Novel Conductive AgNP-Based Adhesive Based on Novel Poly (Ionic Liquid)-Based Waterborne Polyurethane Chloride Salts for E-Textiles
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of AgNPs
2.3. Preparation of Bis(Hydroxy)-Capped Imidazole Chloride Salt (OH-IL[Cl-]-OH)
2.4. Preparation of Waterborne Polyurethane Adhesives Containing Chloride Ions (WPU[Cl−])
2.5. Preparation of Printable AgNP-Based Flexible Circuits
2.6. Assembly of Flexible Pressure-Sensing Polyester Fabric (PET-FPS)
2.7. Characterization
3. Results and Discussion
3.1. Characterization of Raw Materials for AgNP-Based Conductive Adhesive
3.2. Stability and Print Quality of AgNP-Based Conductive Adhesive
3.3. Mechanism of Chemical Low-Temperature Sintering
3.4. Printable AgNP-Based Adhesive for E-Textile Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corea, J.R.; Flynn, A.M.; Lechene, B.; Scott, G.; Reed, G.D.; Shin, P.J.; Lustig, M.; Arias, A.C. Screen-printed flexible MRI receive coils. Nat. Commun. 2016, 7, 10839–10846. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, Q.; Cui, X.; Dong, M.; Zhang, J.; Wang, C.; Fan, J.; Zhu, Y.; Guo, Z. An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C 2019, 7, 11710–11730. [Google Scholar] [CrossRef]
- Khan, Y.; Thielens, A.; Muin, S.; Ting, J.; Baumbauer, C.; Arias, A.C. A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Adv. Mater. 2020, 32, e1905279. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.B.; Ge, J.; Wang, C.F.; Wang, X.; Hu, W.; Zheng, Z.J.; Ni, Y.; Yu, S.H. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractuced microstructure design. Adv. Mater. 2013, 25, 6692–6698. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef]
- Duan, L.; D’Hooge, D.R.; Cardon, L. Recent progress on flexible and stretchable piezoresisitive strain sensors: From design to application. Prog. Mater. Sci. 2020, 114, 100617. [Google Scholar] [CrossRef]
- Liao, H.; Zhong, W.; Li, T.; Han, J.; Sun, X.; Tong, X.; Zhang, Y. A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochim. Acta 2022, 404, 139730. [Google Scholar] [CrossRef]
- Ibrahim, N.; Akindoyo, J.O.; Mariatti, M. Recent development in silver-based ink for flexible electronics. J. Sci. Adv. Mater. Devices 2022, 7, 100395. [Google Scholar] [CrossRef]
- Komolafe, A.; Torah, R.; Wei, Y.; Nunes-Matos, H.; Li, M.; Hardy, D.; Dias, T.; Tudor, M.; Beeby, S. Integrating flexible filament circuits for e-texitile applications. Adv. Mater. Technol. 2019, 4, 1900176. [Google Scholar] [CrossRef]
- Shahariar, H.; Kim, I.; Soewardiman, H.; Jur, J.S. Inkjet Printing of Reactive Silver Ink on Textiles. ACS Appl. Mater. Interfaces 2019, 11, 6208–6216. [Google Scholar] [CrossRef]
- Cheng, T.; Yang, X.; Yang, S.; Li, L.; Liu, Z.; Qu, J.; Meng, C.; Li, X.; Zhang, Y.; Lai, W. Flexible Transparent Bifunctional Capacitive Sensors with Superior Areal Capacitance and Sensing Capability based on PEDOT:PSS/MXene/Ag Grid Hybrid Electrodes. Adv. Funct. Mater. 2023, 33, 2210997. [Google Scholar] [CrossRef]
- Nie, S.; Hao, N.; Zhang, K.; Xing, C.; Wang, S. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: A mini review. Cellulose 2020, 27, 4173–4187. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, A.; Yan, Z.; Qin, F.; Xu, J.; Ji, Y.; Kan, C. PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility. Nanoscale 2021, 13, 8067–8076. [Google Scholar] [CrossRef] [PubMed]
- Komolafe, O.A.; Torah, R.N.; Tudor, M.J.; Beeby, S.P. Modelling and experimental validation of the effect of the elastic properties of fabrics on the durability of screen printed e-textiles. Smart Mater. Struct. 2018, 27, 075046. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Zhang, Z.; Sun, Z.; Maimaitimin, Z. Silver-Based Conductive Ink on Paper Electrodes Based on Micro-Pen Writing for Electroanalytical Applications. ChemElectroChem 2022, 9, e202200948. [Google Scholar] [CrossRef]
- Zhang, J.; Ahmadi, M.; Fargas, G.; Perinka, N.; Reguera, J.; Lanceros-Méndez, S.; Llanes, L.; Jiménez-Piqué, E. Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. Metals 2022, 12, 234. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, Q.; Zhao, Y.; Zhan, F.; Tang, S.; Wang, Q.; Liu, J.; Wang, L. Flexible Microcircuit of a Liquid Metal Deposit Layer. Chemnanomat 2023, 9, e202300227. [Google Scholar] [CrossRef]
- Deng, D.; Chen, Z.; Hu, Y.; Ma, J.; Liu, P.; Tong, Y. Simple and green fabrication process of nano silver conductive ink and the application in frequency selective surface. Nanotechnology 2019, 31, 105705. [Google Scholar] [CrossRef]
- Kariper, İ.A. Conductive ink next generation materials: Silver nanoparticle/polyvinyl alcohol/polyaniline. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1277–1286. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Lu, L. Preparation and application of water-based nano-silver conductive ink in paper-based 3D printing. Rapid Prototyp. J. 2022, 28, 747–755. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.L.; Su, W.M.; Cui, Z.; Lai, W.Y. In-depth investigation of inkjet-printed silver electrodes over large-area: Ink recipe, flow, and solidification. Adv. Mater. Interfaces 2022, 9, 2102548. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Zhang, C.; Chen, W.; Meng, Q.; Yuan, H.; Yang, S. A Fluorinated Polyimide Based Nano Silver Paste with High Thermal Resistance and Outstanding Thixotropic Performance. Polymers 2023, 15, 1150. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, R.; Moon, K.S.; Liu, Y.; Hansen, K.; Le, T.; Wong, C. High conductive, flexible, polyurethane-based adhesive for flexibel and printed electronics. Adv. Funct. Mater. 2013, 23, 1459–1465. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Y.; Li, X.; Chen, W. Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos. Sci. Technol. 2016, 126, 86–93. [Google Scholar] [CrossRef]
- Bakr, M.; Su, Y.; Rezaei, A.; Bossuyt, F.; Vanfleteren, J. Over-molding of flexible polyimide-based electronic ciruits. Flex. Print. Electron. 2021, 6, 025007. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, L.-M.; Xiang, L.; Zhang, H. Flexible Integrated Circuits Based on Carbon Nanotubes. Acc. Mater. Res. 2020, 1, 88–99. [Google Scholar] [CrossRef]
- Xia, J.; Wang, X.; Wang, X.; Majer-Baranyi, K.; Zhang, X. Hysteresis Dynamic Modeling and Analysis of Flexible Nano Silver–Polyvinyl Alcohol Humidity Sensor Based on the Microscopic Process and Langmuir–Fick Theory. ACS Omega 2022, 7, 14994–15004. [Google Scholar] [CrossRef]
- Wu, W.; Guo, N.; Zhang, Y.; Liu, G.; Yu, L.; Ma, X.; Li, W.; Chen, M. The fabrication, properties, and application of a printed green AgNWs-based flexible electrode and circuit. ACS Appl. Polym. Mater. 2023, 15, 14643–14653. [Google Scholar]
- Peng, P.; Li, L.; Guo, W.; Hui, Z.; Fu, J.; Jin, C.; Liu, Y.; Zhu, Y. Room-Temperature Joining of Silver Nanoparticles Using Potassium Chloride Solution for Flexible Electrode Application. J. Phys. Chem. C 2018, 122, 2704–2711. [Google Scholar] [CrossRef]
- Tang, Y.; He, W.; Zhou, G.; Wang, S.; Yang, X.; Tao, Z.; Zhou, J. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Nanotechnology 2012, 23, 355304. [Google Scholar] [CrossRef]
- López-León, T.; Jódar-Reyes, A.B.; Bastos-González, D.; Ortega-Vinuesa, J.L. Hofmeister Effects in the Stability and Electrophoretic Mobility of Polystyrene Latex Particles. J. Phys. Chem. B 2003, 107, 5696–5708. [Google Scholar] [CrossRef]
- Okur, H.I.; Hladílková, J.; Rembert, K.B.; Cho, Y.; Heyda, J.; Dzubiella, J.; Cremer, P.S.; Jungwirth, P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J. Phys. Chem. B 2017, 121, 1997–2014. [Google Scholar] [CrossRef]
- Liang, L.; Yuan, W.; Chen, X.; Liao, H. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chem. Eng. J. 2021, 421, 130000. [Google Scholar] [CrossRef]
- Liao, H.; Zhong, W.; Li, C.; Han, J.; Sun, X.; Xia, X.; Li, T.; Noori, A.; Mousavi, M.F.; Liu, X.; et al. An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries. J. Energy Chem. 2024, 89, 565–578. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, X.; Liao, S.; Jia, H.; Wang, Y. Polymer Swelling Induced Conductive Wrinkles for an Ultrasensitive Pressure Sensor. ACS Macro Lett. 2016, 5, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.Q.; Tien, N.T.; Kim, D.; Jang, M.; Yoon, O.J.; Lee, N. A Flexible Reduced Graphene Oxide Field-Effect Transistor for Ultrasensitive Strain Sensing. Adv. Funct. Mater. 2014, 24, 117–124. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Li, C.; Dai, Z.; Yan, H.; Zhu, M.; Zhang, Y.; Yao, Y.; Li, Q. Regulation of multidimensional silver nanostructures for high-performance composite conductive adhesives. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106025. [Google Scholar] [CrossRef]
- Hong, H.; Jiang, L.; Tu, H.; Hu, J.; Moon, K.-S.; Yan, X.; Wong, C.-P. Rational design and evaluation of UV curable nano-silver ink applied in highly conductive textile-based electrodes and flexible silver-zinc batteries. J. Mater. Sci. Technol. 2022, 101, 294–307. [Google Scholar] [CrossRef]
- Liu, H.; Huang, W.; Gao, J.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl. Phys. Lett. 2016, 108, 011904. [Google Scholar] [CrossRef]
- Velankar, S.S.; Lai, V.; Vaia, R.A. Swelling-Induced Delamination Causes Folding of Surface-Tethered Polymer Gels. ACS Appl. Mater. Interfaces 2012, 4, 24–29. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, P.; Liu, D.F.; Yuan, H.J.; Yan, X.Q.; Zhou, Z.P.; Wang, J.X.; Song, L.; Liu, L.F.; Zhou, W.Y.; et al. Evidence for the monolayer assembly of poly(vinypyrrolidone) on the surfaces of silver nanowires. J. Phys. Chem. B. 2004, 108, 12877–12881. [Google Scholar] [CrossRef]
- Wen, J.; Tian, Y.; Hao, C.; Wang, S.; Mei, Z.; Wu, W.; Lu, J.; Zheng, Z.; Tian, Y. Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste. J. Mater. Chem. C 2019, 7, 1188–1197. [Google Scholar] [CrossRef]
- Cao, G.; Cai, S.; Zhang, H.; Chen, Y.; Tian, Y. High-Performance Conductive Polymer Composites by Incorporation of Polyaniline-Wrapped Halloysite Nanotubes and Silver Microflakes. ACS Appl. Polym. Mater. 2022, 4, 3352–3360. [Google Scholar] [CrossRef]
- Ong, J.K.Y.; Van Nguyen, C.; Sayood, S.; Saraf, R.F. Imaging Electroluminescence from Individual Nanoparticles in an Array Exhibiting Room Temperature Single Electron Effect. ACS Nano 2013, 7, 7403–7410. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, W.; Yu, D. Pressure responsive PET fabrics via constructing conductive wrinkles at room temperature. Chem. Eng. J. 2017, 330, 146–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.; Xiao, Y.; Xiao, T.; Kuang, H.; Feng, X.; Sun, X.; Cui, G.; Duan, X.; Shi, P. Novel Conductive AgNP-Based Adhesive Based on Novel Poly (Ionic Liquid)-Based Waterborne Polyurethane Chloride Salts for E-Textiles. Polymers 2024, 16, 540. https://doi.org/10.3390/polym16040540
Liao H, Xiao Y, Xiao T, Kuang H, Feng X, Sun X, Cui G, Duan X, Shi P. Novel Conductive AgNP-Based Adhesive Based on Novel Poly (Ionic Liquid)-Based Waterborne Polyurethane Chloride Salts for E-Textiles. Polymers. 2024; 16(4):540. https://doi.org/10.3390/polym16040540
Chicago/Turabian StyleLiao, Haiyang, Yeqi Xiao, Tiemin Xiao, Hongjin Kuang, Xiaolong Feng, Xiao Sun, Guixin Cui, Xiaofei Duan, and Pu Shi. 2024. "Novel Conductive AgNP-Based Adhesive Based on Novel Poly (Ionic Liquid)-Based Waterborne Polyurethane Chloride Salts for E-Textiles" Polymers 16, no. 4: 540. https://doi.org/10.3390/polym16040540
APA StyleLiao, H., Xiao, Y., Xiao, T., Kuang, H., Feng, X., Sun, X., Cui, G., Duan, X., & Shi, P. (2024). Novel Conductive AgNP-Based Adhesive Based on Novel Poly (Ionic Liquid)-Based Waterborne Polyurethane Chloride Salts for E-Textiles. Polymers, 16(4), 540. https://doi.org/10.3390/polym16040540