Chitosan/Poly Vinyl Alcohol Films and Their Inhibition of Biofilm Formation against Pseudomonas Aeruginosa PAO1. Int. J. Biol. Macromol. 2018, 118, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of Poly(Vinyl Alcohol) Based Materials. Prog. Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- Gao, X.; Li, M.; Zhou, F.; Wang, X.; Chen, S.; Yu, J. Flexible Zirconium Doped Strontium Titanate Nanofibrous Membranes with Enhanced Visible-Light Photocatalytic Performance and Antibacterial Activities. J. Colloid Interface Sci. 2021, 600, 127–137. [Google Scholar] [CrossRef]
- Azahari, N.; Othman, N.; Ismail, H. Biodegradation Studies of Polyvinyl Alcohol/Corn Starch Blend Films in Solid and Solution Media. J. Phys. Sci. 2011, 22, 15–31. [Google Scholar]
- Bonilla, J.; Paiano, R.B.; Lourenço, R.V.; Bittante, A.M.Q.B.; Sobral, P.J.A. Biodegradation of Films Based on Natural and Synthetic Biopolymers Using an Aquatic System from Active Sludge. J. Polym. Environ. 2021, 29, 1380–1395. [Google Scholar] [CrossRef]
- Sakai, K.; Hamada, N.; Watanabe, Y. Degradation Mechanism of Poly(Vinyl Alcohol) by Successive Reactions of Secondary Alcohol Oxidase and β-Diketone Hydrolase from Pseudomonas Sp. Agric. Biol. Chem. 1986, 50, 989–996. [Google Scholar] [CrossRef]
- Kawai, F.; Hu, X. Biochemistry of Microbial Polyvinyl Alcohol Degradation. Appl. Microbiol. Biotechnol. 2009, 84, 227–237. [Google Scholar] [CrossRef] [PubMed]
- AWAD, S. Investigation of Chemical Modification and Enzymatic Degradation of Poly(Vinyl Alcohol)/Hemoprotein Particle Composites. J. Turk. Chem. Soc. Sect. A Chem. 2021, 8, 651–658. [Google Scholar] [CrossRef]
Specimen | IFT(s) [mJ/m2] | IFT(s,D) [mJ/m2] | IFT(s,P) [mJ/m2] |
---|---|---|---|
PVA | 43.69 ± 0.84 | 33.57 ± 0.48 | 10.12 ± 0.36 |
PVA + 5%STO | 41.77 ± 0.93 * | 39.61 ± 0.70 * | 2.16 ± 0.23 * |
PVA + 10%STO | 39.74 ± 0.91 * | 32.66 ± 0.65 * | 7.07 ± 0.26 * |
PVA + 20%STO | 34.76 ± 1.17 * | 31.50 ± 0.73 | 9.27 ± 0.45 |
Specimen | Ra [nm] | Rq [nm] |
---|---|---|
PVA | 1.75 ± 0.09 | 2.22 ± 0.04 |
PVA + 5%STO | 1.83 ± 0.06 | 2.27 ± 0.03 |
PVA + 10%STO | 2.22 ± 0.02 * | 2.80 ± 0.07 * |
PVA + 20%STO | 2.47 ± 0.03 * | 3.25 ± 0.02 * |
Specimen | Swelling [%] | ||||
---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | |
PVA | dissolved | ||||
PVA + 5%STO | 627 ± 11 | 691 ± 19 | 821 ± 17 | 883 ± 12 | 915 ± 14 |
PVA + 10%STO | 719 ± 22 * | 782 ± 13 * | 844 ± 11 | 909 ± 19 | 922 ± 17 |
PVA + 20%STO | 740 ± 17 * | 798 ± 11 * | 901 ± 14 *# | 933 ± 15 * | 942 ± 20 * |
Specimen | Water Content [g/100 g] |
---|---|
PVA | 3.72 ± 1.05 |
PVA + 5%STO | 6.09 ± 0.91 * |
PVA + 10%STO | 7.25 ± 0.77 * |
PVA + 20%STO | 9.17 ± 1.17 * |
Films | Enzyme Activity (µM/h) | |||
---|---|---|---|---|
Lipase | α-glucosidase | β-glucosidase | Aminopeptidase | |
Compost-control | 37.2 ± 0.11 a | 11.2 ± 0.21 a | 25.6 ± 0.33 a | 40.0 ± 0.32 a |
PVA | 36.5 ± 0.12 a | 10.5 ± 0.41 a | 24.2 ± 0.62 a | 38.7 ± 0.22 a |
PVA + 5%STO | 23.3 ± 0.24 b | 9.6 ± 0.16 a | 24.4 ± 0.15 a | 37.4 ± 0.13 a |
PVA + 10%STO | 23.4 ± 0.31 b | 10.0 ± 0.18 a | 12.9 ± 0.48 b | 26.5 ± 0.23 b |
PVA + 20%STO | 10.1 ± 0.10 c | 9.3 ± 0.12 a | 11.6 ± 0.11 b | 26.1 ± 0.26 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarek-Szczepańska, B.; Zasada, L.; Wekwejt, M.; Brzezinska, M.S.; Michno, A.; Ronowska, A.; Ciesielska, M.; Kovtun, G.; Cuberes, M.T. PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application. Polymers 2024, 16, 484. https://doi.org/10.3390/polym16040484
Kaczmarek-Szczepańska B, Zasada L, Wekwejt M, Brzezinska MS, Michno A, Ronowska A, Ciesielska M, Kovtun G, Cuberes MT. PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application. Polymers. 2024; 16(4):484. https://doi.org/10.3390/polym16040484
Chicago/Turabian StyleKaczmarek-Szczepańska, Beata, Lidia Zasada, Marcin Wekwejt, Maria Swiontek Brzezinska, Anna Michno, Anna Ronowska, Magdalena Ciesielska, Ganna Kovtun, and M. Teresa Cuberes. 2024. "PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application" Polymers 16, no. 4: 484. https://doi.org/10.3390/polym16040484
APA StyleKaczmarek-Szczepańska, B., Zasada, L., Wekwejt, M., Brzezinska, M. S., Michno, A., Ronowska, A., Ciesielska, M., Kovtun, G., & Cuberes, M. T. (2024). PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application. Polymers, 16(4), 484. https://doi.org/10.3390/polym16040484