Experimental and Theoretical Insights into the Effect of Dioldibenzoate Isomers on the Performance of Polypropylene Catalysts
Abstract
:1. Introduction
2. Experiment and Calculation Sections
2.1. Experiments
2.1.1. Materials
2.1.2. Catalyst Preparation
2.1.3. Bulk Polymerization Process
2.1.4. Characterization
2.2. Computational Details
3. Results and Discussions
3.1. The Polymerization Experiments
3.2. The Active Center Models for DFT Calculations
3.3. DFT Calculations about the Catalytic Activity
3.4. Analysis of Factors Affecting Catalytic Activity
3.5. Hydrogen Transfer Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- GB828791A; Method of Selectively Polymerising α-olefins. Montecatini Societa Generale L.: Montecatini, Italy, 1955.
- US3438956A; Separation of Macromolecules Having Different Stereoregularities from Polypropylenes Comprising Mixtures of Such Macromolecules. Montedison S.p.A.: Milan, Italy, 1968.
- Kumawat, J.; Gupta, V.K. Fundamental Aspects of Heterogeneous Ziegler-Natta Olefin Polymerization Catalysis: An Experimental and Computational Overview. Polym. Chem. 2020, 11, 6107–6128. [Google Scholar] [CrossRef]
- Pasquini, N. Polypropylene Handbook, 2nd ed.; Hanser Gardner Publications, Inc.: Munich, Germany, 2005; ISBN 1-56990-385-9. [Google Scholar]
- Kaminsky, W. Polyolefins: 50 Years after Ziegler and Natta I—Polyethylene and Polypropylene; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-40807-6. [Google Scholar]
- Morini, G.; Albizzati, E.; Balbontin, G.; Mingozzi, I.; Sacchi, M.C.; Forlini, F.; Tritto, I. Microstructure Distribution of Polypropylenes Obtained in the Presence of Traditional Phthalate/Silane and Novel Diether Donors: A Tool for Understanding the Role of Electron Donors in MgCl2-Supported Ziegler-Natta Catalysts. Macromolecules 1996, 29, 5770–5776. [Google Scholar] [CrossRef]
- Sacchi, M.C.; Forlini, F.; Tritto, I.; Locatelli, P.; Morini, G.; Noristi, L.; Albizzati, E. Polymerization Stereochemistry with Ziegler-Natta Catalysts Containing Dialkylpropane Diethers: A Tool for Understanding Internal/External Donor Relationships. Macromolecules 1996, 29, 3341–3345. [Google Scholar] [CrossRef]
- Cecchin, G.; Morini, G.; Pelliconi, A. Polypropene Product Innovation by Reactor Granule Technology. Macromol. Symp. 2001, 173, 195–210. [Google Scholar] [CrossRef]
- Zaccaria, F.; Vittoria, A.; Correa, A.; Ehm, C.; Budzelaar, P.H.M.; Busico, V.; Cipullo, R. Internal Donors in Ziegler-Natta Systems: Is Reduction by AlR3 a Requirement for Donor Clean-Up? ChemCatChem 2018, 10, 984–988. [Google Scholar] [CrossRef]
- US7388016B2; Solid Catalyst Component for Polymerization of Olefins, Catalyst Comprising the Same and Use Thereof. Beijing Research Institute of Chemical Industry: Beijing, China, 2008.
- Gao, M.; Liu, H.; Wang, J.; Li, C.; Ma, J.; Wei, G. Novel MgCl2-Supported Catalyst Containing Diol Dibenzoate Donor for Propylene Polymerization. Polymer 2004, 45, 2175–2180. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, H.; Gao, M. Performance of Catalyst with Different 2,4-Pentanediol Diester as Internal Donor. Petrochem. Technol. 2010, 39, 1236–1240. [Google Scholar]
- US8404789B2; Olefin Polymerization Catalyst and Preparation Method and Use Thereof. Petrochina Company Limited: Beijing, China, 2013.
- Li, H.S.; Yi, J.J.; Cui, C.M. Bis(Trifluoromethylsulfonyl)-Phenylamines as Internal Donors for Ziegler-Natta Polymerization Catalysts. China Pet. Process. Petrochem. Technol. 2008, 10, 51–54. [Google Scholar]
- Wang, L.; Yin, B.Z.; Yi, J.J.; Cui, C.M. Propylene Polymerization Catalysts with Sulfonyl Amines as Internal Electron Donors. China Pet. Process. Petrochem. Technol. 2013, 15, 19–23. [Google Scholar]
- Matta, A.; Chammingkwan, P.; Singh, B.K.; Terano, M.; Kaneko, T.; Taniike, T. Truxillic and Truxinic Acid-based, Bio-derived Diesters as Potent Internal Donor in Ziegler-Natta Catalyst for Propylene Polymerization. Appl. Catal. A-Genet. 2018, 554, 80–87. [Google Scholar] [CrossRef]
- Patil, H.; Karthikeyan, S.; Kote, V.; Sengupta, P.; Samanta, P.; Kadam, P.; Natarajan Venkateswaran, N.; Gupta, V. An Insight into Ziegler-Natta Catalyst Active Site Distribution for Polyolefins: Application of Jitter Differential Evolution. Polym. Bull. 2023, 80, 1425–1445. [Google Scholar] [CrossRef]
- Piovano, A.; Wada, T.; Amodio, A.; Takasao, G.; Ikeda, T.; Zhu, D.; Terano, M.; Chammingkwan, P.; Groppo, E.; Taniike, T. Formation of Highly Active Ziegler-Natta Catalysts Clarified by a Multifaceted Characterization Approach. ACS Catal. 2021, 11, 13782–13796. [Google Scholar] [CrossRef]
- Shen, X.; Hu, J.; Fu, Z.; Lou, J.; Fan, Z. Counting the Number of Active Centers in MgCl2-Supported Ziegler-Natta Catalysts by Quenching with 2-Thiophenecarbonyl Chloride and Study on the Initial Kinetics of Propylene Polymerization. Catal. Commun. 2013, 30, 66–69. [Google Scholar] [CrossRef]
- Weng, Y.; Jiang, B.; Fu, Z.; Fan, Z. Mechanism of Internal and External Electron Donor Effects on Propylene Polymerization with MgCl2-Supported Ziegler-Natta Catalyst: New Evidences Based on Active Center Counting. J. Appl. Polym. Sci. 2018, 135, 46605. [Google Scholar] [CrossRef]
- Yakimov, A.; Xu, J.; Searles, K.; Liao, W.; Antinucci, G.; Friederichs, N.; Busico, V.; Copéret, C. DNP-SENS Formulation Protocols to Study Surface Sites in Ziegler-Natta Catalyst MgCl2 Supports Modified with Internal Donors. J. Phys. Chem. C 2021, 125, 15994–16003. [Google Scholar] [CrossRef]
- Bahri-Laleh, N.; Hanifpour, A.; Mirmohammadi, S.A.; Poater, A.; Nekoomanesh-Haghighi, M.; Talarico, G.; Cavallo, L. Computational Modeling of Heterogeneous Ziegler-Natta Catalysts for Olefins Polymerization. Prog. Polym. Sci. 2018, 84, 89–114. [Google Scholar] [CrossRef]
- Credendino, R.; Busico, V.; Causà, M.; Barone, V.; Budzelaar, P.H.M.; Zicovich-Wilson, C. Periodic DFT Modeling of Bulk and Surface Properties of MgCl2. Phys. Chem. Chem. Phys. 2009, 11, 6525–6532. [Google Scholar] [CrossRef] [PubMed]
- Stukalov, D.V.; Zilberberg, I.L.; Zakharov, V.A. Surface Species of Titanium(IV) and Titanium(III) in MgCl2-Supported Ziegler-Natta Catalysts. A Periodic Density Functional Theory Study. Macromolecules 2009, 42, 8165–8171. [Google Scholar] [CrossRef]
- Stukalov, D.V.; Zakharov, V.A. Active Site Formation in MgCl2–Supported Ziegler-Natta Catalysts. A Density Functional Theory Study. J. Phys. Chem. C 2009, 113, 21376–21382. [Google Scholar] [CrossRef]
- Brambilla, L.; Zerbi, G.; Piemontesi, F.; Nascetti, S.; Morini, G. Structure of MgCl2–TiCl4 Complex in Co-milled Ziegler-Natta Catalyst Precursors with Different TiCl4 Content: Experimental and Theoretical Vibrational Spectra. J. Mol. Catal. A Chem. 2007, 263, 103–111. [Google Scholar] [CrossRef]
- D’Amore, M.; Credendino, R.; Budzelaar, P.H.M.; Causá, M.; Busico, V. A Periodic Hybrid DFT Approach (Including Dispersion) to MgCl2–Supported Ziegler-Natta Catalysts–1: TiCl4 Adsorption on MgCl2 Crystal Surfaces. J. Catal. 2012, 286, 103–110. [Google Scholar] [CrossRef]
- Breuza, E.; Antinucci, G.; Budzelaar, P.H.M.; Busico, V.; Correa, A.; Ehm, C. MgCl2-Supported Ziegler-Natta Catalysts: A DFT-D “Flexible-Cluster” Approach to Internal Donor Adducts. J. Phys. Chem. C 2018, 122, 9046–9053. [Google Scholar] [CrossRef]
- Vanka, K.; Singh, G.; Iyer, D.; Gupta, V.K. DFT Study of Lewis Base Interactions with the MgCl2 Surface in the Ziegler-Natta Catalytic System: Expanding the Role of the Donors. J. Phys. Chem. C 2010, 114, 15771–15781. [Google Scholar] [CrossRef]
- Cavallo, L.; Del Piero, S.; Ducéré, J.-M.; Fedele, R.; Melchior, A.; Morini, G.; Piemontesi, F.; Tolazzi, M. Key Interactions in Heterogeneous Ziegler-Natta Catalytic Systems: Structure and Energetics of TiCl4–Lewis Base Complexes. J. Phys. Chem. C. 2007, 111, 4412–4419. [Google Scholar] [CrossRef]
- Cavallo, L.; Ducéré, J.M.; Fedele, R.; Melchior, A.; Mimmi, M.C.; Morini, G.; Piemontesi, F.; Tolazzi, M. Ziegler-Natta Catalytic Systems: Calorimetric and DFT Study on TiCl4-Lewis Base Interactions. J. Therm. Anal. Calorim. 2008, 91, 101–106. [Google Scholar] [CrossRef]
- Cavallo, L.; Fedele, R.; Morini, G.; Ducéré, J.-M.; Melchior, A.; Correa, A.; Piemontesi, F.; Tolazzi, M. An Empirical Correction Term to Density Functional Theory for the Description of the TiCl4-Lewis Base Complexes. Macromol. Symp. 2007, 260, 122–126. [Google Scholar] [CrossRef]
- Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Mirmohammadi, S.A. A DFT Study on the Effect of Hydrogen in Ethylene and Propylene Polymerization Using a Ti-Based Heterogeneous Ziegler-Natta Catalyst. J. Organomet. Chem. 2012, 719, 74–79. [Google Scholar] [CrossRef]
- Bahri-Laleh, N. Interaction of Different Poisons with MgCl2/TiCl4 Based Ziegler-Natta Catalysts. Appl. Surf. Sci. 2016, 379, 395–401. [Google Scholar] [CrossRef]
- Guo, X.; Shao, Y.; Luo, J.; Liu, Z.; Liu, B. The Atomic Defects on the (104) and (110) Surfaces of the MgCl2-Supported Ziegler-Natta Catalyst: A Periodic DFT Study. Catal. Sci. Technol. 2022, 12, 6761–6770. [Google Scholar] [CrossRef]
- Credendino, R.; Liguori, D.; Fan, Z.; Morini, G.; Cavallo, L. Toward a Unified Model Explaining Heterogeneous Ziegler-Natta Catalysis. ACS Catal. 2015, 5, 5431–5435. [Google Scholar] [CrossRef]
- Guo, X.; Cui, L.; Wang, Y.; Yi, J.; Sun, J.; Liu, Z.; Liu, B. Mechanistic Study on Effect of Electron Donors in Propylene Polymerization Using the Ziegler-Natta Catalyst. J. Phys. Chem. C 2021, 125, 8533–8542. [Google Scholar] [CrossRef]
- Guo, X.; Cui, L.; Yi, J.; Liu, Z.; Liu, B. Understanding the Role of Sulfonyl Amine Donors in Propylene Polymerization Using MgCl2-Supported Ziegler-Natta Catalyst. J. Phys. Chem. C 2022, 126, 8655–8666. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Z.; Fan, Z.; Liu, B. New Insights into the Nature of Ti(II) and Ti(III) Active Sites in the Heterogeneous Ziegler-Natta Catalyst. J. Phys. Chem. C 2023, 127, 5720–5730. [Google Scholar] [CrossRef]
- Kumawat, J.; Kumar Gupta, V.; Vanka, K. The Nature of the Active Site in Ziegler-Natta Olefin Polymerization Catalysis Systems—A Computational Investigation. Eur. J. Inorg. Chem. 2014, 2014, 5063–5076. [Google Scholar] [CrossRef]
- Taniike, T.; Terano, M. Coadsorption Model for First-Principle Description of Roles of Donors in Heterogeneous Ziegler-Natta Propylene Polymerization. J. Catal. 2012, 293, 39–50. [Google Scholar] [CrossRef]
- Ratanasak, M.; Parasuk, V. Understanding the Roles of Novel Electron Donors in Ziegler-Natta Catalyzed Propylene Polymerization. RSC Adv. 2016, 6, 112776–112783. [Google Scholar] [CrossRef]
- Milanesi, M.; Piovano, A.; Wada, T.; Zarupski, J.; Chmamingkwan, P.; Taniike, T.; Groppo, E. Influence of the Synthetic Procedure on the Properties of Three Ziegler-Natta Catalysts with the same 1,3-Diether Internal Donor. Catal. Today 2023, 418, 114077. [Google Scholar] [CrossRef]
- Nikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–1395. [Google Scholar] [CrossRef]
- Vittoria, A.; Antinucci, G.; Zaccaria, F.; Cipullo, R.; Busico, V. Monitoring the Kinetics of Internal Donor Clean-up from Ziegler-Natta Catalytic Surfaces: An Integrated Experimental and Computational Study. J. Phys. Chem. C 2020, 124, 14245–14252. [Google Scholar] [CrossRef]
- Khatri, V.; Sahoo, U.; Kaur, S.; Rani, R.; Singh, G.; Kapur, G.S.; Kashyap, H. Control of Ziegler-Natta Catalyst Activity by the Structural Design of Alkoxysilane-Based External Donors. New J. Chem. 2020, 44, 6845–6852. [Google Scholar] [CrossRef]
- Raj, K.; Gupta, V.; Vanka, K. The Potential Role of Lewis Acid–Base Adducts in Enhancing Stereoselectivity in Ziegler-Natta Catalysts: A DFT Study. J. Phys. Chem. C 2023, 127, 7220–7229. [Google Scholar] [CrossRef]
- US9156927B2; Catalyst Component for Olefin Polymerization Reaction and Catalyst Comprising Same. BASF Corporation: Ludwigshafen, Germany, 2015.
- Li, C.; Feng, H.; Liu, H.; Zhuang, Z.; Zhou, J.; Liu, D. Effect of Dioldibenzoate Isomers as Electron Donors on the Performances of Ziegler-Natta Polypropylene Catalysts: Experiments and Calculations. J. Phys. Chem. C 2023, 127, 2294–2302. [Google Scholar] [CrossRef]
- GB 3682.1–2018; Plastics, Thermoplastic—Determination of Melt Mass Flow Rate (MFR) and Melt Volume Flow Rate (MVR), Part 1: Standard Method. China Standard Press: Beijing, China, 2018.
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem.-Eur. J. 2012, 18, 9955. [Google Scholar] [CrossRef]
- Lu, T.; Chen, X. Shermo: A General Code for Calculating Molecular Thermochemistry Properties. Comput. Theor. Chem. 2021, 1200, 113249. [Google Scholar] [CrossRef]
- Chadwick, J.C.; Heere, J.J.R.; Sudmeijer, O. Factors Influencing Chain Transfer with Monomer and with Hydrogen in Propene Polymerization Using MgCl2-Supported Ziegler-Natta Catalysts. Macromol. Chem. Phys. 2000, 201, 1846–1852. [Google Scholar] [CrossRef]
- Kojoh, S.; Tsutsui, T.; Kashiwa, N.; Itoh, M.; Mizuno, A. Effect of An External Donor upon Chain-transfer Reactions in Propylene Polymerization with a MgCl2-Supported Titanium Catalyst System. Polymer 1998, 39, 6309–6313. [Google Scholar] [CrossRef]
- Cavallo, L.; Guerra, G. A Density Functional and Molecular Mechanics Study Of β-Hydrogen Transfer in Homogeneous Ziegler-Natta Catalysis. Macromolecules 1996, 29, 2729–2737. [Google Scholar] [CrossRef]
- Talarico, G.; Budzelaar, P.H.M. Variability of Chain Transfer to Monomer Step in Olefin Polymerization. Organometallics 2008, 27, 4098–4107. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Pellecchia, R.; Ronca, S.; Roviello, G.; Talarico, G. Design of Stereoselective Ziegler-Natta Propene Polymerization Catalysts. Proc. Natl. Acad. Sci. USA 2006, 103, 15321–15326. [Google Scholar] [CrossRef] [PubMed]
- Gibson, V.; Spitzmesser, S.K. Advances in Non-Metallocene Olefin Polymerization Catalysis. Chem. Rev. 2003, 103, 283–315. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Fu, Z.; Fan, Z. Chain Transfer Reactions of Propylene Polymerization Catalyzed by AlEt3 Activated TiCl4/MgCl2 Catalyst Under very Low Monomer Addition Rate. J. Mol. Catal. A Chem. 2012, 363–364, 134–139. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Rishina, L.A.; Vizen, E.I. Hydrogen Effects in Propylene Polymerization Reactions with Titanium-Based Ziegler-Natta Catalysts. II. Mechanism of the Chain-Transfer Reaction. J. Polym. Sci. Pol. Chem. 2002, 40, 1899–1911. [Google Scholar] [CrossRef]
Entry | Mesomer (wt/%) | ID c (wt/%) | AC (kgPP/gcat) | I.I. (%) | MFR (g/10 min) | Mn | Mw | PD | |
---|---|---|---|---|---|---|---|---|---|
Compound a | Catalyst b | ||||||||
1 | 97.1 | 99.3 | 14.9 | 54.1 | 98.5 | 1.8 | 69,509 | 482,946 | 6.9 |
2 | 63.0 | 94.6 | 13.2 | 52.6 | 98.4 | 2.2 | 62,469 | 436,287 | 7.0 |
3 | 48.1 | 87.6 | 10.3 | 47.1 | 97.5 | 3.5 | 57,078 | 424,112 | 7.4 |
4 | 34.6 | 80.2 | 8.6 | 44.7 | 97.1 | 4.6 | 54,724 | 414,143 | 7.6 |
5 | 25.0 | 68.2 | 7.4 | 40.2 | 96.5 | 6.0 | 53,043 | 406,631 | 7.7 |
6 | 16.3 | 52.5 | 5.1 | 32.6 | 95.4 | 7.3 | 48,547 | 382,967 | 7.9 |
7 | 1.4 | 15.9 | 2.4 | 20.4 | 92.3 | 9.4 | 47,726 | 380,291 | 8.0 |
ID | TS (re) − TS (si) a (kcal/mol) | Calculated Stereoselectivity (%) | I.I. (%, Experiment) |
---|---|---|---|
RS-PDDB | 3.8 | 99.5 | 98.9 |
SS-PDDB | 0.8 | 75.5 | 91.1 |
RS-HDDB | 3.2 | 99.0 | 98.7 |
SS-HDDB | 1.1 | 82.7 | 91.2 |
ID | Activation Energy of si-Insertion | Calculated Relative Activity of SS/RS |
---|---|---|
RS-PDDB | 11.3 | 1.2 |
SS-PDDB | 11.2 | |
RS-HDDB | 11.8 | 3.2 |
SS-HDDB | 11.0 |
ID | ASS | ARS | Regression Coefficient | ASS/ARS |
---|---|---|---|---|
PDDB | 6.3 | 4.9 | 0.9992 | 1.3 |
HDDB | 9.7 | 3.7 | 0.9994 | 2.6 |
Adsorption Structure | PDDB a | HDDB |
---|---|---|
MgCl2/2RS | 96.3 | 97.9 |
MgCl2/2SS | 88.5 | 87.7 |
TiCl4/MgCl2/2RS | 100.5 | 103.2 |
TiCl4/MgCl2/2SS | 94.4 | 94.5 |
ID | ∆GH | ∆GH − ∆Gp |
---|---|---|
RS-PDDB | 16.56 | 5.22 |
SS-PDDB | 16.36 | 5.16 |
RS-HDDB | 16.92 | 5.09 |
SS-HDDB | 15.96 | 4.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Li, C.; Zhou, J.; Zhang, X.; Tang, S.; Xu, X.; Song, Z. Experimental and Theoretical Insights into the Effect of Dioldibenzoate Isomers on the Performance of Polypropylene Catalysts. Polymers 2024, 16, 559. https://doi.org/10.3390/polym16040559
Feng H, Li C, Zhou J, Zhang X, Tang S, Xu X, Song Z. Experimental and Theoretical Insights into the Effect of Dioldibenzoate Isomers on the Performance of Polypropylene Catalysts. Polymers. 2024; 16(4):559. https://doi.org/10.3390/polym16040559
Chicago/Turabian StyleFeng, Huasheng, Changxiu Li, Junling Zhou, Xiaofan Zhang, Shuxuan Tang, Xiangya Xu, and Zhihui Song. 2024. "Experimental and Theoretical Insights into the Effect of Dioldibenzoate Isomers on the Performance of Polypropylene Catalysts" Polymers 16, no. 4: 559. https://doi.org/10.3390/polym16040559
APA StyleFeng, H., Li, C., Zhou, J., Zhang, X., Tang, S., Xu, X., & Song, Z. (2024). Experimental and Theoretical Insights into the Effect of Dioldibenzoate Isomers on the Performance of Polypropylene Catalysts. Polymers, 16(4), 559. https://doi.org/10.3390/polym16040559